Research Article
BibTex RIS Cite

Mor lahana özütü kullanarak grafen oksitin indirgenmesi ve oksidasyon ile fotokatalitik aktivitesinin incelenmesi

Year 2023, Volume: 38 Issue: 3, 1331 - 1344, 06.01.2023
https://doi.org/10.17341/gazimmfd.1062651

Abstract

Grafen pek çok eşsiz sayılabilecek özelliğe sahip, fotokatalitik bozunum ve adsorpsiyon uygulamalarında potansiyeli olan önemli bir malzemedir. Grafen elde etmek için grafen oksitin (GO) indirgenmesi tekniği son yıllarda sıkça kullanılan ilgi çekici bir yöntemdir. Bu çalışmanın amacı kolay ve etkili bir yöntem olan yeşil sentez ile mor lahana sulu özütü kullanarak GO indirgenmesi ve fotokatalitik giderim uygulamalarında kullanımının incelenmesidir. Sentezleme koşullarını optimize etmek için reaksiyon sıcaklığı 25, 50 ve 100 ⁰C’de ve reaksyon süresinin etkisi ise 1, 2, 4 ve 6 saat için incelendi. XRD, FTIR, UV/vis ve SEM sonuçlarına göre 100 ⁰C reaksiyon sıcaklığı ve 6 saat reaksiyon süresi GO’nun indirgenmesi için uygun deneysel şartlar olarak bulundu. Elde edilen indirgenmiş grafen oksit (IGO) organik ve katyonik bir boya olan metilen mavisinin (MM) sulu çözeltisinde UV lamba altında fotokatalitik bozunum deneylerinde kullanıldı. Çalışmanın bu kısmında hidrojen peroksitin (H2O2) fotokatalitik bozunum süreci üzerindeki etkisi araştırıldı. Sonuçlar 120 dakika sonunda IGO’nun sulu çözeltiden MM’yi %85 oranında giderdiğini gösterdi.

Supporting Institution

Cumhuriyet University

Project Number

M-702

Thanks

Bu çalışma Sivas Cumhuriyet Üniversitesi Bilimsel Araştırmalar Proje Projeleri (CÜBAP) tarafından M-702 nolu proje ile desteklenmiştir.

References

  • 1. Akiba, S., Kosaka, M., Ohashi, K., Hasegawa, K., Sugime, H., Noda, S., Direct formation of continuous multilayer graphene films with controllable thickness on dielectric substrates, Thin Solid Films, 675(1), 136-142, 2019.
  • 2. Papageorgiou, D.G., Kinloch, I.A., Young, R.J., Mechanical properties of graphene and graphene-based nanocomposites, Progress in Materials Science, 90: 75-127, 2017.
  • 3. Hou, D., Li, K., Ma, R., Liu, Q., Influence of order degree of coaly graphite on its structure change during preparation of graphene oxide, The Chinese Ceramic Society, 6 (3), 628-641.
  • 4. Ousaleh, H.A., Charti, I., Sair, S., Mansouri, S., Abboud, Y., El Bouari, A., Green and low-cost approach for graphene oxide reduction using natural plant extracts, Materials Today: Proceedings, 30 (4), 803-808, 2019.
  • 5. Romero, A., Lavin-Lopez, M.P., Sanchez-Silva, L., Valverde, J.L., Paton-Carrero, A., Comparative study of different scalable routes to synthesize graphene oxide and reduced graphene oxide, Materials Chemistry and Physics, 203, 284-92, 2018.
  • 6. Andrijanto, E., Shoelarta, S., Subiyanto, G., Rifki, S., Facile synthesis of graphene from graphite using ascorbic acid as reducing agent, AIP Conference Proceedings 1725 (1), 020003, 2016.
  • 7. Liu, J., Cui, L., Losic, D., Graphene and graphene oxide as new nanocarriers for drug delivery applications, Acta Biomaterialia, 9 (12), 9243-9257, 2013.
  • 8. Yang, Z., Hao, X., Chen, S., Ma, Z., Wang, W., Wang, C., Yue, L., Sun, H.,Shao, Q., Murugadoss, V., Guo, Z., Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles, Journal of Colloid And Interface Science, 533, 13-23, 2019.
  • 9. Song, S., Shen, H., Wang, Y., Chu, X., Xie, J., Zhou, N., Shen J., Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics, Colloids and Surfaces B: Biointerfaces, 185, 110596, 2020.
  • 10. Haghighi, B., Tabrizi, M.A., Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications, RSC Advances, 32, 2013.
  • 11. Mascarenhas, F.C., Sykam, N., Selvakumar, M., Mahesha, M.G., Green reduction of graphene oxide using Indian gooseberry (amla) extract for gas sensing applications, Journal of Environmental Chemical Engineering, 8(2), 103712, 2020.
  • 12. Shalaby, A., Nihtianova, D., Markov, P., Staneva, A.D., Iordanova, R.S., Dimitriev, Y.B., Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulgarian Chemical Communications, 47(1), 291-295, 2015.
  • 13. Liu, J., Dong, J., Zhang, T., Peng, Q., Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy, Journal of Controlled Release, 286, 64-73, 2018.
  • 14. Narayanan, D.P., Gopalakrishnan, A., Yaakob, Z., Sugunan, S., Narayanan, B.N., A facile synthesis of clay – graphene oxide nanocomposite catalysts for solvent free multicomponent Biginelli reaction, Arabian Journal of Chemistry, 13(1), 318-334, 2020.
  • 15. Sreeja, V.G., Vinitha, G., Reshmi, R., Anila, E.I., Jayaraj, M.K., Effect of reduction time on third order optical nonlinearity of reduced graphene oxide, Optical Materials, 66: 460-468, 2017.
  • 16. Jana, M., Saha, S., Khanra, P., Murmu, N.C., Srivastava, S.K., Kuila, T., Lee, J., H., Bio-reduction of graphene oxide using drained water from soaked mung beans (Phaseolus aureus L.) and its application as energy storage electrode material, Materials Science and Engineering B, 186(1), 33-40, 2014.
  • 17. Yaragalla, S., Rajendran, R., Jose, J., Almaadeed, M.A., Kalarikkal, N., Thomas, S., Preparation and characterization of green graphene using grape seed extract for bioapplications, Materials Science and Engineering C, 65: 345-53, 2016.
  • 18. Sujatmiko, F., Sahroni, I., Fadillah, G., Fatimah, I., Visible light-responsive photocatalyst of SnO2/rGO prepared using Pometia pinnata leaf extract, Open Chemistry, 19(1), 174–83, 2021.
  • 19. Thakur, S., Karak, N., Green reduction of graphene oxide by aqueous phytoextracts, Carbon, 50(14), 5331-5339, 2012.
  • 20. Vizuete, K.S., Kumar, B., Vaca, A. V., Debut, A., Cumbal, L., Mortiño (Vaccinium floribundum Kunth) berry assisted green synthesis and photocatalytic performance of Silver–Graphene nanocomposite, Journal of Photochemistry and Photobiology A: Chemistry, 329: 273-279, 2016.
  • 21. Pandey, K.B., Rizvi, S.I., Plant polyphenols as dietary antioxidants in human health and disease, 2(5), 270-278, 2009.
  • 22. Lekeufack, D.D., Brioude, A., 2014. One pot biosynthesis of gold NPs using red cabbage extracts, 5, Dalton Trans., 2012,41, 1461-1464
  • 23. Abdellah, M.H., Nosier, S.A., El-shazly, A.H., Mubarak, A.A., Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging, Alexandria Engineering Journal, 57(4), 3727-3735, 2018.
  • 24. Acedo-Mendoza., Infantes-Molina, A., Vargas-Hernandez, D., Chavez-Sanchez, C., A., Rodríguez-Castellon, E., Tanori-Cordova, J., C., Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts : The effect of copper loading and reaction temperature, Materials Science in Semiconductor Processing, 119, 105257, 2020.
  • 25. Kharisma, D, Abidin Z, Kusmana, C., Adsorption of Methylene Blue onto a Low-Cost And Environmental Friendly Goethite, IOP Conference Series: Earth and Environmental Science, 399, 012013, 2019.
  • 26. Kütük, N., Boran, F., Çetinkaya Gürer, S., Green Reduction of Graphene Oxide By Using Kombucha Tea, Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 20, 24-29. 2019.
  • 27. Suresh, D., Kumar, M.A.P., Nagabhushana, H., Sharma, S.C., Cinnamon supported facile green reduction of graphene oxide , its dye elimination and antioxidant activities, Materials Letters, 151, 93-95, 2015.
  • 28. Sadhukhan, S., Kumar, T., Roy, I., Rana, D., Bhattacharyya, A., Saha, R., Chattopadhyay, S., Khatua, S., Acharya, K., Chattopadhyay, D., Green synthesis of cadmium oxide decorated reduced graphene oxide nanocomposites and its electrical and antibacterial properties, Materials Science & Engineering C, 99, 696-709, 2019.
  • 29. Ranjith, R., Renganathan, V., Chen, S., Selvan, N.S., Rajam, P.S., Green synthesis of reduced graphene oxide supported TiO2/Co3O4 nanocomposite for photocatalytic degradation of methylene blue and crystal violet, Ceramics International, 45(10), 12926-12933, 2019.
  • 30. Hosseinzadeh, A., Bidmeshkipour, S., Abdi, Y., Arzi, E., Mohajerzadeh, S., Graphene based strain sensors: A comparative study on graphene and its derivatives, Applied Surface Science, 448, 71-77, 2018.
  • 31. Hou, D., Liu, Q., Cheng, H., Zhang, H., Wang, S., 2017. Green reduction of graphene oxide via Lycium barbarum extract, Journal of Solid State Chemistry, 246, 351-356.
  • 32. Cherian, R.S., Sandeman, S., Ray, S., Savina, I.N., Ashtami, J., Mohanan, P. V., Green synthesis of Pluronic stabilized reduced graphene oxide: Chemical and biological characterization, Colloids and Surfaces B: Biointerfaces, 179, 94-106, 2019.
  • 33. Hou, D., Liu, Q., Cheng, H., Li, K., Wang, D., Zhang, H., Chrysanthemum extract assisted green reduction of graphene oxide, Materials Chemistry and Physics, 183, 76-82, 2016.
  • 34. Jaafar, E., Kashif, M., Sahari, S.K., Ngaini, Z., Effects of reduction temperatures on morphological, optical, and electrical properties of reduced graphene oxide (rGO) thin films, Materials Today: Proceedings, 16, 1702-1707, 2019.
  • 35. Rokmana, A., W., Asriani, A., Suhendar, H., Triyana, K., Kusumaatmaja, A., Santoso, I., The Optical Properties of Thin Film Reduced Graphene oxide/Poly (3,4 Ethylenedioxtriophene): Poly(Styrene Sulfonate)(PEDOT : PSS) Fabricated by Spin Coating, The International Conference on Theoretical and Applied Physics, 1-6, 2018.
  • 36. Kartick, B., Srivastava, S.K., Srivastava, I., Green synthesis of graphene, Journal of Nanoscience and Nanotechnology, 13(6), 4320–4324, 2013.
  • 37. Emiru, T.F., Ayele, D.W., Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production, Egyptian Journal of Basic and Applied Sciences, 4(1), 74-79, 2017.
  • 38. Jaiswal, A.K., Gupta, S., Abu-ghannam, N., Kinetic evaluation of colour , texture , polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment, Food Chemistry, 131(1), 63-72, 2012.
  • 39. Bowtell, J., Kelly, V., Fruit‑Derived Polyphenol Supplementation for Athlete Recovery and Performance, Sports Medicine, 49, 3-23, 2019.
  • 40. Gurunathan, S., Han, J.W., Park, J.H., Eppakayala, V., Kim, J.H., Ginkgo biloba: A natural reducing agent for the synthesis of cytocompatible grapheme, International Journal of Nanomedicine, 9(1), 363-377, 2014.
  • 41. Liu, K., Wang, Y., Li, H., Duan, Y., A facile one-pot synthesis of starch functionalized graphene as nano-carrier for pH sensitive and starch-mediated drug delivery, Colloids and Surfaces B: Biointerfaces, 128, 86-93, 2015.
  • 42. Upadhyay, Kant, R., Soin, N., Bhattacharya, G., Saha, S., Barman, A., Sinha, S., Grape extract assisted green synthesis of reduced graphene oxide for water treatment application, Materials Letters, 160, 355-358, 2015.
  • 43. Li, C., Zhuang, Z., Jin, X., Chen, Z., Applied Surface Science A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract, Applied Surface Science, 422, 469–74, 2017.
  • 44. Sodeinde, K.O., Olusanya, S.O., Friday, V., Lawal, O.S., Photocatalytic degradation of Janus Green Blue dye in wastewater by green synthesised reduced graphene oxide-silver nanocomposite, International Journal of Environmental Analytical Chemistry, 1-17, 2022.
  • 45. Eren, S., C.I. Reactive Black Boyarmaddesi̇ni̇n Fotokali̇ti̇k Renk Gi̇deri̇mi̇, Uludağ University Journal of The Faculty of Engineering, 23(1), 139-152, 2018.
  • 46. Saha, D., Desipio, M.M., Hoinkis, T.J., Smeltz, E.J., Thorpe, R., Hensley, D.K., Fischer-Drowos, S., G. Chen, J., Influence of hydrogen peroxide in enhancing photocatalytic activity of carbon nitride under visible light : An insight into reaction intermediates, Journal of Environmental Chemical Engineering, 6(4), 4927-4936, 2018.
  • 47. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J., Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental, 31(2), 145-157, 2001.
  • 48. Tseng, D.H., Juang, L.C., Huang, H.H., Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in TiO2 aqueous suspension, International Journal of Photoenergy, 2012(2), 328526, 2012.
  • 49. İzgi, M.S., Zörer, C., Baytar, O., Horoz, S., Şahİn, Ö., Photocatalytic Applications of Effective Activated Carbon Supported Cds Photocatalysts, BEU Journal of Science, 9(2), 662–670, 2020.
  • 50. Govindhan, P., Pragathiswaran, C., Silver Nanoparticle Decorated on ZnO@SiO2 Nanocomposite and Application for Photocatalytic Dye Degradation of Methylene Blue, National Academy Science Letters, 42(4), 323–326, 2019.
  • 51. Muneer, I., Farrukh, M.A., Structural, optical, photoluminescence, photocatalytic and antifungal features of d/Mn2SnO4 nanocomposite annealed at different temperatures, Journal of Materials Science: Materials in Electronics, 2021.
  • 52. Mahdikhah, V., Saadatkia, S., Sheibani, S., Ataie, A., Outstanding photocatalytic activity of CoFe2O4 /rGO nanocomposite in degradation of organic dyes, Optical Materials, 108, 110193, 2020.
  • 53. Atout, H., Álvarez, M.G., Chebli, D., Bouguettoucha, A., Tichit, D., Llorca, J., Medina, F., Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods. Materials Research Bulletin 95, 578-587, 2017.
  • 54. Poorsajadi, F., Sayadi, M.H., Hajiani, M., Synthesis of CuO / Bi2O3 nanocomposite for efficient and recycling photodegradation of methylene blue dye, International Journal of Environmental Analytical Chemistry, 1-14, 2020.
Year 2023, Volume: 38 Issue: 3, 1331 - 1344, 06.01.2023
https://doi.org/10.17341/gazimmfd.1062651

Abstract

Project Number

M-702

References

  • 1. Akiba, S., Kosaka, M., Ohashi, K., Hasegawa, K., Sugime, H., Noda, S., Direct formation of continuous multilayer graphene films with controllable thickness on dielectric substrates, Thin Solid Films, 675(1), 136-142, 2019.
  • 2. Papageorgiou, D.G., Kinloch, I.A., Young, R.J., Mechanical properties of graphene and graphene-based nanocomposites, Progress in Materials Science, 90: 75-127, 2017.
  • 3. Hou, D., Li, K., Ma, R., Liu, Q., Influence of order degree of coaly graphite on its structure change during preparation of graphene oxide, The Chinese Ceramic Society, 6 (3), 628-641.
  • 4. Ousaleh, H.A., Charti, I., Sair, S., Mansouri, S., Abboud, Y., El Bouari, A., Green and low-cost approach for graphene oxide reduction using natural plant extracts, Materials Today: Proceedings, 30 (4), 803-808, 2019.
  • 5. Romero, A., Lavin-Lopez, M.P., Sanchez-Silva, L., Valverde, J.L., Paton-Carrero, A., Comparative study of different scalable routes to synthesize graphene oxide and reduced graphene oxide, Materials Chemistry and Physics, 203, 284-92, 2018.
  • 6. Andrijanto, E., Shoelarta, S., Subiyanto, G., Rifki, S., Facile synthesis of graphene from graphite using ascorbic acid as reducing agent, AIP Conference Proceedings 1725 (1), 020003, 2016.
  • 7. Liu, J., Cui, L., Losic, D., Graphene and graphene oxide as new nanocarriers for drug delivery applications, Acta Biomaterialia, 9 (12), 9243-9257, 2013.
  • 8. Yang, Z., Hao, X., Chen, S., Ma, Z., Wang, W., Wang, C., Yue, L., Sun, H.,Shao, Q., Murugadoss, V., Guo, Z., Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles, Journal of Colloid And Interface Science, 533, 13-23, 2019.
  • 9. Song, S., Shen, H., Wang, Y., Chu, X., Xie, J., Zhou, N., Shen J., Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics, Colloids and Surfaces B: Biointerfaces, 185, 110596, 2020.
  • 10. Haghighi, B., Tabrizi, M.A., Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications, RSC Advances, 32, 2013.
  • 11. Mascarenhas, F.C., Sykam, N., Selvakumar, M., Mahesha, M.G., Green reduction of graphene oxide using Indian gooseberry (amla) extract for gas sensing applications, Journal of Environmental Chemical Engineering, 8(2), 103712, 2020.
  • 12. Shalaby, A., Nihtianova, D., Markov, P., Staneva, A.D., Iordanova, R.S., Dimitriev, Y.B., Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulgarian Chemical Communications, 47(1), 291-295, 2015.
  • 13. Liu, J., Dong, J., Zhang, T., Peng, Q., Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy, Journal of Controlled Release, 286, 64-73, 2018.
  • 14. Narayanan, D.P., Gopalakrishnan, A., Yaakob, Z., Sugunan, S., Narayanan, B.N., A facile synthesis of clay – graphene oxide nanocomposite catalysts for solvent free multicomponent Biginelli reaction, Arabian Journal of Chemistry, 13(1), 318-334, 2020.
  • 15. Sreeja, V.G., Vinitha, G., Reshmi, R., Anila, E.I., Jayaraj, M.K., Effect of reduction time on third order optical nonlinearity of reduced graphene oxide, Optical Materials, 66: 460-468, 2017.
  • 16. Jana, M., Saha, S., Khanra, P., Murmu, N.C., Srivastava, S.K., Kuila, T., Lee, J., H., Bio-reduction of graphene oxide using drained water from soaked mung beans (Phaseolus aureus L.) and its application as energy storage electrode material, Materials Science and Engineering B, 186(1), 33-40, 2014.
  • 17. Yaragalla, S., Rajendran, R., Jose, J., Almaadeed, M.A., Kalarikkal, N., Thomas, S., Preparation and characterization of green graphene using grape seed extract for bioapplications, Materials Science and Engineering C, 65: 345-53, 2016.
  • 18. Sujatmiko, F., Sahroni, I., Fadillah, G., Fatimah, I., Visible light-responsive photocatalyst of SnO2/rGO prepared using Pometia pinnata leaf extract, Open Chemistry, 19(1), 174–83, 2021.
  • 19. Thakur, S., Karak, N., Green reduction of graphene oxide by aqueous phytoextracts, Carbon, 50(14), 5331-5339, 2012.
  • 20. Vizuete, K.S., Kumar, B., Vaca, A. V., Debut, A., Cumbal, L., Mortiño (Vaccinium floribundum Kunth) berry assisted green synthesis and photocatalytic performance of Silver–Graphene nanocomposite, Journal of Photochemistry and Photobiology A: Chemistry, 329: 273-279, 2016.
  • 21. Pandey, K.B., Rizvi, S.I., Plant polyphenols as dietary antioxidants in human health and disease, 2(5), 270-278, 2009.
  • 22. Lekeufack, D.D., Brioude, A., 2014. One pot biosynthesis of gold NPs using red cabbage extracts, 5, Dalton Trans., 2012,41, 1461-1464
  • 23. Abdellah, M.H., Nosier, S.A., El-shazly, A.H., Mubarak, A.A., Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging, Alexandria Engineering Journal, 57(4), 3727-3735, 2018.
  • 24. Acedo-Mendoza., Infantes-Molina, A., Vargas-Hernandez, D., Chavez-Sanchez, C., A., Rodríguez-Castellon, E., Tanori-Cordova, J., C., Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts : The effect of copper loading and reaction temperature, Materials Science in Semiconductor Processing, 119, 105257, 2020.
  • 25. Kharisma, D, Abidin Z, Kusmana, C., Adsorption of Methylene Blue onto a Low-Cost And Environmental Friendly Goethite, IOP Conference Series: Earth and Environmental Science, 399, 012013, 2019.
  • 26. Kütük, N., Boran, F., Çetinkaya Gürer, S., Green Reduction of Graphene Oxide By Using Kombucha Tea, Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 20, 24-29. 2019.
  • 27. Suresh, D., Kumar, M.A.P., Nagabhushana, H., Sharma, S.C., Cinnamon supported facile green reduction of graphene oxide , its dye elimination and antioxidant activities, Materials Letters, 151, 93-95, 2015.
  • 28. Sadhukhan, S., Kumar, T., Roy, I., Rana, D., Bhattacharyya, A., Saha, R., Chattopadhyay, S., Khatua, S., Acharya, K., Chattopadhyay, D., Green synthesis of cadmium oxide decorated reduced graphene oxide nanocomposites and its electrical and antibacterial properties, Materials Science & Engineering C, 99, 696-709, 2019.
  • 29. Ranjith, R., Renganathan, V., Chen, S., Selvan, N.S., Rajam, P.S., Green synthesis of reduced graphene oxide supported TiO2/Co3O4 nanocomposite for photocatalytic degradation of methylene blue and crystal violet, Ceramics International, 45(10), 12926-12933, 2019.
  • 30. Hosseinzadeh, A., Bidmeshkipour, S., Abdi, Y., Arzi, E., Mohajerzadeh, S., Graphene based strain sensors: A comparative study on graphene and its derivatives, Applied Surface Science, 448, 71-77, 2018.
  • 31. Hou, D., Liu, Q., Cheng, H., Zhang, H., Wang, S., 2017. Green reduction of graphene oxide via Lycium barbarum extract, Journal of Solid State Chemistry, 246, 351-356.
  • 32. Cherian, R.S., Sandeman, S., Ray, S., Savina, I.N., Ashtami, J., Mohanan, P. V., Green synthesis of Pluronic stabilized reduced graphene oxide: Chemical and biological characterization, Colloids and Surfaces B: Biointerfaces, 179, 94-106, 2019.
  • 33. Hou, D., Liu, Q., Cheng, H., Li, K., Wang, D., Zhang, H., Chrysanthemum extract assisted green reduction of graphene oxide, Materials Chemistry and Physics, 183, 76-82, 2016.
  • 34. Jaafar, E., Kashif, M., Sahari, S.K., Ngaini, Z., Effects of reduction temperatures on morphological, optical, and electrical properties of reduced graphene oxide (rGO) thin films, Materials Today: Proceedings, 16, 1702-1707, 2019.
  • 35. Rokmana, A., W., Asriani, A., Suhendar, H., Triyana, K., Kusumaatmaja, A., Santoso, I., The Optical Properties of Thin Film Reduced Graphene oxide/Poly (3,4 Ethylenedioxtriophene): Poly(Styrene Sulfonate)(PEDOT : PSS) Fabricated by Spin Coating, The International Conference on Theoretical and Applied Physics, 1-6, 2018.
  • 36. Kartick, B., Srivastava, S.K., Srivastava, I., Green synthesis of graphene, Journal of Nanoscience and Nanotechnology, 13(6), 4320–4324, 2013.
  • 37. Emiru, T.F., Ayele, D.W., Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production, Egyptian Journal of Basic and Applied Sciences, 4(1), 74-79, 2017.
  • 38. Jaiswal, A.K., Gupta, S., Abu-ghannam, N., Kinetic evaluation of colour , texture , polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment, Food Chemistry, 131(1), 63-72, 2012.
  • 39. Bowtell, J., Kelly, V., Fruit‑Derived Polyphenol Supplementation for Athlete Recovery and Performance, Sports Medicine, 49, 3-23, 2019.
  • 40. Gurunathan, S., Han, J.W., Park, J.H., Eppakayala, V., Kim, J.H., Ginkgo biloba: A natural reducing agent for the synthesis of cytocompatible grapheme, International Journal of Nanomedicine, 9(1), 363-377, 2014.
  • 41. Liu, K., Wang, Y., Li, H., Duan, Y., A facile one-pot synthesis of starch functionalized graphene as nano-carrier for pH sensitive and starch-mediated drug delivery, Colloids and Surfaces B: Biointerfaces, 128, 86-93, 2015.
  • 42. Upadhyay, Kant, R., Soin, N., Bhattacharya, G., Saha, S., Barman, A., Sinha, S., Grape extract assisted green synthesis of reduced graphene oxide for water treatment application, Materials Letters, 160, 355-358, 2015.
  • 43. Li, C., Zhuang, Z., Jin, X., Chen, Z., Applied Surface Science A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract, Applied Surface Science, 422, 469–74, 2017.
  • 44. Sodeinde, K.O., Olusanya, S.O., Friday, V., Lawal, O.S., Photocatalytic degradation of Janus Green Blue dye in wastewater by green synthesised reduced graphene oxide-silver nanocomposite, International Journal of Environmental Analytical Chemistry, 1-17, 2022.
  • 45. Eren, S., C.I. Reactive Black Boyarmaddesi̇ni̇n Fotokali̇ti̇k Renk Gi̇deri̇mi̇, Uludağ University Journal of The Faculty of Engineering, 23(1), 139-152, 2018.
  • 46. Saha, D., Desipio, M.M., Hoinkis, T.J., Smeltz, E.J., Thorpe, R., Hensley, D.K., Fischer-Drowos, S., G. Chen, J., Influence of hydrogen peroxide in enhancing photocatalytic activity of carbon nitride under visible light : An insight into reaction intermediates, Journal of Environmental Chemical Engineering, 6(4), 4927-4936, 2018.
  • 47. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J., Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental, 31(2), 145-157, 2001.
  • 48. Tseng, D.H., Juang, L.C., Huang, H.H., Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in TiO2 aqueous suspension, International Journal of Photoenergy, 2012(2), 328526, 2012.
  • 49. İzgi, M.S., Zörer, C., Baytar, O., Horoz, S., Şahİn, Ö., Photocatalytic Applications of Effective Activated Carbon Supported Cds Photocatalysts, BEU Journal of Science, 9(2), 662–670, 2020.
  • 50. Govindhan, P., Pragathiswaran, C., Silver Nanoparticle Decorated on ZnO@SiO2 Nanocomposite and Application for Photocatalytic Dye Degradation of Methylene Blue, National Academy Science Letters, 42(4), 323–326, 2019.
  • 51. Muneer, I., Farrukh, M.A., Structural, optical, photoluminescence, photocatalytic and antifungal features of d/Mn2SnO4 nanocomposite annealed at different temperatures, Journal of Materials Science: Materials in Electronics, 2021.
  • 52. Mahdikhah, V., Saadatkia, S., Sheibani, S., Ataie, A., Outstanding photocatalytic activity of CoFe2O4 /rGO nanocomposite in degradation of organic dyes, Optical Materials, 108, 110193, 2020.
  • 53. Atout, H., Álvarez, M.G., Chebli, D., Bouguettoucha, A., Tichit, D., Llorca, J., Medina, F., Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods. Materials Research Bulletin 95, 578-587, 2017.
  • 54. Poorsajadi, F., Sayadi, M.H., Hajiani, M., Synthesis of CuO / Bi2O3 nanocomposite for efficient and recycling photodegradation of methylene blue dye, International Journal of Environmental Analytical Chemistry, 1-14, 2020.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Nurşah Kütük 0000-0001-5799-3865

Filiz Boran 0000-0002-4315-9949

Sevil Cetınkaya Gürer 0000-0001-5421-0474

Project Number M-702
Publication Date January 6, 2023
Submission Date January 27, 2022
Acceptance Date June 3, 2022
Published in Issue Year 2023 Volume: 38 Issue: 3

Cite

APA Kütük, N., Boran, F., & Cetınkaya Gürer, S. (2023). Mor lahana özütü kullanarak grafen oksitin indirgenmesi ve oksidasyon ile fotokatalitik aktivitesinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(3), 1331-1344. https://doi.org/10.17341/gazimmfd.1062651
AMA Kütük N, Boran F, Cetınkaya Gürer S. Mor lahana özütü kullanarak grafen oksitin indirgenmesi ve oksidasyon ile fotokatalitik aktivitesinin incelenmesi. GUMMFD. January 2023;38(3):1331-1344. doi:10.17341/gazimmfd.1062651
Chicago Kütük, Nurşah, Filiz Boran, and Sevil Cetınkaya Gürer. “Mor Lahana özütü Kullanarak Grafen Oksitin Indirgenmesi Ve Oksidasyon Ile Fotokatalitik Aktivitesinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 3 (January 2023): 1331-44. https://doi.org/10.17341/gazimmfd.1062651.
EndNote Kütük N, Boran F, Cetınkaya Gürer S (January 1, 2023) Mor lahana özütü kullanarak grafen oksitin indirgenmesi ve oksidasyon ile fotokatalitik aktivitesinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 3 1331–1344.
IEEE N. Kütük, F. Boran, and S. Cetınkaya Gürer, “Mor lahana özütü kullanarak grafen oksitin indirgenmesi ve oksidasyon ile fotokatalitik aktivitesinin incelenmesi”, GUMMFD, vol. 38, no. 3, pp. 1331–1344, 2023, doi: 10.17341/gazimmfd.1062651.
ISNAD Kütük, Nurşah et al. “Mor Lahana özütü Kullanarak Grafen Oksitin Indirgenmesi Ve Oksidasyon Ile Fotokatalitik Aktivitesinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/3 (January 2023), 1331-1344. https://doi.org/10.17341/gazimmfd.1062651.
JAMA Kütük N, Boran F, Cetınkaya Gürer S. Mor lahana özütü kullanarak grafen oksitin indirgenmesi ve oksidasyon ile fotokatalitik aktivitesinin incelenmesi. GUMMFD. 2023;38:1331–1344.
MLA Kütük, Nurşah et al. “Mor Lahana özütü Kullanarak Grafen Oksitin Indirgenmesi Ve Oksidasyon Ile Fotokatalitik Aktivitesinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 3, 2023, pp. 1331-44, doi:10.17341/gazimmfd.1062651.
Vancouver Kütük N, Boran F, Cetınkaya Gürer S. Mor lahana özütü kullanarak grafen oksitin indirgenmesi ve oksidasyon ile fotokatalitik aktivitesinin incelenmesi. GUMMFD. 2023;38(3):1331-44.