Research Article
BibTex RIS Cite

Harmanlamaya uygun termoplastik nişasta üretimi ve termoplastik nişasta/polietilen harmanlarının morfolojik, termal, reolojik özelliklerinin belirlenmesi

Year 2023, Volume: 38 Issue: 3, 1547 - 1560, 06.01.2023
https://doi.org/10.17341/gazimmfd.1085013

Abstract

Biyobozunur ürünler, sentetik polimerlerin kullanımından kaynaklanan atıkların azaltılmasında önemli bir çözüm olarak kabul edilmektedir. Termoplastik nişasta (TPS), biyolojik olarak parçalanabilen ürünlerin hazırlanmasında başarısı ve düşük maliyeti ile öne çıkmaktadır. Biyobozunur polimerik ürünlerin düşük mekanik ve fiziksel özelliklerini iyileştirmek için, umut verici bir çözüm olan ve çalışmamızın hedefi olarak eş-sürekli formdaki morfoloji seçilmiştir. Bu amaçla nişasta ve çeşitli plastikleştiriciler kullanılarak eriyik işleme yöntemiyle termoplastik nişasta (TPS) numuneleri hazırlanmıştır. TPS numuneleri morfolojik, reolojik ve termal özellikler açısından incelenmiştir. Elde edilen sonuçlara göre polietilen (PE) ile hazırlanacak polimer karışımlarında eş sürekli morfolojinin elde edilmesini sağlayacak uygun TPS örneği belirlenmiştir. Seçilen TPS numunesi ve PE farklı bileşimlerde olacak şekilde polimer karışımları eriyik işleme yöntemiyle hazırlanmıştır. TPS/PE polimer karışımları mekanik, reolojik, morfolojik ve termal özellikler açısından incelenmiş ve TPS kompozisyonu yüksek ve eş sürekli faz morfolojisine sahip numunelerin hazırlanması için en uygun yöntem ve parametreler belirlenmiştir.

Supporting Institution

Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2018/DR/0008

Thanks

Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi'ne desteklerinden dolayı teşekkür ederiz.

References

  • B. Imre and B. Pukánszky, “Compatibilization in bio-based and biodegradable polymer blends,” Eur. Polym. J., vol. 49, no. 6, pp. 1215–1233, Jun. 2013, doi: 10.1016/J.EURPOLYMJ.2013.01.019.
  • M. Kaseem, K. Hamad, and F. Deri, “Thermoplastic starch blends: A review of recent works,” Polym. Sci. Ser. A, 2012, doi: 10.1134/S0965545X1202006X.
  • J. Lörcks, “Properties and applications of compostable starch-based plastic material,” Polym. Degrad. Stab., vol. 59, pp. 245–249, 1998, doi: 10.1016/S0141-3910(97)00168-7.
  • A. R. Rahmat, W. A. W. A. Rahman, L. T. Sin, and A. A. Yussuf, “Approaches to improve compatibility of starch filled polymer system: A review,” Mater. Sci. Eng. C, vol. 29, no. 8, pp. 2370–2377, Oct. 2009, doi: 10.1016/J.MSEC.2009.06.009.
  • J. Hopewell, R. Dvorak, and E. Kosior, “Plastics recycling: challenges and opportunities.,” Philos. Trans. R. Soc. Lond. B. Biol. Sci., vol. 364, no. 1526, pp. 2115–26, Jul. 2009, doi: 10.1098/rstb.2008.0311.
  • A. Ghanbari, T. Tabarsa, A. Ashori, A. Shakeri, and M. Mashkour, “Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing,” Int. J. Biol. Macromol., vol. 112, pp. 442–447, 2018, doi: 10.1016/j.ijbiomac.2018.02.007.
  • R. C. Thompson, C. J. Moore, F. S. vom Saal, and S. H. Swan, “Plastics, the environment and human health: current consensus and future trends.,” Philos. Trans. R. Soc. Lond. B. Biol. Sci., vol. 364, no. 1526, pp. 2153–66, Jul. 2009, doi: 10.1098/rstb.2009.0053.
  • G. Bonifazi, L. Damiani, S. Serranti, E. J. Bakker, and P. C. Rem, “Innovative sensing technologies applied to post-consumer polyolefins recovery,” vol. 14, no. SPEC. ISS. 2, pp. 5–10, 2009, Accessed: May 30, 2018. [Online]. Available: https://www.scopus.com/record/display.uri?eid=2-s2.0-62749107571&origin=inward&txGid=fffadb6f04ed679ef66cd7460fa13adf.
  • S. Serranti, A. Gargiulo, and G. Bonifazi, “Characterization of post-consumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes,” Waste Manag., vol. 31, no. 11, pp. 2217–2227, Nov. 2011, doi: 10.1016/J.WASMAN.2011.06.007.
  • Heartwin, A. Pushpadass, P. Bhandari, and M. A. Hanna, “Effects of LDPE and glycerol contents and compounding on the microstructure and properties of starch composite films,” Carbohydr. Polym., vol. 82, pp. 1082–1089, 2010, doi: 10.1016/j.carbpol.2010.06.032.
  • M. Kaseem, K. Hamad, and F. Deri, “Rheological and mechanical properties of polypropylene/thermoplastic starch blend,” Polym. Bull., vol. 68, no. 4, pp. 1079–1091, Mar. 2012, doi: 10.1007/s00289-011-0611-z.
  • V. Mittal, T. Akhtar, and N. Matsko, “Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL,” Macromol. Mater. Eng., 2015, doi: 10.1002/mame.201400332.
  • F. . Rodriguez-Gonzalez, B. . Ramsay, and B. . Favis, “High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene,” Polymer (Guildf)., vol. 44, no. 5, pp. 1517–1526, Mar. 2003, doi: 10.1016/S0032-3861(02)00907-2.
  • D. S. Rosa, C. G. F. Guedes, and C. L. Carvalho, “Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends,” J. Mater. Sci., vol. 42, no. 2, pp. 551–557, Jan. 2007, doi: 10.1007/s10853-006-1049-9.
  • R. L. Shogren, G. F. Fanta, and W. M. Doane, “Development of Starch Based Plastics - A Reexamination of Selected Polymer Systems in Historical Perspective,” Starch - Stärke, vol. 45, no. 8, pp. 276–280, 1993, doi: 10.1002/star.19930450806.
  • S. B. Roy, B. Ramaraj, S. C. Shit, and S. K. Nayak, “Polypropylene and potato starch biocomposites: Physicomechanical and thermal properties,” J. Appl. Polym. Sci., vol. 120, no. 5, pp. 3078–3086, Jun. 2011, doi: 10.1002/app.33486.
  • H. Canisag, “Bio-Crosslinking of Starch Films with Oxidized Sucrose,” University of Nebraska, 2014.
  • S. Karagöz, “Poli(laktik asit)/Modifiye Termoplastik Nişasta Karışımları,” Kocaeli Üniversitesi, 2012.
  • D. R. Lu, C. M. Xiao, and S. J. Xu, “Starch-based completely biodegradable polymer materials,” Express Polym. Lett., vol. 3, no. 6, pp. 366–375, 2009, doi: 10.3144/expresspolymlett.2009.46.
  • R. Shanks and I. Kong, “Thermoplastic Starch,” in Thermoplastic Elastomers, InTech, 2012.
  • H.-Z. He et al., “Linear low-density polyethylene/poly(ethylene terephthalate) blends compatibilization prepared by an eccentric rotor extruder: A morphology, mechanical, thermal, and rheological study,” J. Appl. Polym. Sci., vol. 135, no. 30, p. 46489, Aug. 2018, doi: 10.1002/app.46489.
  • S. K. Nayak, “Biodegradable PBAT/Starch Nanocomposites,” Polym. Plast. Technol. Eng., vol. 49, no. 14, pp. 1406–1418, Nov. 2010, doi: 10.1080/03602559.2010.496397.
  • W. Wang Ning, Z. Zhang Xingxiang, H. Han Na, and F. Fang Jianming, “Effects of Water on the Properties of Thermoplastic Starch Poly(lactic acid) Blend Containing Citric Acid,” J. Thermoplast. Compos. Mater., vol. 23, no. 1, pp. 19–34, Jan. 2010, doi: 10.1177/0892705708096549.
  • J. J. G. Van Soest and N. Knooren, “Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging,” J. Appl. Polym. Sci., vol. 64, no. 7, pp. 1411–1422, May 1997, doi: 10.1002/(SICI)1097-4628(19970516)64:7<1411::AID-APP21>3.0.CO;2-Y.
  • D. Bikiaris et al., “LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer,” Polym. Degrad. Stab., vol. 59, no. 1–3, pp. 287–291, Jan. 1998, doi: 10.1016/S0141-3910(97)00126-2.
  • F. J. Rodriguez-Gonzalez, B. A. Ramsay, and B. D. Favis, “High performance LDPE/thermoplastic starch blends: A sustainable alternative to pure polyethylene,” Polymer (Guildf)., vol. 44, no. 5, pp. 1517–1526, Feb. 2003, doi: 10.1016/S0032-3861(02)00907-2.
  • W. Ning, Y. Jiugao, M. Xiaofei, and H. Chunmei, “High performance modified thermoplastic starch/linear low-density polyethylene blends in one-step extrusion,” Polym. Compos., vol. 28, no. 1, pp. 89–97, Feb. 2007, doi: 10.1002/pc.20266.
  • J. Parameswaranpillai, S. Thomas, and Y. Grohens, “Polymer Blends: State of the Art, New Challenges, and Opportunities,” Accessed: May 31, 2018. [Online]. Available: https://application.wiley-vch.de/books/sample/3527331530_c01.pdf.
  • M. Taşdemir, Polimer Karışımları ve Uygulamaları. Ankara: Seçkin Yayıncılık, 2013.
  • F. Kaya, Ana Hatlarıyla Plastikler ve Katkı Maddeleri. İstanbul: Birsen Yayınevi, 2005.
  • L. A. Utracki, Commercial Polymer Blends. Boston, MA: Springer US, 1998.
  • R. Gonzalez-Nunez, B. D. Favis, P. J. Carreau, and C. Lavallée, “Factors influencing the formation of elongated morphologies in immiscible polymer blends during melt processing,” Polym. Eng. Sci., vol. 33, no. 13, pp. 851–859, Jul. 1993, doi: 10.1002/pen.760331310.
  • M. Hara and J. A. Sauer, “Synergism in Mechanical Properties of Polymer/Polymer Blends,” J. Macromol. Sci. Part C Polym. Rev., vol. 38, no. 2, pp. 327–362, Jan. 1998, doi: 10.1080/15583729808544529.
  • P. Pötschke and D. R. Paul, “Formation of Co-continuous Structures in Melt-Mixed Immiscible Polymer Blends,” J. Macromol. Sci. Part C Polym. Rev., vol. 43, no. 1, pp. 87–141, Jan. 2003, doi: 10.1081/MC-120018022.
  • A. Vazquez, V. P. Cyras, V. A. Alvarez, and J. I. Moran, “Starch/Clay Nano-Biocomposites,” Green Energy Technol., vol. 50, pp. 287–321, 2012, doi: 10.1007/978-1-4471-4108-2_11.
  • M. Paluch, J. Ostrowska, P. Tyński, W. Sadurski, and M. Konkol, “Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture,” J. Polym. Environ., pp. 1–13, Jul. 2021, doi: 10.1007/s10924-021-02235-x.
  • E. D. M. Teixeira, C. Lotti, A. C. Corrêa, K. B. R. Teodoro, J. M. Marconcini, and L. H. C. Mattoso, “Thermoplastic corn starch reinforced with cotton cellulose nanofibers,” J. Appl. Polym. Sci., vol. 120, no. 4, pp. 2428–2433, May 2011, doi: 10.1002/APP.33447.
  • R. Shi et al., “Ageing of soft thermoplastic starch with high glycerol content,” J. Appl. Polym. Sci., vol. 103, no. 1, pp. 574–586, Jan. 2007, doi: 10.1002/APP.25193.
  • E. M. Teixeira, A. L. Da Róz, A. J. F. Carvalho, and A. A. S. Curvelo, “The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch,” Carbohydr. Polym., vol. 69, no. 4, pp. 619–624, Jul. 2007, doi: 10.1016/J.CARBPOL.2007.01.022.
  • J. J. G. Van Soest, S. H. D. Hulleman, D. De Wit, and J. F. G. Vliegenthart, “Crystallinity in starch bioplastics,” Ind. Crops Prod., vol. 5, no. 1, pp. 11–22, Mar. 1996, doi: 10.1016/0926-6690(95)00048-8.
  • J. F. Mano, D. Koniarova, and R. L. Reis, “Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability,” in Journal of Materials Science: Materials in Medicine, 2003, vol. 14, no. 2, pp. 127–135, doi: 10.1023/A:1022015712170.
  • F. Santos De Souza, A. P. Gomes Barreto, and R. O. Macêdo, “Characterization of starch pharmaceuticals by DSC coupled to a photovisual system,” J. Therm. Anal. Calorim., vol. 64, no. 2, pp. 739–743, 2001, doi: 10.1023/A:1011548512655.
  • S. R. Gregory, “Physical Properties of Glycerine and its Solutions,” in Physical Properties of Glycerine, 1991, pp. 113–156.
  • G. STILL, “Binary Vapor-Liquid Equilibrium Data,” Chemical Engineering and Materials Research Information Center, 2018. https://www.cheric.org/research/kdb/hcvle/showvle.php?vleid=2815 (accessed Mar. 03, 2022).
  • N. Mills, M. Jenkins, and S. Kukureka, “Viscoelastic behaviour,” in Plastics, Elsevier, 2020, pp. 111–125.
  • W. You and W. Yu, “Viscoelastic characterization of compatibilized polymer blends,” Compat. Polym. Blends Micro Nano Scale Phase Morphol. Interphase Charact. Prop., pp. 435–452, Jan. 2019, doi: 10.1016/B978-0-12-816006-0.00015-3.
  • H. Liu, F. Xie, L. Yu, L. Chen, and L. Li, “Thermal processing of starch-based polymers,” Progress in Polymer Science (Oxford), vol. 34, no. 12. pp. 1348–1368, Dec. 2009, doi: 10.1016/j.progpolymsci.2009.07.001.
  • M. Guzmán and E. A. Murillo, “Structural, thermal, rheological, morphological and mechanical properties of thermoplastic starch obtained by using hyperbranched polyester polyol as plasticizing agent,” DYNA, vol. 85, no. 206, pp. 178–186, Jul. 2018, doi: 10.15446/dyna.v85n206.71819.
  • A. B. Martins, A. K. Cattelan, and R. M. C. Santana, “How the compatibility between polyethylene and thermoplastic starch can be improved by adding organic acids?,” Polym. Bull., vol. 75, no. 5, pp. 1–16, May 2017, doi: 10.1007/s00289-017-2147-3.
  • A. A. Abioye and C. C. Obuekwe, “Investigation of the biodegradation of low-density polyethylene-starch Bi-polymer blends,” Results Eng., vol. 5, p. 100090, Mar. 2020, doi: 10.1016/J.RINENG.2019.100090.
Year 2023, Volume: 38 Issue: 3, 1547 - 1560, 06.01.2023
https://doi.org/10.17341/gazimmfd.1085013

Abstract

Project Number

2018/DR/0008

References

  • B. Imre and B. Pukánszky, “Compatibilization in bio-based and biodegradable polymer blends,” Eur. Polym. J., vol. 49, no. 6, pp. 1215–1233, Jun. 2013, doi: 10.1016/J.EURPOLYMJ.2013.01.019.
  • M. Kaseem, K. Hamad, and F. Deri, “Thermoplastic starch blends: A review of recent works,” Polym. Sci. Ser. A, 2012, doi: 10.1134/S0965545X1202006X.
  • J. Lörcks, “Properties and applications of compostable starch-based plastic material,” Polym. Degrad. Stab., vol. 59, pp. 245–249, 1998, doi: 10.1016/S0141-3910(97)00168-7.
  • A. R. Rahmat, W. A. W. A. Rahman, L. T. Sin, and A. A. Yussuf, “Approaches to improve compatibility of starch filled polymer system: A review,” Mater. Sci. Eng. C, vol. 29, no. 8, pp. 2370–2377, Oct. 2009, doi: 10.1016/J.MSEC.2009.06.009.
  • J. Hopewell, R. Dvorak, and E. Kosior, “Plastics recycling: challenges and opportunities.,” Philos. Trans. R. Soc. Lond. B. Biol. Sci., vol. 364, no. 1526, pp. 2115–26, Jul. 2009, doi: 10.1098/rstb.2008.0311.
  • A. Ghanbari, T. Tabarsa, A. Ashori, A. Shakeri, and M. Mashkour, “Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing,” Int. J. Biol. Macromol., vol. 112, pp. 442–447, 2018, doi: 10.1016/j.ijbiomac.2018.02.007.
  • R. C. Thompson, C. J. Moore, F. S. vom Saal, and S. H. Swan, “Plastics, the environment and human health: current consensus and future trends.,” Philos. Trans. R. Soc. Lond. B. Biol. Sci., vol. 364, no. 1526, pp. 2153–66, Jul. 2009, doi: 10.1098/rstb.2009.0053.
  • G. Bonifazi, L. Damiani, S. Serranti, E. J. Bakker, and P. C. Rem, “Innovative sensing technologies applied to post-consumer polyolefins recovery,” vol. 14, no. SPEC. ISS. 2, pp. 5–10, 2009, Accessed: May 30, 2018. [Online]. Available: https://www.scopus.com/record/display.uri?eid=2-s2.0-62749107571&origin=inward&txGid=fffadb6f04ed679ef66cd7460fa13adf.
  • S. Serranti, A. Gargiulo, and G. Bonifazi, “Characterization of post-consumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes,” Waste Manag., vol. 31, no. 11, pp. 2217–2227, Nov. 2011, doi: 10.1016/J.WASMAN.2011.06.007.
  • Heartwin, A. Pushpadass, P. Bhandari, and M. A. Hanna, “Effects of LDPE and glycerol contents and compounding on the microstructure and properties of starch composite films,” Carbohydr. Polym., vol. 82, pp. 1082–1089, 2010, doi: 10.1016/j.carbpol.2010.06.032.
  • M. Kaseem, K. Hamad, and F. Deri, “Rheological and mechanical properties of polypropylene/thermoplastic starch blend,” Polym. Bull., vol. 68, no. 4, pp. 1079–1091, Mar. 2012, doi: 10.1007/s00289-011-0611-z.
  • V. Mittal, T. Akhtar, and N. Matsko, “Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL,” Macromol. Mater. Eng., 2015, doi: 10.1002/mame.201400332.
  • F. . Rodriguez-Gonzalez, B. . Ramsay, and B. . Favis, “High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene,” Polymer (Guildf)., vol. 44, no. 5, pp. 1517–1526, Mar. 2003, doi: 10.1016/S0032-3861(02)00907-2.
  • D. S. Rosa, C. G. F. Guedes, and C. L. Carvalho, “Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends,” J. Mater. Sci., vol. 42, no. 2, pp. 551–557, Jan. 2007, doi: 10.1007/s10853-006-1049-9.
  • R. L. Shogren, G. F. Fanta, and W. M. Doane, “Development of Starch Based Plastics - A Reexamination of Selected Polymer Systems in Historical Perspective,” Starch - Stärke, vol. 45, no. 8, pp. 276–280, 1993, doi: 10.1002/star.19930450806.
  • S. B. Roy, B. Ramaraj, S. C. Shit, and S. K. Nayak, “Polypropylene and potato starch biocomposites: Physicomechanical and thermal properties,” J. Appl. Polym. Sci., vol. 120, no. 5, pp. 3078–3086, Jun. 2011, doi: 10.1002/app.33486.
  • H. Canisag, “Bio-Crosslinking of Starch Films with Oxidized Sucrose,” University of Nebraska, 2014.
  • S. Karagöz, “Poli(laktik asit)/Modifiye Termoplastik Nişasta Karışımları,” Kocaeli Üniversitesi, 2012.
  • D. R. Lu, C. M. Xiao, and S. J. Xu, “Starch-based completely biodegradable polymer materials,” Express Polym. Lett., vol. 3, no. 6, pp. 366–375, 2009, doi: 10.3144/expresspolymlett.2009.46.
  • R. Shanks and I. Kong, “Thermoplastic Starch,” in Thermoplastic Elastomers, InTech, 2012.
  • H.-Z. He et al., “Linear low-density polyethylene/poly(ethylene terephthalate) blends compatibilization prepared by an eccentric rotor extruder: A morphology, mechanical, thermal, and rheological study,” J. Appl. Polym. Sci., vol. 135, no. 30, p. 46489, Aug. 2018, doi: 10.1002/app.46489.
  • S. K. Nayak, “Biodegradable PBAT/Starch Nanocomposites,” Polym. Plast. Technol. Eng., vol. 49, no. 14, pp. 1406–1418, Nov. 2010, doi: 10.1080/03602559.2010.496397.
  • W. Wang Ning, Z. Zhang Xingxiang, H. Han Na, and F. Fang Jianming, “Effects of Water on the Properties of Thermoplastic Starch Poly(lactic acid) Blend Containing Citric Acid,” J. Thermoplast. Compos. Mater., vol. 23, no. 1, pp. 19–34, Jan. 2010, doi: 10.1177/0892705708096549.
  • J. J. G. Van Soest and N. Knooren, “Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging,” J. Appl. Polym. Sci., vol. 64, no. 7, pp. 1411–1422, May 1997, doi: 10.1002/(SICI)1097-4628(19970516)64:7<1411::AID-APP21>3.0.CO;2-Y.
  • D. Bikiaris et al., “LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer,” Polym. Degrad. Stab., vol. 59, no. 1–3, pp. 287–291, Jan. 1998, doi: 10.1016/S0141-3910(97)00126-2.
  • F. J. Rodriguez-Gonzalez, B. A. Ramsay, and B. D. Favis, “High performance LDPE/thermoplastic starch blends: A sustainable alternative to pure polyethylene,” Polymer (Guildf)., vol. 44, no. 5, pp. 1517–1526, Feb. 2003, doi: 10.1016/S0032-3861(02)00907-2.
  • W. Ning, Y. Jiugao, M. Xiaofei, and H. Chunmei, “High performance modified thermoplastic starch/linear low-density polyethylene blends in one-step extrusion,” Polym. Compos., vol. 28, no. 1, pp. 89–97, Feb. 2007, doi: 10.1002/pc.20266.
  • J. Parameswaranpillai, S. Thomas, and Y. Grohens, “Polymer Blends: State of the Art, New Challenges, and Opportunities,” Accessed: May 31, 2018. [Online]. Available: https://application.wiley-vch.de/books/sample/3527331530_c01.pdf.
  • M. Taşdemir, Polimer Karışımları ve Uygulamaları. Ankara: Seçkin Yayıncılık, 2013.
  • F. Kaya, Ana Hatlarıyla Plastikler ve Katkı Maddeleri. İstanbul: Birsen Yayınevi, 2005.
  • L. A. Utracki, Commercial Polymer Blends. Boston, MA: Springer US, 1998.
  • R. Gonzalez-Nunez, B. D. Favis, P. J. Carreau, and C. Lavallée, “Factors influencing the formation of elongated morphologies in immiscible polymer blends during melt processing,” Polym. Eng. Sci., vol. 33, no. 13, pp. 851–859, Jul. 1993, doi: 10.1002/pen.760331310.
  • M. Hara and J. A. Sauer, “Synergism in Mechanical Properties of Polymer/Polymer Blends,” J. Macromol. Sci. Part C Polym. Rev., vol. 38, no. 2, pp. 327–362, Jan. 1998, doi: 10.1080/15583729808544529.
  • P. Pötschke and D. R. Paul, “Formation of Co-continuous Structures in Melt-Mixed Immiscible Polymer Blends,” J. Macromol. Sci. Part C Polym. Rev., vol. 43, no. 1, pp. 87–141, Jan. 2003, doi: 10.1081/MC-120018022.
  • A. Vazquez, V. P. Cyras, V. A. Alvarez, and J. I. Moran, “Starch/Clay Nano-Biocomposites,” Green Energy Technol., vol. 50, pp. 287–321, 2012, doi: 10.1007/978-1-4471-4108-2_11.
  • M. Paluch, J. Ostrowska, P. Tyński, W. Sadurski, and M. Konkol, “Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture,” J. Polym. Environ., pp. 1–13, Jul. 2021, doi: 10.1007/s10924-021-02235-x.
  • E. D. M. Teixeira, C. Lotti, A. C. Corrêa, K. B. R. Teodoro, J. M. Marconcini, and L. H. C. Mattoso, “Thermoplastic corn starch reinforced with cotton cellulose nanofibers,” J. Appl. Polym. Sci., vol. 120, no. 4, pp. 2428–2433, May 2011, doi: 10.1002/APP.33447.
  • R. Shi et al., “Ageing of soft thermoplastic starch with high glycerol content,” J. Appl. Polym. Sci., vol. 103, no. 1, pp. 574–586, Jan. 2007, doi: 10.1002/APP.25193.
  • E. M. Teixeira, A. L. Da Róz, A. J. F. Carvalho, and A. A. S. Curvelo, “The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch,” Carbohydr. Polym., vol. 69, no. 4, pp. 619–624, Jul. 2007, doi: 10.1016/J.CARBPOL.2007.01.022.
  • J. J. G. Van Soest, S. H. D. Hulleman, D. De Wit, and J. F. G. Vliegenthart, “Crystallinity in starch bioplastics,” Ind. Crops Prod., vol. 5, no. 1, pp. 11–22, Mar. 1996, doi: 10.1016/0926-6690(95)00048-8.
  • J. F. Mano, D. Koniarova, and R. L. Reis, “Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability,” in Journal of Materials Science: Materials in Medicine, 2003, vol. 14, no. 2, pp. 127–135, doi: 10.1023/A:1022015712170.
  • F. Santos De Souza, A. P. Gomes Barreto, and R. O. Macêdo, “Characterization of starch pharmaceuticals by DSC coupled to a photovisual system,” J. Therm. Anal. Calorim., vol. 64, no. 2, pp. 739–743, 2001, doi: 10.1023/A:1011548512655.
  • S. R. Gregory, “Physical Properties of Glycerine and its Solutions,” in Physical Properties of Glycerine, 1991, pp. 113–156.
  • G. STILL, “Binary Vapor-Liquid Equilibrium Data,” Chemical Engineering and Materials Research Information Center, 2018. https://www.cheric.org/research/kdb/hcvle/showvle.php?vleid=2815 (accessed Mar. 03, 2022).
  • N. Mills, M. Jenkins, and S. Kukureka, “Viscoelastic behaviour,” in Plastics, Elsevier, 2020, pp. 111–125.
  • W. You and W. Yu, “Viscoelastic characterization of compatibilized polymer blends,” Compat. Polym. Blends Micro Nano Scale Phase Morphol. Interphase Charact. Prop., pp. 435–452, Jan. 2019, doi: 10.1016/B978-0-12-816006-0.00015-3.
  • H. Liu, F. Xie, L. Yu, L. Chen, and L. Li, “Thermal processing of starch-based polymers,” Progress in Polymer Science (Oxford), vol. 34, no. 12. pp. 1348–1368, Dec. 2009, doi: 10.1016/j.progpolymsci.2009.07.001.
  • M. Guzmán and E. A. Murillo, “Structural, thermal, rheological, morphological and mechanical properties of thermoplastic starch obtained by using hyperbranched polyester polyol as plasticizing agent,” DYNA, vol. 85, no. 206, pp. 178–186, Jul. 2018, doi: 10.15446/dyna.v85n206.71819.
  • A. B. Martins, A. K. Cattelan, and R. M. C. Santana, “How the compatibility between polyethylene and thermoplastic starch can be improved by adding organic acids?,” Polym. Bull., vol. 75, no. 5, pp. 1–16, May 2017, doi: 10.1007/s00289-017-2147-3.
  • A. A. Abioye and C. C. Obuekwe, “Investigation of the biodegradation of low-density polyethylene-starch Bi-polymer blends,” Results Eng., vol. 5, p. 100090, Mar. 2020, doi: 10.1016/J.RINENG.2019.100090.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hüseyin Çağdaş Aslan 0000-0003-2291-9707

Mehmet Arif Kaya 0000-0001-9339-3381

Project Number 2018/DR/0008
Publication Date January 6, 2023
Submission Date March 9, 2022
Acceptance Date July 19, 2022
Published in Issue Year 2023 Volume: 38 Issue: 3

Cite

APA Aslan, H. Ç., & Kaya, M. A. (2023). Harmanlamaya uygun termoplastik nişasta üretimi ve termoplastik nişasta/polietilen harmanlarının morfolojik, termal, reolojik özelliklerinin belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(3), 1547-1560. https://doi.org/10.17341/gazimmfd.1085013
AMA Aslan HÇ, Kaya MA. Harmanlamaya uygun termoplastik nişasta üretimi ve termoplastik nişasta/polietilen harmanlarının morfolojik, termal, reolojik özelliklerinin belirlenmesi. GUMMFD. January 2023;38(3):1547-1560. doi:10.17341/gazimmfd.1085013
Chicago Aslan, Hüseyin Çağdaş, and Mehmet Arif Kaya. “Harmanlamaya Uygun Termoplastik nişasta üretimi Ve Termoplastik nişasta/Polietilen harmanlarının Morfolojik, Termal, Reolojik özelliklerinin Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 3 (January 2023): 1547-60. https://doi.org/10.17341/gazimmfd.1085013.
EndNote Aslan HÇ, Kaya MA (January 1, 2023) Harmanlamaya uygun termoplastik nişasta üretimi ve termoplastik nişasta/polietilen harmanlarının morfolojik, termal, reolojik özelliklerinin belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 3 1547–1560.
IEEE H. Ç. Aslan and M. A. Kaya, “Harmanlamaya uygun termoplastik nişasta üretimi ve termoplastik nişasta/polietilen harmanlarının morfolojik, termal, reolojik özelliklerinin belirlenmesi”, GUMMFD, vol. 38, no. 3, pp. 1547–1560, 2023, doi: 10.17341/gazimmfd.1085013.
ISNAD Aslan, Hüseyin Çağdaş - Kaya, Mehmet Arif. “Harmanlamaya Uygun Termoplastik nişasta üretimi Ve Termoplastik nişasta/Polietilen harmanlarının Morfolojik, Termal, Reolojik özelliklerinin Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/3 (January 2023), 1547-1560. https://doi.org/10.17341/gazimmfd.1085013.
JAMA Aslan HÇ, Kaya MA. Harmanlamaya uygun termoplastik nişasta üretimi ve termoplastik nişasta/polietilen harmanlarının morfolojik, termal, reolojik özelliklerinin belirlenmesi. GUMMFD. 2023;38:1547–1560.
MLA Aslan, Hüseyin Çağdaş and Mehmet Arif Kaya. “Harmanlamaya Uygun Termoplastik nişasta üretimi Ve Termoplastik nişasta/Polietilen harmanlarının Morfolojik, Termal, Reolojik özelliklerinin Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 3, 2023, pp. 1547-60, doi:10.17341/gazimmfd.1085013.
Vancouver Aslan HÇ, Kaya MA. Harmanlamaya uygun termoplastik nişasta üretimi ve termoplastik nişasta/polietilen harmanlarının morfolojik, termal, reolojik özelliklerinin belirlenmesi. GUMMFD. 2023;38(3):1547-60.