Research Article
BibTex RIS Cite

Montmorillonit bazlı nanokiller kullanılarak kristal viyolet boyar maddesinin sulu çözeltilerden giderimi: Kinetik ve denge çalışmaları

Year 2023, Volume: 38 Issue: 3, 1907 - 1918, 06.01.2023
https://doi.org/10.17341/gazimmfd.1086194

Abstract

Son yıllarda özellikle arıtılmadan farklı sektörlerden deşarj edilen atıklar nedeniyle su kirliliği büyük bir sorun haline gelmiştir. Bunlar arasında tekstil, deri, kâğıt ve kozmetik sektörlerinin kullandığı çeşitli boya atıkları da bulunmaktadır. Kristal viyolet (CV) yaygın olarak bilinen katyonik bir boyadır ve genellikle endüstrilerde renklendirici olarak kullanılır. CV boyası 1 ppb'de olduğunda insanlar ve hayvanlar için toksik olduğu bilinmektedir. Bu nedenle, endüstriyel atık suların deşarj edilmeden önce kristal viyoletden arıtılması çevre güvenliği için oldukça önemlidir. Bu araştırma, kristal viyolet boyar maddesinın sulu çözeltilerden uzaklaştırılması için düşük maliyetli bir malzeme olarak iki farklı montmorillonit bazlı nanokilin (B1 ve B2) etkinliğini değerlendirmeyi amaçlamıştır. Nanokillerin yapısal karakterizasyonları FTIR ve TGA yöntemleri kullanılarak analiz edilmiştir. CV adsorpsiyon prosesini etkileyebilecek tüm parametreler kesikli bir sistemde optimize edilmiştir. Adsorpsiyon prosesi üzerinde çeşitli faktörlerin (adsorban miktarı, temas süresi, çözelti pH’ı, farklı iyon etkisi, adsorpsiyon sıcaklığı, başlangıç boya konsantrasyonu) etkileri incelenmiştir. CV-nanokil adsorpsiyon sisteminin mekanizmasını araştırmak üzere yapılan deneylerde, adsorpsiyon kinetiğinin ve denge parametrelerinin, sırasıyla sözde ikinci dereceden kinetik modele ve Langmuir izoterm modeline daha iyi uyum sağladığını göstermiştir. B1 ve B2 adsorbanlarının maksimum adsorpsiyon kapasiteleri (qm) sırasıyla, 25oC'de 224,63 ve 45oC’de 360,30 mg/g olarak elde edilmiştir. Uygun yüzey ve CV iyon yükü kombinasyonu CV çözeltisinin düşük pH (≤7) değerlerinde elde edilmiştir. Yabancı iyon olarak NaCl iyonlarının varlığı, CV adsorpsiyon kapasitesini önemli ölçüde etkilememiştir. Sonuçlar değerlendirildiğinde, incelenen montmorillonit bazlı adsorbanların, CV boyasının giderilmesinde etkili ve uygun maliyetli adsorbanlar olduğu görülmüştür.

References

  • 1. M. Rahmat, A. Rehman, S. Rahmat, H. Nawaz, Highly efficient removal of crystal violet dye from water by MnO 2 based nanofibrous mesh / photocatalytic process, Integr. Med. Res., 1–11, 2019. https://doi.org/10.1016/j.jmrt.2019.08.038.
  • 2. P. Rai, R.K. Gautam, S. Banerjee, V. Rawat, M.C. Chattopadhyaya, Synthesis and characterization of a novel SnFe2O4@activated carbon magnetic nanocomposite and its effectiveness in the removal of crystal violet from aqueous solution, J. Environ. Chem. Eng., 3, 2281–2291, 2015. https://doi.org/10.1016/j.jece.2015.08.017.
  • 3. H. Jayasantha Kumari, P. Krishnamoorthy, T.K. Arumugam, S. Radhakrishnan, D. Vasudevan, An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent, Int. J. Biol. Macromol., 96, 324–333, 2017. https://doi.org/10.1016/j.ijbiomac.2016.11.077.
  • 4. L. Sellaoui, G.L. Dotto, E.C. Peres, Y. Benguerba, É.C. Lima, A. Ben Lamine, A. Erto, New insights into the adsorption of crystal violet dye on functionalized multi-walled carbon nanotubes: Experiments, statistical physics and COSMO–RS models application, J. Mol. Liq., 248, 890–897, 2017. https://doi.org/10.1016/j.molliq.2017.10.124.
  • 5. S.P. Druzian, N.P. Zanatta, R.K. Borchardt, L.N. Côrtes, A.F.M. Streit, E.C. Severo, J.O. Gonçalves, E.L. Foletto, E.C. Lima, G.L. Dotto, International journal of biological macromolecules chitin-psyllium based aerogel for the ef fi cient removal of crystal violet from aqueous solutions, Int. J. Biol. Macromol. 179, 366–376, 2021. https://doi.org/10.1016/j.ijbiomac.2021.02.179.
  • 6. A. Adak, M. Bandyopadhyay, A. Pal, Removal of crystal violet dye from wastewater by surfactant-modified alumina, 44, 139–144, 2005. https://doi.org/10.1016/j.seppur.2005.01.002.
  • 7. R. Fabryanty, C. Valencia, F.E. Soetaredjo, J.N. Putro, S.P. Santoso, A. Kurniawan, Y.H. Ju, S. Ismadji, Removal of crystal violet dye by adsorption using bentonite – alginate composite, J. Environ. Chem. Eng., 5, 5677–5687, 2017. https://doi.org/10.1016/j.jece.2017.10.057.
  • 8. Y. Huo, H. Wu, Z. Wang, F. Wang, Y. Liu, Y. Feng, Y. Zhao, Preparation of core/shell nanocomposite adsorbents based on amine polymer-modified magnetic materials for the efficient adsorption of anionic dyes, Colloids Surfaces A Physicochem. Eng. Asp. 549, 174–183, 2018. https://doi.org/10.1016/j.colsurfa.2018.04.021.
  • 9. M. Hui, P. Shengyan, H. Yaqi, Z. Rongxin, Z. Anatoly, C. Wei, A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification, Chem. Eng. J. 345, 556–565, 2018. https://doi.org/10.1016/j.cej.2018.03.115.
  • 10. R. El, H. Ouachtak, A. El, A. Amedlous, E. Amaterz, R. Haounati, A. Ait, F. Akbal, N. El, M. Labd, Cationic dyes adsorption by Na-montmorillonite nano clay : Experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations, J. Mol. Liq., 290, 111139, 2019. https://doi.org/10.1016/j.molliq.2019.111139.
  • 11. A.Q. Alorabi, M.S. Hassan, M.M. Alam, S.A. Zabin, N.I. Alsenani, N.E. Baghdadi, Natural clay as a low-cost adsorbent for crystal violet dye removal and antimicrobial activity, Nanomaterials., 11, 2789, 2021. https://doi.org/10.3390/nano11112789.
  • 12. G.R. Mahdavinia, J. Hasanpour, Z. Rahmani, S. Karami, H. Etemadi, Nanocomposite hydrogel from grafting of acrylamide onto HPMC using sodium montmorillonite nanoclay and removal of crystal violet dye, Cellulose., 20, 2591–2604, 2013. https://doi.org/10.1007/s10570-013-0004-6.
  • 13. G.R. Mahdavinia, H. Aghaie, H. Sheykhloie, M.T. Vardini, H. Etemadi, Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet, Carbohydr. Polym., 98, 358–365, 2013. https://doi.org/10.1016/j.carbpol.2013.05.096.
  • 14. Q. Zhang, T. Zhang, T. He, L. Chen, Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents, Appl. Clay Sci., 90, 1–5, 2014. https://doi.org/10.1016/j.clay.2014.01.003.
  • 15. S. Boudjemaa, Preparation and caracterisation of montmorillonite-fe3+ (Mmt-fe3+) nanoclay mineral for crystal violet (cv) removal from aqueous solutions, Rev. Roum. Chim., 65, 943–953, 2020. https://doi.org/10.33224/rrch.2020.65.10.09.
  • 16. A. Loqman, B. El Bali, J. Lützenkirchen, P.G. Weidler, A. Kherbeche, Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology, Appl. Water Sci., 7, 3649–3660, 2017. https://doi.org/10.1007/s13201-016-0509-x.
  • 17. S.R. Shirsath, A.P. Hage, M. Zhou, S.H. Sonawane, M. Ashokkumar, Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: A potential responsive sorbent for removal of organic pollutant from water, Desalination., 281, 429–437, 2011. https://doi.org/10.1016/j.desal.2011.08.031.
  • 18. G. Pugazhenthi, K. Suresh, R. Vinoth Kumar, M. Kumar, R. Rajkumar Surin, A Simple sonication assisted solvent blending route for fabrication of exfoliated polystyrene (PS)/clay nanocomposites: Role of Various Clay Modifiers, Mater. Today Proc., 5, 13191–13210, 2018. https://doi.org/10.1016/j.matpr.2018.02.310.
  • 19. J. Chaisamphao, S. Kiatphuengporn, K. Faungnawakij, W. Donphai, M. Chareonpanich, Effect of modified nanoclay surface supported nickel catalyst on carbon dioxide reforming of methane, Top. Catal., 64, 431–445, 2021. https://doi.org/10.1007/s11244-020-01403-y.
  • 20. B.E. ve A.E. Ahmet Günay, Sedef Dikmen, Bazik Mavi-16 Boyarmaddesinin Kil Üzerine Adsorpsiyonu& Ahmet, Environ. Eng. Manag. J., 13, 395–405, 2014.
  • 21. N.A. Halim, Z.A. Ibrahim, A.B. Ahmad, Intercalation of water and guest molecules within Ca2+- Montmorillonite : DSC studies in low temperature range, J. Therm. Anal. Calorim., 102, 983–988, 2010. https://doi.org/10.1007/s10973-010-0860-3.
  • 22. F.C. Çavuşoğlu, S. Akan, E.A. Arı, E. Çetinkaya, E. Çolak, G.N. Daştan, S. Deniz, D. Erdem, M. Köksal, S. Korkmaz, N. Onsekiz, B. Oruçoğlu, D. Özkaya, H.B. Uslu, Ç. Ünal, O. Yıldız, Ş. Özkara-Aydınoğlu, Ş.S. Bayazit, Preparation of magnetic activated carbon-chitosan nanocomposite for crystal violet adsorption, Korean J. Chem. Eng. 36, 1915–1921, 2019. https://doi.org/10.1007/s11814-019-0377-9.
  • 23. Lagergren S., Zur theorie der sogenennten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39, 1898.
  • 24. Ho, Y.S., McKay, G., Pseudo-second order model for sorption processes. Process Biochem., 34, 451–465, 1999.
  • 25. Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, 40, 1361–1403, 1918.
  • 26. Freundlich, H., Kapillarchemie eine Darstellung der Chemie der Kolloide und verwandter Gebiete, Akademische Verlagsgesellschaft, 1909.
Year 2023, Volume: 38 Issue: 3, 1907 - 1918, 06.01.2023
https://doi.org/10.17341/gazimmfd.1086194

Abstract

References

  • 1. M. Rahmat, A. Rehman, S. Rahmat, H. Nawaz, Highly efficient removal of crystal violet dye from water by MnO 2 based nanofibrous mesh / photocatalytic process, Integr. Med. Res., 1–11, 2019. https://doi.org/10.1016/j.jmrt.2019.08.038.
  • 2. P. Rai, R.K. Gautam, S. Banerjee, V. Rawat, M.C. Chattopadhyaya, Synthesis and characterization of a novel SnFe2O4@activated carbon magnetic nanocomposite and its effectiveness in the removal of crystal violet from aqueous solution, J. Environ. Chem. Eng., 3, 2281–2291, 2015. https://doi.org/10.1016/j.jece.2015.08.017.
  • 3. H. Jayasantha Kumari, P. Krishnamoorthy, T.K. Arumugam, S. Radhakrishnan, D. Vasudevan, An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent, Int. J. Biol. Macromol., 96, 324–333, 2017. https://doi.org/10.1016/j.ijbiomac.2016.11.077.
  • 4. L. Sellaoui, G.L. Dotto, E.C. Peres, Y. Benguerba, É.C. Lima, A. Ben Lamine, A. Erto, New insights into the adsorption of crystal violet dye on functionalized multi-walled carbon nanotubes: Experiments, statistical physics and COSMO–RS models application, J. Mol. Liq., 248, 890–897, 2017. https://doi.org/10.1016/j.molliq.2017.10.124.
  • 5. S.P. Druzian, N.P. Zanatta, R.K. Borchardt, L.N. Côrtes, A.F.M. Streit, E.C. Severo, J.O. Gonçalves, E.L. Foletto, E.C. Lima, G.L. Dotto, International journal of biological macromolecules chitin-psyllium based aerogel for the ef fi cient removal of crystal violet from aqueous solutions, Int. J. Biol. Macromol. 179, 366–376, 2021. https://doi.org/10.1016/j.ijbiomac.2021.02.179.
  • 6. A. Adak, M. Bandyopadhyay, A. Pal, Removal of crystal violet dye from wastewater by surfactant-modified alumina, 44, 139–144, 2005. https://doi.org/10.1016/j.seppur.2005.01.002.
  • 7. R. Fabryanty, C. Valencia, F.E. Soetaredjo, J.N. Putro, S.P. Santoso, A. Kurniawan, Y.H. Ju, S. Ismadji, Removal of crystal violet dye by adsorption using bentonite – alginate composite, J. Environ. Chem. Eng., 5, 5677–5687, 2017. https://doi.org/10.1016/j.jece.2017.10.057.
  • 8. Y. Huo, H. Wu, Z. Wang, F. Wang, Y. Liu, Y. Feng, Y. Zhao, Preparation of core/shell nanocomposite adsorbents based on amine polymer-modified magnetic materials for the efficient adsorption of anionic dyes, Colloids Surfaces A Physicochem. Eng. Asp. 549, 174–183, 2018. https://doi.org/10.1016/j.colsurfa.2018.04.021.
  • 9. M. Hui, P. Shengyan, H. Yaqi, Z. Rongxin, Z. Anatoly, C. Wei, A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification, Chem. Eng. J. 345, 556–565, 2018. https://doi.org/10.1016/j.cej.2018.03.115.
  • 10. R. El, H. Ouachtak, A. El, A. Amedlous, E. Amaterz, R. Haounati, A. Ait, F. Akbal, N. El, M. Labd, Cationic dyes adsorption by Na-montmorillonite nano clay : Experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations, J. Mol. Liq., 290, 111139, 2019. https://doi.org/10.1016/j.molliq.2019.111139.
  • 11. A.Q. Alorabi, M.S. Hassan, M.M. Alam, S.A. Zabin, N.I. Alsenani, N.E. Baghdadi, Natural clay as a low-cost adsorbent for crystal violet dye removal and antimicrobial activity, Nanomaterials., 11, 2789, 2021. https://doi.org/10.3390/nano11112789.
  • 12. G.R. Mahdavinia, J. Hasanpour, Z. Rahmani, S. Karami, H. Etemadi, Nanocomposite hydrogel from grafting of acrylamide onto HPMC using sodium montmorillonite nanoclay and removal of crystal violet dye, Cellulose., 20, 2591–2604, 2013. https://doi.org/10.1007/s10570-013-0004-6.
  • 13. G.R. Mahdavinia, H. Aghaie, H. Sheykhloie, M.T. Vardini, H. Etemadi, Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet, Carbohydr. Polym., 98, 358–365, 2013. https://doi.org/10.1016/j.carbpol.2013.05.096.
  • 14. Q. Zhang, T. Zhang, T. He, L. Chen, Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents, Appl. Clay Sci., 90, 1–5, 2014. https://doi.org/10.1016/j.clay.2014.01.003.
  • 15. S. Boudjemaa, Preparation and caracterisation of montmorillonite-fe3+ (Mmt-fe3+) nanoclay mineral for crystal violet (cv) removal from aqueous solutions, Rev. Roum. Chim., 65, 943–953, 2020. https://doi.org/10.33224/rrch.2020.65.10.09.
  • 16. A. Loqman, B. El Bali, J. Lützenkirchen, P.G. Weidler, A. Kherbeche, Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology, Appl. Water Sci., 7, 3649–3660, 2017. https://doi.org/10.1007/s13201-016-0509-x.
  • 17. S.R. Shirsath, A.P. Hage, M. Zhou, S.H. Sonawane, M. Ashokkumar, Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: A potential responsive sorbent for removal of organic pollutant from water, Desalination., 281, 429–437, 2011. https://doi.org/10.1016/j.desal.2011.08.031.
  • 18. G. Pugazhenthi, K. Suresh, R. Vinoth Kumar, M. Kumar, R. Rajkumar Surin, A Simple sonication assisted solvent blending route for fabrication of exfoliated polystyrene (PS)/clay nanocomposites: Role of Various Clay Modifiers, Mater. Today Proc., 5, 13191–13210, 2018. https://doi.org/10.1016/j.matpr.2018.02.310.
  • 19. J. Chaisamphao, S. Kiatphuengporn, K. Faungnawakij, W. Donphai, M. Chareonpanich, Effect of modified nanoclay surface supported nickel catalyst on carbon dioxide reforming of methane, Top. Catal., 64, 431–445, 2021. https://doi.org/10.1007/s11244-020-01403-y.
  • 20. B.E. ve A.E. Ahmet Günay, Sedef Dikmen, Bazik Mavi-16 Boyarmaddesinin Kil Üzerine Adsorpsiyonu& Ahmet, Environ. Eng. Manag. J., 13, 395–405, 2014.
  • 21. N.A. Halim, Z.A. Ibrahim, A.B. Ahmad, Intercalation of water and guest molecules within Ca2+- Montmorillonite : DSC studies in low temperature range, J. Therm. Anal. Calorim., 102, 983–988, 2010. https://doi.org/10.1007/s10973-010-0860-3.
  • 22. F.C. Çavuşoğlu, S. Akan, E.A. Arı, E. Çetinkaya, E. Çolak, G.N. Daştan, S. Deniz, D. Erdem, M. Köksal, S. Korkmaz, N. Onsekiz, B. Oruçoğlu, D. Özkaya, H.B. Uslu, Ç. Ünal, O. Yıldız, Ş. Özkara-Aydınoğlu, Ş.S. Bayazit, Preparation of magnetic activated carbon-chitosan nanocomposite for crystal violet adsorption, Korean J. Chem. Eng. 36, 1915–1921, 2019. https://doi.org/10.1007/s11814-019-0377-9.
  • 23. Lagergren S., Zur theorie der sogenennten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39, 1898.
  • 24. Ho, Y.S., McKay, G., Pseudo-second order model for sorption processes. Process Biochem., 34, 451–465, 1999.
  • 25. Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, 40, 1361–1403, 1918.
  • 26. Freundlich, H., Kapillarchemie eine Darstellung der Chemie der Kolloide und verwandter Gebiete, Akademische Verlagsgesellschaft, 1909.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ferda Civan Çavuşoğlu 0000-0003-1401-7607

Şahika Sena Bayazit 0000-0001-9643-4855

Mohamed Abdel Salam 0000-0002-1184-3586

Publication Date January 6, 2023
Submission Date March 12, 2022
Acceptance Date September 17, 2022
Published in Issue Year 2023 Volume: 38 Issue: 3

Cite

APA Civan Çavuşoğlu, F., Bayazit, Ş. S., & Salam, M. A. (2023). Montmorillonit bazlı nanokiller kullanılarak kristal viyolet boyar maddesinin sulu çözeltilerden giderimi: Kinetik ve denge çalışmaları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(3), 1907-1918. https://doi.org/10.17341/gazimmfd.1086194
AMA Civan Çavuşoğlu F, Bayazit ŞS, Salam MA. Montmorillonit bazlı nanokiller kullanılarak kristal viyolet boyar maddesinin sulu çözeltilerden giderimi: Kinetik ve denge çalışmaları. GUMMFD. January 2023;38(3):1907-1918. doi:10.17341/gazimmfd.1086194
Chicago Civan Çavuşoğlu, Ferda, Şahika Sena Bayazit, and Mohamed Abdel Salam. “Montmorillonit Bazlı Nanokiller kullanılarak Kristal Viyolet Boyar Maddesinin Sulu çözeltilerden Giderimi: Kinetik Ve Denge çalışmaları”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 3 (January 2023): 1907-18. https://doi.org/10.17341/gazimmfd.1086194.
EndNote Civan Çavuşoğlu F, Bayazit ŞS, Salam MA (January 1, 2023) Montmorillonit bazlı nanokiller kullanılarak kristal viyolet boyar maddesinin sulu çözeltilerden giderimi: Kinetik ve denge çalışmaları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 3 1907–1918.
IEEE F. Civan Çavuşoğlu, Ş. S. Bayazit, and M. A. Salam, “Montmorillonit bazlı nanokiller kullanılarak kristal viyolet boyar maddesinin sulu çözeltilerden giderimi: Kinetik ve denge çalışmaları”, GUMMFD, vol. 38, no. 3, pp. 1907–1918, 2023, doi: 10.17341/gazimmfd.1086194.
ISNAD Civan Çavuşoğlu, Ferda et al. “Montmorillonit Bazlı Nanokiller kullanılarak Kristal Viyolet Boyar Maddesinin Sulu çözeltilerden Giderimi: Kinetik Ve Denge çalışmaları”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/3 (January 2023), 1907-1918. https://doi.org/10.17341/gazimmfd.1086194.
JAMA Civan Çavuşoğlu F, Bayazit ŞS, Salam MA. Montmorillonit bazlı nanokiller kullanılarak kristal viyolet boyar maddesinin sulu çözeltilerden giderimi: Kinetik ve denge çalışmaları. GUMMFD. 2023;38:1907–1918.
MLA Civan Çavuşoğlu, Ferda et al. “Montmorillonit Bazlı Nanokiller kullanılarak Kristal Viyolet Boyar Maddesinin Sulu çözeltilerden Giderimi: Kinetik Ve Denge çalışmaları”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 3, 2023, pp. 1907-18, doi:10.17341/gazimmfd.1086194.
Vancouver Civan Çavuşoğlu F, Bayazit ŞS, Salam MA. Montmorillonit bazlı nanokiller kullanılarak kristal viyolet boyar maddesinin sulu çözeltilerden giderimi: Kinetik ve denge çalışmaları. GUMMFD. 2023;38(3):1907-18.