Spektrum paylaşım modelinde ikincil kullanıcıların Nakagami-m ve Log-normal sönümlemeli kanallar üzerindeki kapasite analizi
Year 2023,
Volume: 38 Issue: 4, 2205 - 2212, 12.04.2023
Arif Başgümüş
,
Maide Sultan Ardıç
,
Mustafa Namdar
Abstract
Bu çalışmada, bilişsel radyo ağı için spektrum paylaşım modelinde birincil kullanıcıdan gelen girişimin etkisi dikkate alınarak, ortalama alınan güç kısıtlaması altında ikincil kullanıcı için ergodik kapasite performansı analiz edilmektedir. Kapasiteyi maksimuma çıkaran su doldurma çözümü ve güç tahsisi yaklaşımı ile Nakagami-m ve log-normal dağılımlı sönümlemeli kanallar üzerinde ergodik kapasiteye ilişkin teorik çıkarımlar türetilmektedir. Nümerik sonuçlar, birincil ağ kaynaklı girişim kanallarının, ikincil kullanıcının kapasitesi üzerinde önemli ölçüde etki oluşturduğunu göstermektedir. İkincil kullanıcı için ergodik kapasite performansı; Nakagami dağılımın sönümleme parametresi, log-normal dağılımın standart sapması ve ikincil kullanıcın optimum gücünü belirleyen Lagrange çarpanı parametreleri dikkate alınarak, Monte Carlo benzetimleriyle doğrulanmaktadır.
References
- 1. Haykin S., Cognitive radio: Brain-empowered wireless communications, IEEE Journal on Selected Areas in Comm., 23(21), 201-220, 2005.
- 2. Haneet K., Jha R. K., Jain S., and Kumar P., Protocol design and resource allocation for power optimization using spectrum sharing for 5G networks, Telecommunication Systems, 72, 95–113, 2019.
- 3. Ridhima and Buttar A. S., Fundamental operations of cognitive radio: A survey, IEEE Int. Conf. on Electrical, Computer and Comm. Technologies (ICECCT), 1-5, 2019.
- 4. Federal Communications Commission, Spectrum Policy Task Force Report, ET Docket No. 02-135, 2002. https://www.fcc.gov/document/spectrum-policy-task-force
- 5. Panwar N., Sharma S., and Singh A. K., A survey on 5G: The next generation of mobile communication, Physical Comm., 18(2), 64-84, 2016.
- 6. Namdar M. and Ilhan H., Exact closed-form solution for detection probability in cognitive radio networks with switch-and-examine combining diversity, IEEE Trans. on Vehicular Technology, 67(9), 8215-22, 2018.
- 7. Namdar M. et al., Iterative interference alignment with spatial hole sensing in MIMO cognitive radio networks, Annals of Telecommunications, 9(3), 1-9, 2021.
- 8. Gastpar M., On capacity under received-signal constraints, 42nd Annual Allerton Conf. Comm. Control Computing,1322-31, 2004.
- 9. Musavian L. and Aissa S., Capacity and power allocation for spectrum sharing communications in fading channels, IEEE Trans. on Wireless Comm., 8(1), 148-156, 2009.
- 10. Ghasemi A. and Sousa E.S., Fundamental limits of spectrum-sharing in fading environments, IEEE Trans. on Wireless Comm., 6(2), 649-658, 2007.
- 11. Kang X., Liang Y. C., Nallanathan A., Garg H. K., and Zhang R., Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity, IEEE Trans. on Wireless Comm., 8(2), 940-950, 2009.
- 12. Bagayoko A., Fijalkow I., and Tortelier P., Power control of spectrum-sharing in fading environment with partial channel state information, IEEE Trans. on Signal Process., 59(5), 2244-56, 2011.
- 13. Kim H., Wang H., Lim S., and Hong D., On the impact of outdated channel information on the capacity of secondary user in spectrum sharing environments, IEEE Trans. on Wireless Comm., 11(1), 284-295, 2012.
- 14. Noh G., Lim S., and Hong D., Exact capacity analysis of spectrum sharing systems: Average received-power constraint, IEEE Comm. Letters, 17(5), 884-887, 2013.
- 15. Xia M. and Aissa S., Cooperative AF relaying in spectrum-sharing systems: Performance analysis under average interference power constraints and Nakagami-m fading, IEEE Trans. on Comm., 60(6), 1523-33, 2012.
- 16. Gradshteyn I. S. and Ryzhik I. M., Tables of integrals, series, and products, Elsevier, 7th edition, U.S.A., 2007.
- 17. Ucar-Gul M., Namdar M., and Basgumus A., Performance analysis of two-way AF relaying system with the presence of hardware impairments over Nakagami-m fading channels, IET Comm., 14(15), 2618-27, 2020.
- 18. Namdar M., Ilhan H., and Durak-Ata L., Dispersed chirp-z transform-based spectrum sensing and utilization in cognitive radio networks, IET Signal Process., 8(4), 320-329, 2014.
- 19. Jeffrey A. and Dai H. H., Handbook of mathematical formulas and integrals, Elsevier, 4th edition, U.S.A., 2008.
Year 2023,
Volume: 38 Issue: 4, 2205 - 2212, 12.04.2023
Arif Başgümüş
,
Maide Sultan Ardıç
,
Mustafa Namdar
References
- 1. Haykin S., Cognitive radio: Brain-empowered wireless communications, IEEE Journal on Selected Areas in Comm., 23(21), 201-220, 2005.
- 2. Haneet K., Jha R. K., Jain S., and Kumar P., Protocol design and resource allocation for power optimization using spectrum sharing for 5G networks, Telecommunication Systems, 72, 95–113, 2019.
- 3. Ridhima and Buttar A. S., Fundamental operations of cognitive radio: A survey, IEEE Int. Conf. on Electrical, Computer and Comm. Technologies (ICECCT), 1-5, 2019.
- 4. Federal Communications Commission, Spectrum Policy Task Force Report, ET Docket No. 02-135, 2002. https://www.fcc.gov/document/spectrum-policy-task-force
- 5. Panwar N., Sharma S., and Singh A. K., A survey on 5G: The next generation of mobile communication, Physical Comm., 18(2), 64-84, 2016.
- 6. Namdar M. and Ilhan H., Exact closed-form solution for detection probability in cognitive radio networks with switch-and-examine combining diversity, IEEE Trans. on Vehicular Technology, 67(9), 8215-22, 2018.
- 7. Namdar M. et al., Iterative interference alignment with spatial hole sensing in MIMO cognitive radio networks, Annals of Telecommunications, 9(3), 1-9, 2021.
- 8. Gastpar M., On capacity under received-signal constraints, 42nd Annual Allerton Conf. Comm. Control Computing,1322-31, 2004.
- 9. Musavian L. and Aissa S., Capacity and power allocation for spectrum sharing communications in fading channels, IEEE Trans. on Wireless Comm., 8(1), 148-156, 2009.
- 10. Ghasemi A. and Sousa E.S., Fundamental limits of spectrum-sharing in fading environments, IEEE Trans. on Wireless Comm., 6(2), 649-658, 2007.
- 11. Kang X., Liang Y. C., Nallanathan A., Garg H. K., and Zhang R., Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity, IEEE Trans. on Wireless Comm., 8(2), 940-950, 2009.
- 12. Bagayoko A., Fijalkow I., and Tortelier P., Power control of spectrum-sharing in fading environment with partial channel state information, IEEE Trans. on Signal Process., 59(5), 2244-56, 2011.
- 13. Kim H., Wang H., Lim S., and Hong D., On the impact of outdated channel information on the capacity of secondary user in spectrum sharing environments, IEEE Trans. on Wireless Comm., 11(1), 284-295, 2012.
- 14. Noh G., Lim S., and Hong D., Exact capacity analysis of spectrum sharing systems: Average received-power constraint, IEEE Comm. Letters, 17(5), 884-887, 2013.
- 15. Xia M. and Aissa S., Cooperative AF relaying in spectrum-sharing systems: Performance analysis under average interference power constraints and Nakagami-m fading, IEEE Trans. on Comm., 60(6), 1523-33, 2012.
- 16. Gradshteyn I. S. and Ryzhik I. M., Tables of integrals, series, and products, Elsevier, 7th edition, U.S.A., 2007.
- 17. Ucar-Gul M., Namdar M., and Basgumus A., Performance analysis of two-way AF relaying system with the presence of hardware impairments over Nakagami-m fading channels, IET Comm., 14(15), 2618-27, 2020.
- 18. Namdar M., Ilhan H., and Durak-Ata L., Dispersed chirp-z transform-based spectrum sensing and utilization in cognitive radio networks, IET Signal Process., 8(4), 320-329, 2014.
- 19. Jeffrey A. and Dai H. H., Handbook of mathematical formulas and integrals, Elsevier, 4th edition, U.S.A., 2008.