Bu çalışmada ana malzemelerin en uygun şekilde nasıl kesilmesi gerektiğinin belirlenmesini içeren iki boyutlu iki aşamalı giyotin kesme problemleri için farklı çözüm yaklaşımları geliştirilmiş ve uygulanmıştır. Yeni özelliklere sahip bir tamsayılı programlama modeli önerilmiştir. Uygun çözümler elde etmek için rastgele anahtar tabanlı bir genetik algoritma kullanılmış ve algoritma içinde yerel bir arama yapılarak melez bir yapı elde edilmiştir. Ayrıca, ardışık iki matematiksel modelin çözülmesi şeklinde iki aşamalı matematik model temelli sezgisel bir çözüm yöntemi önerilmiştir. Bu yöntemin ilk aşamasında, problemin gevşetilmiş hali çözülür; ikincisinde, elde edilen çözüm geliştirilir. Bu matematiksel modellerin çözümlerinin kısa sürede elde edilmesi, çözüm süreleri anlamında avantaj yaratmaktadır.
Referans 1
Dyckhoff, H., A typology of cutting and packing problems, European Journal of Operational Research 44, 145–159, 1978.
Referans 2
Delorme M., Lori M., Martello S., Bin packing and cutting stock problems: Mathematical models and exact algorithms, European Journal of Operational Research, 255, 1–20, 2016.
Referans 3
Dyckhoff, H., A New Linear Programming Approach to the Cutting Stock Problem, Operations Research, 29, 1092–1104, 1981.
Referans 4
Furini F., Martello S., Lori M., Yagiura M., Heuristic and exact algorithms for the interval minmax regret knapsack problem, INFORMS Journal on Computing 27 (2), 392–405, 2015.
Referans 5
Gilmore P. C., Gomory R. E., A linear programming approach to the cutting-stock problem, Operations Research, 9, 849–859, 1961.
Referans 6
Kasimbeyli N., Sarac T., Kasimbeyli R., A two-objective mathematical model without cutting patterns for one-dimensional assortment problems, Journal of Computational and Applied Mathematics, 235, 4663–4674, 2011.
Referans 7
Coffman E. G., Csirik J., Galambos G., Martello S., Vigo D., Handbook of combinatorial optimization, Springer, New York, A.B.D., 455–531, 2013.
Referans 8
Furini F., Malaguti E., Models for the two-dimensional two-stage cutting stock problem with multiple stock size Computers and Operations Research, 40, 1953–1962, 2013.
Referans 9
Gilmore P. C., Gomory R. E., Multistage cutting stock problems of two and more dimensions. Operations Research 13, 94–120, 1965.
Referans 10
Lodi A., Martello S., Vigo D., Recent Advances on Two-Dimensional Bin Packing Problems, Discrete Applied Mathematics, 123, 379–396, 2002.
Referans 11
Andrade R., Birgin E. G., Morabito R., Two-stage two-dimensional guillotine cutting stock problems with usable leftover, Intl. Trans. in Op. Res., 23, 121–145, 2016.
Referans 12
Lodi A., Martello S., Vigo D., Models and Bounds for Two-Dimensional Level Packing Problems, Journal of Combinatorial Optimization, 8, 363–379, 2004.
Referans 13
Lodi A., Martello S., Vigo D., Monaci M., Two-Dimensional Bin Packing Problems, In: Paradigms of combinatorial optimization: Problems and new approaches, Wiley and Blackwell, 107–129, 2014.
Referans 14
Martello S., Monaci M., Models and algorithms for packing rectangles into the smallest square, Computers and Operations Research, 63, 161–171, 2015.
Referans 15
Gasimov R. N., Sipahioglu A., Sarac T., A multi-objective programming approach to 1.5-dimensional assortment problem, European Journal of Operational Research, 179,64–79, 2007.
Referans 16
Chen C. S., Lee S. M., Shen Q.S., An analytical model for the container loading problem, European Journal of Operational Research, 80, 68–76, 1995.
Referans 17
Araujo L. J. P., Özcan E., Atkin J. A. D., Baumers M., Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset, International Journal of Production Research, 57(18), 5920-5934, 2019.
Referans 18
Bean J. C., Genetic Algorithms and Random Keys for Sequencing and Optimization, ORSA Journal on Computing, 6, 154–180, 1994.
Referans 19
Beasley J. E., A Population heuristic for constrained two-dimensional non-guillotine cutting, European Journal of Operational Research, 156, 601–627, 2004.
Referans 20
Wei L., Zhang Z., Zhang D., Leung S.C.H., A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints, European Journal of Operational Research, 265, 843-859, 2018.
Referans 21
Meng T., Pan Q., An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem, Applied Soft Computing, 50, 79-93, 2017.
Referans 22
Dodge M., MirHassani S. A., Hooshmand F., Solving two-dimensional cutting stock problem via a DNA computing algorithm, Natural Computing, 20, 145–159, 2021.
Referans 23
Chauny F., Loulou R., Sadones S., Soumis F., A two-phase heuristic for strip packing: Algorithm and probabilistic analysis, Operational Research Letters, 6(1), 25–33, 1987.
Referans 24
Delorme M., Lori M., Martello S., Logic based Benders’ decomposition for orthogonal stock cutting problems, Computers and Operations Research, 78, 290–298, 2017.
Referans 25
25. Mancapa V., Van Niekerk T. I., Hua T., A Genetic Algorithm for Two-Dimensional Strip Packing Problems, South African Journal of Industrial Engineering, 20(2), 145–162, 2009.
Referans 26
Bortfeldt A., A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces, European Journal of Operational Research, 172, 814–837, 2004.
Referans 27
Oliveira J. F., Junior A. N., Silva E., Carravilla M. A., A Survey on Heuristics for Two-Dimensional Rectangular Strip Packing Problems, Pesquisa Operacional, 36(2), 197–226, 2016.
Referans 28
Lodi A., Monaci M., Pietrobuoni E., Partial enumeration algorithms for Two-Dimensional Bin Packing Problem with guillotine constraints, Discrete Applied Mathematics, 217, 40-47, 2017.
Referans 29
Lori M., Lima V. L., Martello S., Miyazawa F. K., Exact solution techniques for two-dimensional cutting and packing, 289, 399-415, 2021.
Referans 30
Christensen H. I., Khan A., Pokutta S., Tetali P., Approximation and online algorithms for multidimensional binpacking: A survey, Computer Science Review, 24, 63-74, 2017.
Referans 31
Goncalves J. F., Resende M. G. C., Biased random-key genetic algorithms for combinatorial optimization, Journal of Heuristics, 17(5), 487–525, 2011.
Referans 32
Talbi E., Metaheuristics: From Design to Implementation, Wiley, New York, A.B.D, 2009.
Referans 33
Hifi M., Roucairol C., Approximate and exact algorithms for constrained (un) weighted two-dimensional two-staged cutting stock problems, Journal of Combinatorial Optimization 5, 465–494, 2001.
Referans 1
Dyckhoff, H., A typology of cutting and packing problems, European Journal of Operational Research 44, 145–159, 1978.
Referans 2
Delorme M., Lori M., Martello S., Bin packing and cutting stock problems: Mathematical models and exact algorithms, European Journal of Operational Research, 255, 1–20, 2016.
Referans 3
Dyckhoff, H., A New Linear Programming Approach to the Cutting Stock Problem, Operations Research, 29, 1092–1104, 1981.
Referans 4
Furini F., Martello S., Lori M., Yagiura M., Heuristic and exact algorithms for the interval minmax regret knapsack problem, INFORMS Journal on Computing 27 (2), 392–405, 2015.
Referans 5
Gilmore P. C., Gomory R. E., A linear programming approach to the cutting-stock problem, Operations Research, 9, 849–859, 1961.
Referans 6
Kasimbeyli N., Sarac T., Kasimbeyli R., A two-objective mathematical model without cutting patterns for one-dimensional assortment problems, Journal of Computational and Applied Mathematics, 235, 4663–4674, 2011.
Referans 7
Coffman E. G., Csirik J., Galambos G., Martello S., Vigo D., Handbook of combinatorial optimization, Springer, New York, A.B.D., 455–531, 2013.
Referans 8
Furini F., Malaguti E., Models for the two-dimensional two-stage cutting stock problem with multiple stock size Computers and Operations Research, 40, 1953–1962, 2013.
Referans 9
Gilmore P. C., Gomory R. E., Multistage cutting stock problems of two and more dimensions. Operations Research 13, 94–120, 1965.
Referans 10
Lodi A., Martello S., Vigo D., Recent Advances on Two-Dimensional Bin Packing Problems, Discrete Applied Mathematics, 123, 379–396, 2002.
Referans 11
Andrade R., Birgin E. G., Morabito R., Two-stage two-dimensional guillotine cutting stock problems with usable leftover, Intl. Trans. in Op. Res., 23, 121–145, 2016.
Referans 12
Lodi A., Martello S., Vigo D., Models and Bounds for Two-Dimensional Level Packing Problems, Journal of Combinatorial Optimization, 8, 363–379, 2004.
Referans 13
Lodi A., Martello S., Vigo D., Monaci M., Two-Dimensional Bin Packing Problems, In: Paradigms of combinatorial optimization: Problems and new approaches, Wiley and Blackwell, 107–129, 2014.
Referans 14
Martello S., Monaci M., Models and algorithms for packing rectangles into the smallest square, Computers and Operations Research, 63, 161–171, 2015.
Referans 15
Gasimov R. N., Sipahioglu A., Sarac T., A multi-objective programming approach to 1.5-dimensional assortment problem, European Journal of Operational Research, 179,64–79, 2007.
Referans 16
Chen C. S., Lee S. M., Shen Q.S., An analytical model for the container loading problem, European Journal of Operational Research, 80, 68–76, 1995.
Referans 17
Araujo L. J. P., Özcan E., Atkin J. A. D., Baumers M., Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset, International Journal of Production Research, 57(18), 5920-5934, 2019.
Referans 18
Bean J. C., Genetic Algorithms and Random Keys for Sequencing and Optimization, ORSA Journal on Computing, 6, 154–180, 1994.
Referans 19
Beasley J. E., A Population heuristic for constrained two-dimensional non-guillotine cutting, European Journal of Operational Research, 156, 601–627, 2004.
Referans 20
Wei L., Zhang Z., Zhang D., Leung S.C.H., A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints, European Journal of Operational Research, 265, 843-859, 2018.
Referans 21
Meng T., Pan Q., An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem, Applied Soft Computing, 50, 79-93, 2017.
Referans 22
Dodge M., MirHassani S. A., Hooshmand F., Solving two-dimensional cutting stock problem via a DNA computing algorithm, Natural Computing, 20, 145–159, 2021.
Referans 23
Chauny F., Loulou R., Sadones S., Soumis F., A two-phase heuristic for strip packing: Algorithm and probabilistic analysis, Operational Research Letters, 6(1), 25–33, 1987.
Referans 24
Delorme M., Lori M., Martello S., Logic based Benders’ decomposition for orthogonal stock cutting problems, Computers and Operations Research, 78, 290–298, 2017.
Referans 25
25. Mancapa V., Van Niekerk T. I., Hua T., A Genetic Algorithm for Two-Dimensional Strip Packing Problems, South African Journal of Industrial Engineering, 20(2), 145–162, 2009.
Referans 26
Bortfeldt A., A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces, European Journal of Operational Research, 172, 814–837, 2004.
Referans 27
Oliveira J. F., Junior A. N., Silva E., Carravilla M. A., A Survey on Heuristics for Two-Dimensional Rectangular Strip Packing Problems, Pesquisa Operacional, 36(2), 197–226, 2016.
Referans 28
Lodi A., Monaci M., Pietrobuoni E., Partial enumeration algorithms for Two-Dimensional Bin Packing Problem with guillotine constraints, Discrete Applied Mathematics, 217, 40-47, 2017.
Referans 29
Lori M., Lima V. L., Martello S., Miyazawa F. K., Exact solution techniques for two-dimensional cutting and packing, 289, 399-415, 2021.
Referans 30
Christensen H. I., Khan A., Pokutta S., Tetali P., Approximation and online algorithms for multidimensional binpacking: A survey, Computer Science Review, 24, 63-74, 2017.
Referans 31
Goncalves J. F., Resende M. G. C., Biased random-key genetic algorithms for combinatorial optimization, Journal of Heuristics, 17(5), 487–525, 2011.
Referans 32
Talbi E., Metaheuristics: From Design to Implementation, Wiley, New York, A.B.D, 2009.
Referans 33
Hifi M., Roucairol C., Approximate and exact algorithms for constrained (un) weighted two-dimensional two-staged cutting stock problems, Journal of Combinatorial Optimization 5, 465–494, 2001.
İçmen Erdem, B., & Kasımbeyli, R. (2023). İki boyutlu iki aşamalı kesme problemleri için matematiksel model tabanlı sezgisel yöntem. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 899-908. https://doi.org/10.17341/gazimmfd.1049876
AMA
İçmen Erdem B, Kasımbeyli R. İki boyutlu iki aşamalı kesme problemleri için matematiksel model tabanlı sezgisel yöntem. GUMMFD. Kasım 2023;39(2):899-908. doi:10.17341/gazimmfd.1049876
Chicago
İçmen Erdem, Banu, ve Refail Kasımbeyli. “İki Boyutlu Iki aşamalı Kesme Problemleri için Matematiksel Model Tabanlı Sezgisel yöntem”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 2 (Kasım 2023): 899-908. https://doi.org/10.17341/gazimmfd.1049876.
EndNote
İçmen Erdem B, Kasımbeyli R (01 Kasım 2023) İki boyutlu iki aşamalı kesme problemleri için matematiksel model tabanlı sezgisel yöntem. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 2 899–908.
IEEE
B. İçmen Erdem ve R. Kasımbeyli, “İki boyutlu iki aşamalı kesme problemleri için matematiksel model tabanlı sezgisel yöntem”, GUMMFD, c. 39, sy. 2, ss. 899–908, 2023, doi: 10.17341/gazimmfd.1049876.
ISNAD
İçmen Erdem, Banu - Kasımbeyli, Refail. “İki Boyutlu Iki aşamalı Kesme Problemleri için Matematiksel Model Tabanlı Sezgisel yöntem”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/2 (Kasım 2023), 899-908. https://doi.org/10.17341/gazimmfd.1049876.
JAMA
İçmen Erdem B, Kasımbeyli R. İki boyutlu iki aşamalı kesme problemleri için matematiksel model tabanlı sezgisel yöntem. GUMMFD. 2023;39:899–908.
MLA
İçmen Erdem, Banu ve Refail Kasımbeyli. “İki Boyutlu Iki aşamalı Kesme Problemleri için Matematiksel Model Tabanlı Sezgisel yöntem”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 2, 2023, ss. 899-08, doi:10.17341/gazimmfd.1049876.
Vancouver
İçmen Erdem B, Kasımbeyli R. İki boyutlu iki aşamalı kesme problemleri için matematiksel model tabanlı sezgisel yöntem. GUMMFD. 2023;39(2):899-908.