Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrokimyasal yöntem ile modifiye edilmiş AISI430 çelik yüzeylerin antikorozif ve antibakteriyel özelliklerinin incelenmesi

Yıl 2025, Cilt: 40 Sayı: 2, 1233 - 1248
https://doi.org/10.17341/gazimmfd.1208192

Öz

Bakterilerin daha dirençli olma yolundaki evrimleşme süreçlerini yavaşlatmak için gerek farmakolojik gerek malzeme tabanlı çalışmalar yürütülmektedir. Günlük hayatta kullanılan malzemelerin birçoğunun temas noktası genellikle metallerden oluşur ve bu metallerin çalıştıkları alana göre spesifik antibakteriyel özellikler ile donatılması önem arz etmektedir. Geçmişte bütün bir metal malzemeyi antibakteriyel özellik ile donatmak için alaşımlama yoluna giderken (örneğin çelik üretim aşamasında malzemeye az oranda Cu ve/veya Ag karıştırma işlemi) bu işlemin maliyetli ve belirli sınırlayıcı etkilerinin olması dolayısı ile yüzey modifikasyonu prosesleri ön plana çıkmaya başlamıştır. Yapılan araştırma da son yıllarda bakır üzerine yürütülmüş antibakteriyel çalışmalar baz alınarak AISI430 çeliği yüzeyine bakır metaline benzer antibakteriyel özellikler kazandırmak ancak bakırdan daha fazla korozyona dayanıklı ve daha sert bir yüzey elde etmek için Cu(Ag) elektrokimyasal kaplaması yapılmıştır. Nispeten yeşil doğasıyla bilinen derin ötektik çözeltilerde elektrokimyasal kaplama gerçekleştirilmiş ve yüzeyde kaplanacak metal iyonlarının potansiyodinamik incelemeleri döngüsel voltametri, kronoamperometri teknikleri ile gerçekleştirilmiştir. Mikro disk elektrot ölçeğinden makro AISI430 altlık kaplama ölçeğine geçilmesini takriben mikroyapı ve faz dağılımı için SEM-EDS analizleri ve pürüzlülük analizi için yüzey profilometresi kullanılmıştır. AISI 430 çeliği üzerinde elde edilen %2 Ag içeren Cu(Ag) filmlerinin nano pürüzlülükte olduğu, yaygın olarak kullanılan bakır ile kıyaslandığında yaklaşık iki kat daha fazla sertlik sunduğu ve aynı zamanda yine bakır ile kıyaslandığında daha iyi korozyon dayanımı sunduğu bulunmuştur. Antibakteriyel kısımda ise AISI430 yüzey ile karşılaştırmalı olarak antibakteriyel testleri gerçekleştirilmiş ve Cu(Ag) yüzeyin daha iyi antibakteriyel özellik sağladığı tespit edilmiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

120Z733

Teşekkür

Bu çalışma Dr. Öğretim Üyesi Salih CİHANGİR 'in I. danışmanlığı ve Dr. Öğretim Üyesi Basri OMAÇ' ın II. danışmanlığında yürütülmüş ve 2022 yılında sunduğumuz/tamamladığımız "Susuz Ortamda Elektrokimyasal Olarak Antibakteriyel Cu-Ag Kompozit Kaplamaların Üretimi ve Karakterizasyonu" başlıklı yüksek lisans tezi esas alınarak hazırlanmıştır. Ayrıca sunulan çalışmada elde edilen veriler için gerekli sarf malzeme ve cihaz kaynağı 120Z733 numaralı TÜBİTAK projesi üzerinden temin edilmiş olup desteklerinden dolayı Türkiye Bilimsel ve Teknolojik Araştırma Kurumu 'na teşekkür ederiz.

Kaynakça

  • 1. Almagor, J., Temkin, E., Benenson, I., Fallach, N., Carmeli, Y., & DRIVE-AB consortium., The impact of antibiotic use on transmission of resistant bacteria in hospitals: Insights from an agent-based model. PloS one, 13(5), e0197111, 2018.
  • 2. Bharadishettar, N., Bhat K, U., Bhat Panemangalore, D., Coating Technologies for Copper Based Antimicrobial Active Surfaces: A Perspective Review, Metals, 11 (5), 711, 2021.
  • 3. Wahab, S., Salman, A., Khan, Z., Khan, S., Krishnaraj, C., Yun, S.-I., Metallic Nanoparticles: A Promising Arsenal against Antimicrobial Resistance-Unraveling Mechanisms and Enhancing Medication Efficacy, International Journal of Molecular Sciences, 24 (19), 14897, 2023.
  • 4. Li, B., Webster, T. J., Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections, J Orthop Res, 36 (1), 22-32, 2018.
  • 5. Turner, R. J., Metal-based antimicrobial strategies, Microb Biotechnol, 10 (5), 1062-1065, 2017.
  • 6. Zhang, X., Zhang, G., Chai, M., Yao, X., Chen, W., Chu, P. K., Synergistic antibacterial activity of physical-chemical multi-mechanism by TiO(2) nanorod arrays for safe biofilm eradication on implant, Bioact Mater, 6 (1), 12-25, 2021.
  • 7. Liao, Y., Yao, Y., Yu, Y., Zeng, Y., Enhanced Antibacterial Activity of Curcumin by Combination With Metal Ions, Colloid and Interface Science Communications, 25, 1-6, 2018.
  • 8. Zhang, E., Zhao, X., Hu, J., Wang, R., Fu, S., Qin, G., Antibacterial metals and alloys for potential biomedical implants, Bioactive materials, 6 (8), 2569-2612, 2021.
  • 9. Şüküroğlu E.E., Çelik A., Investigation of biodegradability of doped composite oxide coated AZ91 alloy in blood plasma, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (3), 1673-1687, 2022.
  • 10. Naoto O, S. N., Morihiro H., High strength martensitic stainless steel excellent in antibacterial characteristic, Japanese, 1996.
  • 11. Morihiro H, K. M., Naoto O, Sadayuki N., Stainless stell excellent in antibacterial property and designing property, Japan, 1996.
  • 12. Bekmurzayeva, A., Duncanson, W. J., Azevedo, H. S., Kanayeva, D., Surface modification of stainless steel for biomedical applications: Revisiting a century-old material, Mater Sci Eng C Mater Biol Appl, 93, 1073-1089, 2018.
  • 13. Chen, S., Lu, M., Zhang, J., Dong, J., Yang, K., Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel, 2004.
  • 14. Yang, K., Lu, M. Q., Antibacterial Properties of an Austenitic Antibacterial Stainless Steel and Its Security for Human Body, Journal of Materials Science & Technology, 23, 333-336, 2007.
  • 15. Mindivan H., High-temperature wear and oxidation behavior of electrochemically borided low carbon steel, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 937-945, 2023.
  • 16. Aygül E., Yalçınkaya S., Şahin Y., Characterization of Co-24, 7Cr-5, 4W-5 Mo-Si alloy used dental applications produced by additive manufacturing method, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (2), 571-580, 2022.
  • 17. Norowski Jr, P. A., Bumgardner, J. D., Biomaterial and antibiotic strategies for peri‐implantitis: A review, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88 (2), 530-543, 2009.
  • 18. Selvamani, V., Zareei, A., Elkashif, A., Maruthamuthu, M. K., Chittiboyina, S., Delisi, D., Li, Z., Cai, L., Pol, V. G., Seleem, M. N., et al. Hierarchical Micro/Mesoporous Copper Structure with Enhanced Antimicrobial Property via Laser Surface Texturing, Advanced Materials Interfaces, 7 (7), 1901890, 2020.
  • 19. Zhang, D., Ren, L., Zhang, Y., Xue, N., Yang, K., Zhong, M., Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel, Colloids and Surfaces B: Biointerfaces, 105, 51-57, 2013.
  • 20. Casey, A., Adams, D., Karpanen, T., Lambert, P., Cookson, B., Nightingale, P., Miruszenko, L., Shillam, R., Christian, P., Elliott, T., Role of copper in reducing hospital environment contamination, Journal of Hospital Infection, 74 (1), 72-77, 2010.
  • 21. Lin, Y. E., Stout, J. E., Victor, L. Y., Controlling Legionella in hospital drinking water: an evidence-based review of disinfection methods, Infection Control & Hospital Epidemiology, 32 (2), 166-173, 2011.
  • 22. Mikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J., Nies, D. H., Survival of bacteria on metallic copper surfaces in a hospital trial, Applied microbiology and biotechnology, 87 (5), 1875-1879, 2010.
  • 23. Zhao, G., Stevens, S. E., Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion, Biometals, 11 (1), 27-32, 1998.
  • 24. Noyce, J., Michels, H., Keevil, C., Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment, Journal of Hospital Infection, 63 (3), 289-297, 2006.
  • 25. Santo, C. E., Lam, E. W., Elowsky, C. G., Quaranta, D., Domaille, D. W., Chang, C. J., Grass, G., Bacterial killing by dry metallic copper surfaces, Applied and environmental microbiology, 77 (3), 794-802, 2011.
  • 26. Mathews, S., Hans, M., Mücklich, F., Solioz, M., Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions, Applied and Environmental Microbiology, 79 (8), 2605-2611, 2013.
  • 27. Festa, R. A., Thiele, D. J., Copper: an essential metal in biology, Current Biology, 21 (21), R877-R883, 2011.
  • 28. Grass, G., Rensing, C., Solioz, M., Metallic copper as an antimicrobial surface, Applied and environmental microbiology, 77 (5), 1541-1547, 2011.
  • 29. Hund-Rinke, K., Simon, M., Ecotoxic Effect of Photocatalytic Active Nanoparticles (TiO2) on Algae and Daphnids (8 pp), Environmental Science and Pollution Research, 13 (4), 225-232, 2006.
  • 30. Moore, M. N., Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 32 (8), 967-976, 2006.
  • 31. Bormashenko, E., Stein, T., Whyman, G., Bormashenko, Y., Pogreb, R., Wetting Properties of the Multiscaled Nanostructured Polymer and Metallic Superhydrophobic Surfaces. Langmuir, 22 (24), 9982-9985, 2006.
  • 32. Hansson, P. M., Swerin, A., Schoelkopf, J., Gane, P. A. C., Thormann, E., Influence of Surface Topography on the Interactions between Nanostructured Hydrophobic Surfaces. Langmuir, 28 (21), 8026-8034, 2012.
  • 33. Ahmad, D., van den Boogaert, I., Miller, J., Presswell, R., Jouhara, H., Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40 (22), 2686-2725, 2018.
  • 34. Vorobyev, A. Y., Guo, C., Multifunctional surfaces produced by femtosecond laser pulses, Journal of Applied Physics, 117 (3), 2015.
  • 35. Rukosuyev, M. V., Lee, J., Cho, S. J., Lim, G., Jun, M. B. G., One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation, Applied Surface Science, 313, 411-417, 2014.
  • 36. Jagdheesh, R., Diaz, M., Ocaña, J. L., Bio inspired self-cleaning ultrahydrophobic aluminium surface by laser processing, RSC Advances, 6 (77), 72933-72941, 2016.
  • 37. Abbott, A. P., Cihangir, S., Ryder, K. S., Redox fusion of metal particles using deep eutectic solvents, Chemical Communications, 54 (24), 3049-3052, 10.1039/C8CC00360B, 2018.
  • 38. Cihangir, S., Replacement of Cu with One-Step Production of CuAg (Ag0.04Cu3.96): Superior Conductivity, Corrosion Resistance, and Hardness, Transactions of the Indian Institute of Metals, 76, 1403–1413, 2023.
  • 39. Cihangir, S., Ryder, K. S., Unal, A., Detailed Investigation of Zinc Coating Behaviours in Various Deep Eutectic Solvents, Electrochimica Acta, 142708, 2023.
  • 40. Cihangir, S., Greening Industrially Applied Toxic Cadmium Plating with γ-Ni2Zn11 Alloy in Deep Eutectic Solvents: Promising Electroplating Efficiency and Chemical Corrosion Resistance, Advanced Engineering Materials, 25 (20), 2300731, 2023.
  • 41. Mu, L., Gao, J., Zhang, Q., Kong, F., Zhang, Y., Ma, Z., Sun, C., Lv, S., Research Progress on Deep Eutectic Solvents and Recent Applications, Processes, 11 (7), 1986, 2023.
  • 42. Qader, I. B., Prasad, K., Recent Developments on Ionic Liquids and Deep Eutectic Solvents for Drug Delivery Applications, Pharmaceutical Research, 39 (10), 2367-2377, 2022.
  • 43. Yuan, Z., Liu, H., Yong, W. F., She, Q., Esteban, J., Status and advances of deep eutectic solvents for metal separation and recovery, Green Chemistry, 24 (5), 1895-1929, 2022.
  • 44. Tamayo, L. A., Zapata, P. A., Vejar, N. D., Azócar, M. I., Gulppi, M. A., Zhou, X., Thompson, G. E., Rabagliati, F. M., Páez, M. A., Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes, Mater Sci Eng C Mater Biol Appl, 40, 24-31, 2014.
  • 45. Laha, D., Pramanik, A., Laskar, A., Jana, M., Pramanik, P., Karmakar, P., Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage, Materials Research Bulletin, 185-191, 2014.
  • 46. Ferreira, C., Sarraguça, M., A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest, Pharmaceuticals, 17 (1), 124, 2024.
  • 47. Ttaib, K. E., The Electrodeposition of Composite Materials using Deep Eutectic Solvents, Doctor of Philosophy, University of Leicester, Leicester, 2010.
  • 48. J. Bockris, A. R., M.Aldeco, Modern Electrochemistry, Plenum Press, 1970.
  • 49. Bird, R. B., Transport phenomena, Appl. Mech. Rev., 55 (1), R1-R4, 2002.
  • 50. Cihangir, S., Powder Pulse Plating. Doctoral dissertation, University of Leicester, Leicester-UK, 2018.
  • 51. Haynes, W. M., CRC handbook of chemistry and physics, CRC press, 2016.
  • 52. Detriche, S., Vivegnis, S., Vanhumbeeck, J.-F., Felten, A., Louette, P., Renner, F., Delhalle, J., Mekhalif, Z., XPS fast depth profile of the native oxide layers on AISI 304, 316 and 430 commercial stainless steels and their evolution with time, Journal of Electron Spectroscopy and Related Phenomena, 243, 146970, 2020.
  • 53. Meyers, B., Lynn, S., Jang, E., Chromium Elimination in Surface Engineering, In Surface Engineering, ASM International, 925-929, 1994.
  • 54. Di Bari, G. A., Electrodeposition of Nickel. In Modern Electroplating, 79-114, 2010.
  • 55. Bhasker-Ranganath, S., Wick, C. D., Ramachandran, B. R., Computational insights into the molecular mechanisms for chromium passivation of stainless-steel surfaces, Materials Today Chemistry, 17, 100298, 2020.
  • 56. Paunovic, M., M.Schlesinger., Fundamentals of Electrochemical Deposition, John Wiley & Sons, Inc., 2006.
  • 57. Yu, J., Wang, G., Rong, Y. Experimental study on the surface integrity and chip formation in the micro cutting process, Procedia Manufacturing, 1, 655-662, 2015.
  • 58. Felicia, D. M., Rochiem, R., Laia, S. M., The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product, In AIP Conference Proceedings, AIP Publishing LLC, 1945, 020075, 2018.
  • 59. Benjamin, J., Mechanical alloying, Scientific American, 234 (5), 40-49, 1976.
  • 60. Cihangir, S., Effect of Longer Waiting Time During OCP and Pre-Applied Cleaning Potential In Corrosion Analysis of Zinc Metal, Türk Doğa ve Fen Dergisi, 12 (3), 15-23, 2023.
  • 61. Cihangir, S., Say, Y., Ozkul, İ., Guler, O., Guler, S. H., Microstructure and corrosion investigation of FeCoCrNiMo0, 5 (MnAl) 0, 3 high entropy alloy produced by 316 L stainless steel scrap, Materials Today Communications, 33, 104360, 2022.
  • 62. Perdikaki, A., Galeou, A., Pilatos, G., Karatasios, I., Kanellopoulos, N. K., Prombona, A., Karanikolos, G. N., Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle–graphene composites with enhanced antibacterial performance, ACS Applied Materials & Interfaces, 8 (41), 27498-27510, 2016.
  • 63. Ciacotich, N., Din, R. U., Sloth, J. J., Møller, P., Gram, L., An electroplated copper–silver alloy as antibacterial coating on stainless steel, Surface and Coatings Technology, 345, 96-104, 2018.
  • 64. Valodkar, M., Modi, S., Pal, A., Thakore, S., Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: A green approach, Materials Research Bulletin, 46 (3), 384-389, 2011.
  • 65. Jafari, A., Pourakbar, L., Farhadi, K., gholizad, L. M., & Goosta, Y., (). Biological synthesis of silver nanoparticles and evaluation of antibacterial and antifungal properties of silver and copper nanoparticles, Turkish Journal of Biology, 39(4), 556-561, 2015.
  • 66. Zarei, M., Jamnejad, A., Khajehali, E., Antibacterial effect of silver nanoparticles against four foodborne pathogens, Jundishapur J Microbiol, 7 (1), e8720, 2014.
  • 67. Rtimi, S., Dionysiou, D. D., Pillai, S. C., Kiwi, J., Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices, Applied Catalysis B: Environmental, 240, 291-318, 2019.
  • 68. Tang, S., Zheng, J., Antibacterial Activity of Silver Nanoparticles: Structural Effects. Advanced Healthcare Materials, 7 (13), 1701503, 2018.
  • 69. Zhu, L., Elguindi, J., Rensing, C., Ravishankar, S., Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica, Food Microbiol, 30 (1), 303-310, 2012.
Yıl 2025, Cilt: 40 Sayı: 2, 1233 - 1248
https://doi.org/10.17341/gazimmfd.1208192

Öz

Proje Numarası

120Z733

Kaynakça

  • 1. Almagor, J., Temkin, E., Benenson, I., Fallach, N., Carmeli, Y., & DRIVE-AB consortium., The impact of antibiotic use on transmission of resistant bacteria in hospitals: Insights from an agent-based model. PloS one, 13(5), e0197111, 2018.
  • 2. Bharadishettar, N., Bhat K, U., Bhat Panemangalore, D., Coating Technologies for Copper Based Antimicrobial Active Surfaces: A Perspective Review, Metals, 11 (5), 711, 2021.
  • 3. Wahab, S., Salman, A., Khan, Z., Khan, S., Krishnaraj, C., Yun, S.-I., Metallic Nanoparticles: A Promising Arsenal against Antimicrobial Resistance-Unraveling Mechanisms and Enhancing Medication Efficacy, International Journal of Molecular Sciences, 24 (19), 14897, 2023.
  • 4. Li, B., Webster, T. J., Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections, J Orthop Res, 36 (1), 22-32, 2018.
  • 5. Turner, R. J., Metal-based antimicrobial strategies, Microb Biotechnol, 10 (5), 1062-1065, 2017.
  • 6. Zhang, X., Zhang, G., Chai, M., Yao, X., Chen, W., Chu, P. K., Synergistic antibacterial activity of physical-chemical multi-mechanism by TiO(2) nanorod arrays for safe biofilm eradication on implant, Bioact Mater, 6 (1), 12-25, 2021.
  • 7. Liao, Y., Yao, Y., Yu, Y., Zeng, Y., Enhanced Antibacterial Activity of Curcumin by Combination With Metal Ions, Colloid and Interface Science Communications, 25, 1-6, 2018.
  • 8. Zhang, E., Zhao, X., Hu, J., Wang, R., Fu, S., Qin, G., Antibacterial metals and alloys for potential biomedical implants, Bioactive materials, 6 (8), 2569-2612, 2021.
  • 9. Şüküroğlu E.E., Çelik A., Investigation of biodegradability of doped composite oxide coated AZ91 alloy in blood plasma, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (3), 1673-1687, 2022.
  • 10. Naoto O, S. N., Morihiro H., High strength martensitic stainless steel excellent in antibacterial characteristic, Japanese, 1996.
  • 11. Morihiro H, K. M., Naoto O, Sadayuki N., Stainless stell excellent in antibacterial property and designing property, Japan, 1996.
  • 12. Bekmurzayeva, A., Duncanson, W. J., Azevedo, H. S., Kanayeva, D., Surface modification of stainless steel for biomedical applications: Revisiting a century-old material, Mater Sci Eng C Mater Biol Appl, 93, 1073-1089, 2018.
  • 13. Chen, S., Lu, M., Zhang, J., Dong, J., Yang, K., Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel, 2004.
  • 14. Yang, K., Lu, M. Q., Antibacterial Properties of an Austenitic Antibacterial Stainless Steel and Its Security for Human Body, Journal of Materials Science & Technology, 23, 333-336, 2007.
  • 15. Mindivan H., High-temperature wear and oxidation behavior of electrochemically borided low carbon steel, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 937-945, 2023.
  • 16. Aygül E., Yalçınkaya S., Şahin Y., Characterization of Co-24, 7Cr-5, 4W-5 Mo-Si alloy used dental applications produced by additive manufacturing method, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (2), 571-580, 2022.
  • 17. Norowski Jr, P. A., Bumgardner, J. D., Biomaterial and antibiotic strategies for peri‐implantitis: A review, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88 (2), 530-543, 2009.
  • 18. Selvamani, V., Zareei, A., Elkashif, A., Maruthamuthu, M. K., Chittiboyina, S., Delisi, D., Li, Z., Cai, L., Pol, V. G., Seleem, M. N., et al. Hierarchical Micro/Mesoporous Copper Structure with Enhanced Antimicrobial Property via Laser Surface Texturing, Advanced Materials Interfaces, 7 (7), 1901890, 2020.
  • 19. Zhang, D., Ren, L., Zhang, Y., Xue, N., Yang, K., Zhong, M., Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel, Colloids and Surfaces B: Biointerfaces, 105, 51-57, 2013.
  • 20. Casey, A., Adams, D., Karpanen, T., Lambert, P., Cookson, B., Nightingale, P., Miruszenko, L., Shillam, R., Christian, P., Elliott, T., Role of copper in reducing hospital environment contamination, Journal of Hospital Infection, 74 (1), 72-77, 2010.
  • 21. Lin, Y. E., Stout, J. E., Victor, L. Y., Controlling Legionella in hospital drinking water: an evidence-based review of disinfection methods, Infection Control & Hospital Epidemiology, 32 (2), 166-173, 2011.
  • 22. Mikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J., Nies, D. H., Survival of bacteria on metallic copper surfaces in a hospital trial, Applied microbiology and biotechnology, 87 (5), 1875-1879, 2010.
  • 23. Zhao, G., Stevens, S. E., Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion, Biometals, 11 (1), 27-32, 1998.
  • 24. Noyce, J., Michels, H., Keevil, C., Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment, Journal of Hospital Infection, 63 (3), 289-297, 2006.
  • 25. Santo, C. E., Lam, E. W., Elowsky, C. G., Quaranta, D., Domaille, D. W., Chang, C. J., Grass, G., Bacterial killing by dry metallic copper surfaces, Applied and environmental microbiology, 77 (3), 794-802, 2011.
  • 26. Mathews, S., Hans, M., Mücklich, F., Solioz, M., Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions, Applied and Environmental Microbiology, 79 (8), 2605-2611, 2013.
  • 27. Festa, R. A., Thiele, D. J., Copper: an essential metal in biology, Current Biology, 21 (21), R877-R883, 2011.
  • 28. Grass, G., Rensing, C., Solioz, M., Metallic copper as an antimicrobial surface, Applied and environmental microbiology, 77 (5), 1541-1547, 2011.
  • 29. Hund-Rinke, K., Simon, M., Ecotoxic Effect of Photocatalytic Active Nanoparticles (TiO2) on Algae and Daphnids (8 pp), Environmental Science and Pollution Research, 13 (4), 225-232, 2006.
  • 30. Moore, M. N., Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 32 (8), 967-976, 2006.
  • 31. Bormashenko, E., Stein, T., Whyman, G., Bormashenko, Y., Pogreb, R., Wetting Properties of the Multiscaled Nanostructured Polymer and Metallic Superhydrophobic Surfaces. Langmuir, 22 (24), 9982-9985, 2006.
  • 32. Hansson, P. M., Swerin, A., Schoelkopf, J., Gane, P. A. C., Thormann, E., Influence of Surface Topography on the Interactions between Nanostructured Hydrophobic Surfaces. Langmuir, 28 (21), 8026-8034, 2012.
  • 33. Ahmad, D., van den Boogaert, I., Miller, J., Presswell, R., Jouhara, H., Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40 (22), 2686-2725, 2018.
  • 34. Vorobyev, A. Y., Guo, C., Multifunctional surfaces produced by femtosecond laser pulses, Journal of Applied Physics, 117 (3), 2015.
  • 35. Rukosuyev, M. V., Lee, J., Cho, S. J., Lim, G., Jun, M. B. G., One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation, Applied Surface Science, 313, 411-417, 2014.
  • 36. Jagdheesh, R., Diaz, M., Ocaña, J. L., Bio inspired self-cleaning ultrahydrophobic aluminium surface by laser processing, RSC Advances, 6 (77), 72933-72941, 2016.
  • 37. Abbott, A. P., Cihangir, S., Ryder, K. S., Redox fusion of metal particles using deep eutectic solvents, Chemical Communications, 54 (24), 3049-3052, 10.1039/C8CC00360B, 2018.
  • 38. Cihangir, S., Replacement of Cu with One-Step Production of CuAg (Ag0.04Cu3.96): Superior Conductivity, Corrosion Resistance, and Hardness, Transactions of the Indian Institute of Metals, 76, 1403–1413, 2023.
  • 39. Cihangir, S., Ryder, K. S., Unal, A., Detailed Investigation of Zinc Coating Behaviours in Various Deep Eutectic Solvents, Electrochimica Acta, 142708, 2023.
  • 40. Cihangir, S., Greening Industrially Applied Toxic Cadmium Plating with γ-Ni2Zn11 Alloy in Deep Eutectic Solvents: Promising Electroplating Efficiency and Chemical Corrosion Resistance, Advanced Engineering Materials, 25 (20), 2300731, 2023.
  • 41. Mu, L., Gao, J., Zhang, Q., Kong, F., Zhang, Y., Ma, Z., Sun, C., Lv, S., Research Progress on Deep Eutectic Solvents and Recent Applications, Processes, 11 (7), 1986, 2023.
  • 42. Qader, I. B., Prasad, K., Recent Developments on Ionic Liquids and Deep Eutectic Solvents for Drug Delivery Applications, Pharmaceutical Research, 39 (10), 2367-2377, 2022.
  • 43. Yuan, Z., Liu, H., Yong, W. F., She, Q., Esteban, J., Status and advances of deep eutectic solvents for metal separation and recovery, Green Chemistry, 24 (5), 1895-1929, 2022.
  • 44. Tamayo, L. A., Zapata, P. A., Vejar, N. D., Azócar, M. I., Gulppi, M. A., Zhou, X., Thompson, G. E., Rabagliati, F. M., Páez, M. A., Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes, Mater Sci Eng C Mater Biol Appl, 40, 24-31, 2014.
  • 45. Laha, D., Pramanik, A., Laskar, A., Jana, M., Pramanik, P., Karmakar, P., Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage, Materials Research Bulletin, 185-191, 2014.
  • 46. Ferreira, C., Sarraguça, M., A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest, Pharmaceuticals, 17 (1), 124, 2024.
  • 47. Ttaib, K. E., The Electrodeposition of Composite Materials using Deep Eutectic Solvents, Doctor of Philosophy, University of Leicester, Leicester, 2010.
  • 48. J. Bockris, A. R., M.Aldeco, Modern Electrochemistry, Plenum Press, 1970.
  • 49. Bird, R. B., Transport phenomena, Appl. Mech. Rev., 55 (1), R1-R4, 2002.
  • 50. Cihangir, S., Powder Pulse Plating. Doctoral dissertation, University of Leicester, Leicester-UK, 2018.
  • 51. Haynes, W. M., CRC handbook of chemistry and physics, CRC press, 2016.
  • 52. Detriche, S., Vivegnis, S., Vanhumbeeck, J.-F., Felten, A., Louette, P., Renner, F., Delhalle, J., Mekhalif, Z., XPS fast depth profile of the native oxide layers on AISI 304, 316 and 430 commercial stainless steels and their evolution with time, Journal of Electron Spectroscopy and Related Phenomena, 243, 146970, 2020.
  • 53. Meyers, B., Lynn, S., Jang, E., Chromium Elimination in Surface Engineering, In Surface Engineering, ASM International, 925-929, 1994.
  • 54. Di Bari, G. A., Electrodeposition of Nickel. In Modern Electroplating, 79-114, 2010.
  • 55. Bhasker-Ranganath, S., Wick, C. D., Ramachandran, B. R., Computational insights into the molecular mechanisms for chromium passivation of stainless-steel surfaces, Materials Today Chemistry, 17, 100298, 2020.
  • 56. Paunovic, M., M.Schlesinger., Fundamentals of Electrochemical Deposition, John Wiley & Sons, Inc., 2006.
  • 57. Yu, J., Wang, G., Rong, Y. Experimental study on the surface integrity and chip formation in the micro cutting process, Procedia Manufacturing, 1, 655-662, 2015.
  • 58. Felicia, D. M., Rochiem, R., Laia, S. M., The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product, In AIP Conference Proceedings, AIP Publishing LLC, 1945, 020075, 2018.
  • 59. Benjamin, J., Mechanical alloying, Scientific American, 234 (5), 40-49, 1976.
  • 60. Cihangir, S., Effect of Longer Waiting Time During OCP and Pre-Applied Cleaning Potential In Corrosion Analysis of Zinc Metal, Türk Doğa ve Fen Dergisi, 12 (3), 15-23, 2023.
  • 61. Cihangir, S., Say, Y., Ozkul, İ., Guler, O., Guler, S. H., Microstructure and corrosion investigation of FeCoCrNiMo0, 5 (MnAl) 0, 3 high entropy alloy produced by 316 L stainless steel scrap, Materials Today Communications, 33, 104360, 2022.
  • 62. Perdikaki, A., Galeou, A., Pilatos, G., Karatasios, I., Kanellopoulos, N. K., Prombona, A., Karanikolos, G. N., Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle–graphene composites with enhanced antibacterial performance, ACS Applied Materials & Interfaces, 8 (41), 27498-27510, 2016.
  • 63. Ciacotich, N., Din, R. U., Sloth, J. J., Møller, P., Gram, L., An electroplated copper–silver alloy as antibacterial coating on stainless steel, Surface and Coatings Technology, 345, 96-104, 2018.
  • 64. Valodkar, M., Modi, S., Pal, A., Thakore, S., Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: A green approach, Materials Research Bulletin, 46 (3), 384-389, 2011.
  • 65. Jafari, A., Pourakbar, L., Farhadi, K., gholizad, L. M., & Goosta, Y., (). Biological synthesis of silver nanoparticles and evaluation of antibacterial and antifungal properties of silver and copper nanoparticles, Turkish Journal of Biology, 39(4), 556-561, 2015.
  • 66. Zarei, M., Jamnejad, A., Khajehali, E., Antibacterial effect of silver nanoparticles against four foodborne pathogens, Jundishapur J Microbiol, 7 (1), e8720, 2014.
  • 67. Rtimi, S., Dionysiou, D. D., Pillai, S. C., Kiwi, J., Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices, Applied Catalysis B: Environmental, 240, 291-318, 2019.
  • 68. Tang, S., Zheng, J., Antibacterial Activity of Silver Nanoparticles: Structural Effects. Advanced Healthcare Materials, 7 (13), 1701503, 2018.
  • 69. Zhu, L., Elguindi, J., Rensing, C., Ravishankar, S., Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica, Food Microbiol, 30 (1), 303-310, 2012.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gülistan Açar 0000-0001-5775-969X

Salih Cihangir 0000-0001-5989-5230

Basri Omaç 0000-0001-6956-2720

Hacı Mehmet Aydoğdu 0000-0002-5198-2126

Mücahit Oflaz 0000-0001-5189-4305

Proje Numarası 120Z733
Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 21 Kasım 2022
Kabul Tarihi 3 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 2

Kaynak Göster

APA Açar, G., Cihangir, S., Omaç, B., Aydoğdu, H. M., vd. (2024). Elektrokimyasal yöntem ile modifiye edilmiş AISI430 çelik yüzeylerin antikorozif ve antibakteriyel özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(2), 1233-1248. https://doi.org/10.17341/gazimmfd.1208192
AMA Açar G, Cihangir S, Omaç B, Aydoğdu HM, Oflaz M. Elektrokimyasal yöntem ile modifiye edilmiş AISI430 çelik yüzeylerin antikorozif ve antibakteriyel özelliklerinin incelenmesi. GUMMFD. Aralık 2024;40(2):1233-1248. doi:10.17341/gazimmfd.1208192
Chicago Açar, Gülistan, Salih Cihangir, Basri Omaç, Hacı Mehmet Aydoğdu, ve Mücahit Oflaz. “Elektrokimyasal yöntem Ile Modifiye Edilmiş AISI430 çelik yüzeylerin Antikorozif Ve Antibakteriyel özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 2 (Aralık 2024): 1233-48. https://doi.org/10.17341/gazimmfd.1208192.
EndNote Açar G, Cihangir S, Omaç B, Aydoğdu HM, Oflaz M (01 Aralık 2024) Elektrokimyasal yöntem ile modifiye edilmiş AISI430 çelik yüzeylerin antikorozif ve antibakteriyel özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 2 1233–1248.
IEEE G. Açar, S. Cihangir, B. Omaç, H. M. Aydoğdu, ve M. Oflaz, “Elektrokimyasal yöntem ile modifiye edilmiş AISI430 çelik yüzeylerin antikorozif ve antibakteriyel özelliklerinin incelenmesi”, GUMMFD, c. 40, sy. 2, ss. 1233–1248, 2024, doi: 10.17341/gazimmfd.1208192.
ISNAD Açar, Gülistan vd. “Elektrokimyasal yöntem Ile Modifiye Edilmiş AISI430 çelik yüzeylerin Antikorozif Ve Antibakteriyel özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/2 (Aralık 2024), 1233-1248. https://doi.org/10.17341/gazimmfd.1208192.
JAMA Açar G, Cihangir S, Omaç B, Aydoğdu HM, Oflaz M. Elektrokimyasal yöntem ile modifiye edilmiş AISI430 çelik yüzeylerin antikorozif ve antibakteriyel özelliklerinin incelenmesi. GUMMFD. 2024;40:1233–1248.
MLA Açar, Gülistan vd. “Elektrokimyasal yöntem Ile Modifiye Edilmiş AISI430 çelik yüzeylerin Antikorozif Ve Antibakteriyel özelliklerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 2, 2024, ss. 1233-48, doi:10.17341/gazimmfd.1208192.
Vancouver Açar G, Cihangir S, Omaç B, Aydoğdu HM, Oflaz M. Elektrokimyasal yöntem ile modifiye edilmiş AISI430 çelik yüzeylerin antikorozif ve antibakteriyel özelliklerinin incelenmesi. GUMMFD. 2024;40(2):1233-48.