Araştırma Makalesi
BibTex RIS Kaynak Göster

Reçineden eklemeli imalat yöntemiyle üretilen polimer hibrit kafes yapıların yarı statik basma koşullarında mekanik özellikleri

Yıl 2025, Cilt: 40 Sayı: 4, 2309 - 2322
https://doi.org/10.17341/gazimmfd.1623376

Öz

Kafes yapılar, yüksek dayanım ve düşük ağırlık özellikleri sayesinde hafif ve dayanıklı tasarımlara olanak sağlar. Bu yapılar, kontrol edilebilir mekanik özellikleri ile havacılık, savunma, otomotiv, sağlık ve spor ekipmanı sektörlerinde kullanılmaktadır. Bu çalışmada “eşkenar dörtgensel on iki yüzlü (RD)”, “iso truss (IT)” ve RDIT hibrit birim kafes hücre tasarlanmıştır. Hibrit ve birim kafes hücreler ile eşit bağıl yoğunlukta ve farklı konfigürasyonlarda kenar uzunluğu 30 mm olan kübik kafes yapılar oluşturulmuştur. Kafes yapılar endüstriyel ABS benzeri reçineden UV led ışıkla kürleme (LCD) Eİ yöntemiyle üretilmiştir. Üretilen kafes yapıların yarı statik basma testi ile kuvvet-basma eğrileri elde edilmiştir. Bu eğrilerden hesaplanan toplam soğurulan enerji (TSE) değerleri kullanılarak birim ve hibrit hücreli kafes yapı tasarımlarının mekanik performanslarının karşılaştırması yapılmıştır. Aynı hacim ve eşit bağıl yoğunlukta olan kafes yapılara, birim hücre boyutu ve sayısının etkisi incelenmiştir. Hibrit kafes yapı tasarımlarının mekanik kararlılığının daha iyi olduğu ve enerji soğurma kabiliyetlerini geliştirdiği anlaşılmıştır. Eİ yöntemlerinin yaygınlaşması ile bu kafes yapıların, konstrüksiyonları hafifletme ve enerji soğurma amacıyla yaygın bir kullanım alanına sahip olacağı düşünülmektedir.

Kaynakça

  • 1. Miao, X., Hu, J., Xu, Y., Su, J., & Jing, Y., Review on mechanical properties of metal lattice structures, Composite Structures, 342, 2024.
  • 2. Leary, M., Design for Additive Manufacturing, Elsevier, 1st Edition, 2020.
  • 3. Pan, C., Han, Y., & Lu, J., Design and optimization of lattice structures: a review, Applied Sciences, 10 (18), 1-36, 2020.
  • 4. Du Plessis, A., Razavi, N., Benedetti, M., Murchio, S., Leary, M., Watson, M., Bhate, D., & Berto, F., Properties and applications of additively manufactured metallic cellular materials: a review, Progress in Materials Science, 125, 2022.
  • 5. Zheng, X., Lee, H., Weisgraber, T. H., Shusteff, M., DeOtte, J., Duoss, E. B., Kuntz, J. D., Biener, M. M., Ge, Q., Jackson, J. A., Kucheyev, S. O., Fang, N. X., & Spadaccini, C. M., Ultralight, ultrastiff mechanical metamaterials., Science, 344 (6190), 1373-1377, 2014.
  • 6. Borikar, G. P., Patil, A. R., & Kolekar, S. B., Additively manufactured lattice structures and materials: present progress and future scope, International Journal of Precision Engineering and Manufacturing, 24 (11), 2133-2180, 2023.
  • 7. Park, K. M., Min, K. S., & Roh, Y. S., Design optimization of lattice structures under compression: study of unit cell types and cell arrangements, Materials, 15 (97), 1-21, 2022.
  • 8. Dong, G., Tang, Y., & Fiona Zhao, Y., A survey of modeling of lattice structures fabricated by additive manufacturing, Journal of Mechanical Design, 139 (10), 1-48, 2017.
  • 9. Ashby, M. F., The properties of foams and lattices, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15-30, 2006.
  • 10. Ali, M., Sajjad, U., Hussain, I., Abbas, N., Ali, H. M., Yan, W. M., & Wang, C. C., On the assessment of the mechanical properties of additively manufactured lattice structures, Engineering Analysis with Boundary Elements, 142, 93-116, 2022.
  • 11. Maconachie, T., Leary, M., Zhang, J., Medvedev, A., Sarker, A., Ruan, D., Lu, G., Faruque, O., & Brandt, M., Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg, Materials Science and Engineering: A, 788, 2020.
  • 12. Niutta, C. B., Ciardiello, R., & Tridello, A., Experimental and numerical investigation of a lattice structure for energy absorption: application to the design of an automotive crash absorber, Polymers, 14 (6), 1116, 2022.
  • 13. Tancogne-Dejean, T., Spierings, A. B., & Mohr, D., Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading, Acta Materialia, 116, 14-28, 2016.
  • 14. Zhang, T., Huang, Z., Li, Y., Xu, Z., Zhou, Z., & Chen, Z., Compressive mechanical behaviors of PPR and NPR chiral compression–twist coupling lattice structures under quasi-static and dynamic loads, Thin-Walled Structures, 182, 2023.
  • 15. Deshpande, V. S., Ashby, M. F., & Fleck, N. A., Foam topology bending versus stretching dominated architectures, Acta Mater, 49, 1035-1040, 2001.
  • 16. Ha, N. S., & Lu, G., A review of recent research on bio-inspired structures and materials for energy absorption applications, Composites Part B: Engineering, 181, 2020.
  • 17. Wu, W., Liu, P., Wang, Y., & Kang, Z., Design of dual-material lattice structures with compression-torsion bistability, Materials and Design, 230, 2023.
  • 18. Zhang, J., Yang, X., Zuo, H., & Dong, Y., Study on mechanical response control of metal-ceramic dual phase hybrid lattice structure, Materials Today Communications, 41, 2024.
  • 19. Li, C., Qi, J., Wang, P., Zhao, Z., Wang, Z., Lei, H., & Duan, S., A novel hybrid design method of lattice structure based on failure mode, Science China: Physics, Mechanics and Astronomy, 65 (9), 2022.
  • 20. Zhang, P., Biligetu, Qi, D. X., Xue, R., Liu, K., Huang, Z. X., Wu, W. W., & Li, Y., Mechanical design and energy absorption of 3D novel hybrid lattice metamaterials, Science China Technological Sciences, 64 (10), 2220-2228, 2021.
  • 21. Akbay, Ö. C., & Bahçe, E., Investigation of mechanical performance of hybrid design porous structures manufactured from CoCr Alloy, Progress in Additive Manufacturing, 2024.
  • 22. Kladovasilakis, N., Tsongas, K., & Tzetzis, D., Development of novel additive manufactured hybrid architected materials and investigation of their mechanical behavior, Mechanics of Materials, 176, 2023.
  • 23. Xiao, L., Xu, X., Feng, G., Li, S., Song, W., & Jiang, Z., Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures, International Journal of Mechanical Sciences, 219, 2022.
  • 24. Syrlybayev, D., Perveen, A., & Talamona, D., Experimental investigation of mechanical properties and energy absorption capabilities of hybrid lattice structures manufactured using fused filament fabrication, International Journal of Advanced Manufacturing Technology, 125 (5-6), 2833-2850, 2023.
  • 25. Li, L., Yang, F., Li, P., Wu, W., & Wang, L., A novel hybrid lattice design of nested cell topology with enhanced energy absorption capability, Aerospace Science and Technology, 128, 2022.
  • 26. Ma, X., Zhang, N., & Tian, X., A novel hybrid lattice structure for improving compression mechanical properties. Mechanics of Advanced Materials and Structures, 31 (23), 5805–5822, 2023.
  • 27. Wu, J., Zhang, Y., Yang, F., Jiang, F., Xu, X., Tan, Y., & Su, L., A hybrid architectural metamaterial combing plate lattice and hollow-truss lattice with advanced mechanical performances, Additive Manufacturing, 76, 2023.
  • 28. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering,143, 172-196, 2018.
  • 29. Seharing, A., Azman, A. H., & Abdullah, S., A review on integration of lightweight gradient lattice structures in additive manufacturing parts, Advances in Mechanical Engineering, 12 (6), 2020.
  • 30. Gülcan O., Simsek U., Özdemir M., Günaydın K., Tekoğlu E., The effect of build parameters on distortion, dimensional deviation and surface roughness of laser powder bed fusion built lattice structures, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (1), 101-112, 2024.
  • 31. Dave, H. K., Karumuri, R. T., Prajapati, A. R., & Rajpurohit, S. R., Specific energy absorption during compression testing of ABS and FPU parts fabricated using LCD-SLA based 3D printer, Rapid Prototyping Journal, 28 (8), 1530-1540, 2022.
  • 32. Gibson, I., Rosen, D., Stucker, B., & Khorasani, M., Additive Manufacturing Technologies, Springer, Third edition, 2021.
  • 33. Wu, Y., Fang, J., Wu, C., Li, C., Sun, G., & Li, Q., Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption, International Journal of Mechanical Sciences, 246, 2023.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları, Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Hüseyin Yaşar 0000-0002-3742-2042

Kadir Ayas 0000-0002-8538-5792

Ali Durmuş 0000-0003-2487-7344

Kadir Çavdar 0000-0001-9126-0315

Erken Görünüm Tarihi 3 Kasım 2025
Yayımlanma Tarihi 17 Kasım 2025
Gönderilme Tarihi 20 Ocak 2025
Kabul Tarihi 13 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 4

Kaynak Göster

APA Yaşar, H., Ayas, K., Durmuş, A., Çavdar, K. (2025). Reçineden eklemeli imalat yöntemiyle üretilen polimer hibrit kafes yapıların yarı statik basma koşullarında mekanik özellikleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(4), 2309-2322. https://doi.org/10.17341/gazimmfd.1623376
AMA Yaşar H, Ayas K, Durmuş A, Çavdar K. Reçineden eklemeli imalat yöntemiyle üretilen polimer hibrit kafes yapıların yarı statik basma koşullarında mekanik özellikleri. GUMMFD. Kasım 2025;40(4):2309-2322. doi:10.17341/gazimmfd.1623376
Chicago Yaşar, Hüseyin, Kadir Ayas, Ali Durmuş, ve Kadir Çavdar. “Reçineden eklemeli imalat yöntemiyle üretilen polimer hibrit kafes yapıların yarı statik basma koşullarında mekanik özellikleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 4 (Kasım 2025): 2309-22. https://doi.org/10.17341/gazimmfd.1623376.
EndNote Yaşar H, Ayas K, Durmuş A, Çavdar K (01 Kasım 2025) Reçineden eklemeli imalat yöntemiyle üretilen polimer hibrit kafes yapıların yarı statik basma koşullarında mekanik özellikleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 4 2309–2322.
IEEE H. Yaşar, K. Ayas, A. Durmuş, ve K. Çavdar, “Reçineden eklemeli imalat yöntemiyle üretilen polimer hibrit kafes yapıların yarı statik basma koşullarında mekanik özellikleri”, GUMMFD, c. 40, sy. 4, ss. 2309–2322, 2025, doi: 10.17341/gazimmfd.1623376.
ISNAD Yaşar, Hüseyin vd. “Reçineden eklemeli imalat yöntemiyle üretilen polimer hibrit kafes yapıların yarı statik basma koşullarında mekanik özellikleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/4 (Kasım2025), 2309-2322. https://doi.org/10.17341/gazimmfd.1623376.
JAMA Yaşar H, Ayas K, Durmuş A, Çavdar K. Reçineden eklemeli imalat yöntemiyle üretilen polimer hibrit kafes yapıların yarı statik basma koşullarında mekanik özellikleri. GUMMFD. 2025;40:2309–2322.
MLA Yaşar, Hüseyin vd. “Reçineden eklemeli imalat yöntemiyle üretilen polimer hibrit kafes yapıların yarı statik basma koşullarında mekanik özellikleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 4, 2025, ss. 2309-22, doi:10.17341/gazimmfd.1623376.
Vancouver Yaşar H, Ayas K, Durmuş A, Çavdar K. Reçineden eklemeli imalat yöntemiyle üretilen polimer hibrit kafes yapıların yarı statik basma koşullarında mekanik özellikleri. GUMMFD. 2025;40(4):2309-22.