Research Article
BibTex RIS Cite

Üç-Aralıklı Bir Süreksiz Sturm-Liouville Probleminin Zayıf Çözümleri

Year 2021, Volume: 10 Issue: 3, 165 - 173, 31.12.2021

Abstract

Bu çalışmanın amacı, geçiş koşulları (böyle koşullar literatürde arayüz koşulları, sıçrama koşulları, impulsif koşullar gibi isimlerle de adlandırılmaktadır) ve sınır koşulları altında parçalı sürekli potansiyele sahip üç ayrık aralıkta tanımlanan ikinci mertebeden diferansiyel denklemden oluşan üç aralıklı bir Sturm-Liouville probleminin bazı spektral özelliklerini araştırmaktır. İlk olarak klasik Sobolev uzaylarında üç aralıklı Sturm-Liouville problemimize özgü yeni uzaylar ve bu uzaylara özgü iç çarpımlar tanımlanmıştır. İkinci olarak, klasik bir özfonksiyonun genellemesi olan zayıf özfonksiyon olarak adlandırılan yeni bir kavram tanımladık. Üçüncü olarak, üç-aralıklı Sturm-Liouville probleminin bir operatör-polinom denklemine indirgenebileceğini göz önünde bulundurarak uygun Sobolev uzaylarında bazı kompakt operatörler tanımladık. Daha sonra operatör-demet teorisi yöntemleri kullanılarak zayıf özfonksiyonlar incelenmiştir. Son olarak, bu operatör-demetinin kendine-eşlenik olduğunu kanıtladık.

References

  • Akcay, O. (2021). Uniqueness Theorems for Inverse Problems of Discontinuous Sturm–Liouville Operator. Bull. Malays. Math. Sci. Soc., 44, 1927–1940.
  • Allahverdiev, B. P., Tuna, H. (2021). Conformable fractional Sturm–Liouville problems on time scales. Math Meth Appl Sci. 2021;1–16, DOI: 10.1002/mma.7925.
  • Aydemir, K., Mukhtarov, O. Sh. 2017. Class of Sturm-Liouville problems with eigen-parameter dependent transmission conditions, Numerical Functional Analysis and Optimization , 38(10), 1260-1275.
  • Atkinson, F. V. 1964. Discrete and Continuous Boundary Problems, Academic Press, New York.
  • Belinsky, B. P. ve Dauer, J. P. 1997. On a Regular Sturm-Liouville Problem on a Finite Interval with the Eigenvalue Parameter Appearing Linearly in the Boundary Conditions, Lecture Notes in Pure and Applied Mathematics, 191, Spectral Theory and Computational Methods of Sturm-Liouville Problems, 183–196.
  • Hinton, D. B. 1979. An Expansion Theorem for an Eigenvalue Problem with Eigenvalue Parameter in the Boundary Conditions, Quart J. Math. Oxford (2), 33-42.
  • Kandemir, M., Mukhtarov, O. Sh. 2017. Nonlocal Sturm-Liouville problems with integral terms in the boundary conditions, Electronic Journal of Differential Equations, Vol. 2017, No. 11, pp. 112.
  • Kostyuchenko, A. G. ve Shkalikov, A. A. 1983. Self-adjoint Quadratic Operator Pencils and Elliptic Problems, Functional Anal. Appl. 17, 109.
  • Levitan, B. M. ve Sargsyan, I. S. 1988. Sturm-Liouville and Dirac Operators, Nauka, Moscow.
  • Ladyzhenskaia, O. A. 1985. The Boundary Value Problems of Mathematical Physics, Springer – Verlag, New York.
  • Muhtarov, O. Ş. 1994. Discontinuous Boundary Value Problem with Spectral Parameter in Boundary Condition,Tr.J. of Mathematics,18,183-192.
  • Mukhtarov, O. Sh. ve Aydemir, K. 2021. Oscillation properties for non-classical Sturm-Liouville problems with additional transmission conditions. Mathematical Modelling and Analysis, 26(3), 432-443.
  • Mukhtarov, O. Sh. ve Aydemir, K. 2020. Discontinuous Sturm-Liouville Problems Involving An Abstract Linear Operator. Journal of Applied Analysis & Computation, 10(4), 1545-1560.
  • Mukhtarov, O. Sh., Olğar, H. ve Aydemir, K. 2015. Resolvent Operator and Spectrum of New Type Boundary Value Problems. Filomat 29, 1671–1680.
  • Mukhtarov, O. Sh., Olğar, H. ve Aydemir, K. Jabbarov I. 2018. Operator-Pencil Realization Of One Sturm-Liouville Problem With Transmission Conditions. Applied And Computational Mathematics, 17(2), 284-294.
  • Russakovskii, E. M. 1993. Sturm-Liouville problem with parameter in the boundary conditions, Trudy Seminara imeni I. G. Petrovskogo, 18.
  • Schneider, A. 1974. A Note on Eigenvalue Problems with Eigenvalue Parameter in the Boundary Conditions, Math. Z. 136, 163-167.
  • Şen, E., Stikonas, A. (2021) Asymptotic Distribution of Eigenvalues and Eigenfunctions of a Nonlocal Boundary Value Problem. Mathematical Modelling and Analysis, 26(2) , 253-266.
  • Titchmars, E. C. 1962. Eigenfunctions Expansion Associated with Second Order Differential Equations I, Second Edn. Oxford Univ. press, London.
  • Walter, J. 1973. Regular Eigenvalue Problems with Eigenvalue Parameter in the Boundary Conditions, Math. Z., 133, 301-312.
Year 2021, Volume: 10 Issue: 3, 165 - 173, 31.12.2021

Abstract

References

  • Akcay, O. (2021). Uniqueness Theorems for Inverse Problems of Discontinuous Sturm–Liouville Operator. Bull. Malays. Math. Sci. Soc., 44, 1927–1940.
  • Allahverdiev, B. P., Tuna, H. (2021). Conformable fractional Sturm–Liouville problems on time scales. Math Meth Appl Sci. 2021;1–16, DOI: 10.1002/mma.7925.
  • Aydemir, K., Mukhtarov, O. Sh. 2017. Class of Sturm-Liouville problems with eigen-parameter dependent transmission conditions, Numerical Functional Analysis and Optimization , 38(10), 1260-1275.
  • Atkinson, F. V. 1964. Discrete and Continuous Boundary Problems, Academic Press, New York.
  • Belinsky, B. P. ve Dauer, J. P. 1997. On a Regular Sturm-Liouville Problem on a Finite Interval with the Eigenvalue Parameter Appearing Linearly in the Boundary Conditions, Lecture Notes in Pure and Applied Mathematics, 191, Spectral Theory and Computational Methods of Sturm-Liouville Problems, 183–196.
  • Hinton, D. B. 1979. An Expansion Theorem for an Eigenvalue Problem with Eigenvalue Parameter in the Boundary Conditions, Quart J. Math. Oxford (2), 33-42.
  • Kandemir, M., Mukhtarov, O. Sh. 2017. Nonlocal Sturm-Liouville problems with integral terms in the boundary conditions, Electronic Journal of Differential Equations, Vol. 2017, No. 11, pp. 112.
  • Kostyuchenko, A. G. ve Shkalikov, A. A. 1983. Self-adjoint Quadratic Operator Pencils and Elliptic Problems, Functional Anal. Appl. 17, 109.
  • Levitan, B. M. ve Sargsyan, I. S. 1988. Sturm-Liouville and Dirac Operators, Nauka, Moscow.
  • Ladyzhenskaia, O. A. 1985. The Boundary Value Problems of Mathematical Physics, Springer – Verlag, New York.
  • Muhtarov, O. Ş. 1994. Discontinuous Boundary Value Problem with Spectral Parameter in Boundary Condition,Tr.J. of Mathematics,18,183-192.
  • Mukhtarov, O. Sh. ve Aydemir, K. 2021. Oscillation properties for non-classical Sturm-Liouville problems with additional transmission conditions. Mathematical Modelling and Analysis, 26(3), 432-443.
  • Mukhtarov, O. Sh. ve Aydemir, K. 2020. Discontinuous Sturm-Liouville Problems Involving An Abstract Linear Operator. Journal of Applied Analysis & Computation, 10(4), 1545-1560.
  • Mukhtarov, O. Sh., Olğar, H. ve Aydemir, K. 2015. Resolvent Operator and Spectrum of New Type Boundary Value Problems. Filomat 29, 1671–1680.
  • Mukhtarov, O. Sh., Olğar, H. ve Aydemir, K. Jabbarov I. 2018. Operator-Pencil Realization Of One Sturm-Liouville Problem With Transmission Conditions. Applied And Computational Mathematics, 17(2), 284-294.
  • Russakovskii, E. M. 1993. Sturm-Liouville problem with parameter in the boundary conditions, Trudy Seminara imeni I. G. Petrovskogo, 18.
  • Schneider, A. 1974. A Note on Eigenvalue Problems with Eigenvalue Parameter in the Boundary Conditions, Math. Z. 136, 163-167.
  • Şen, E., Stikonas, A. (2021) Asymptotic Distribution of Eigenvalues and Eigenfunctions of a Nonlocal Boundary Value Problem. Mathematical Modelling and Analysis, 26(2) , 253-266.
  • Titchmars, E. C. 1962. Eigenfunctions Expansion Associated with Second Order Differential Equations I, Second Edn. Oxford Univ. press, London.
  • Walter, J. 1973. Regular Eigenvalue Problems with Eigenvalue Parameter in the Boundary Conditions, Math. Z., 133, 301-312.
There are 20 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makaleleri
Authors

Hayati Olğar

Early Pub Date December 31, 2021
Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 10 Issue: 3

Cite

APA Olğar, H. (2021). Üç-Aralıklı Bir Süreksiz Sturm-Liouville Probleminin Zayıf Çözümleri. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 10(3), 165-173.
AMA Olğar H. Üç-Aralıklı Bir Süreksiz Sturm-Liouville Probleminin Zayıf Çözümleri. GBAD. December 2021;10(3):165-173.
Chicago Olğar, Hayati. “Üç-Aralıklı Bir Süreksiz Sturm-Liouville Probleminin Zayıf Çözümleri”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 10, no. 3 (December 2021): 165-73.
EndNote Olğar H (December 1, 2021) Üç-Aralıklı Bir Süreksiz Sturm-Liouville Probleminin Zayıf Çözümleri. Gaziosmanpaşa Bilimsel Araştırma Dergisi 10 3 165–173.
IEEE H. Olğar, “Üç-Aralıklı Bir Süreksiz Sturm-Liouville Probleminin Zayıf Çözümleri”, GBAD, vol. 10, no. 3, pp. 165–173, 2021.
ISNAD Olğar, Hayati. “Üç-Aralıklı Bir Süreksiz Sturm-Liouville Probleminin Zayıf Çözümleri”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 10/3 (December 2021), 165-173.
JAMA Olğar H. Üç-Aralıklı Bir Süreksiz Sturm-Liouville Probleminin Zayıf Çözümleri. GBAD. 2021;10:165–173.
MLA Olğar, Hayati. “Üç-Aralıklı Bir Süreksiz Sturm-Liouville Probleminin Zayıf Çözümleri”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 10, no. 3, 2021, pp. 165-73.
Vancouver Olğar H. Üç-Aralıklı Bir Süreksiz Sturm-Liouville Probleminin Zayıf Çözümleri. GBAD. 2021;10(3):165-73.