Research Article
BibTex RIS Cite

Eksenel Akılı Senkron Relüktans Motorun Termal Analizi

Year 2022, Volume: 11 Issue: 1, 118 - 127, 11.05.2022

Abstract

Elektrik motoru tasarım sürecinde manyetik tasarıma ek olarak doğru mekanik ve termal tasarımın da yapılması oldukça önemlidir. Bu çalışmanın amacı manyetik ve mekanik tasarımı Sonlu Elemanlar Yöntemi (SEY) ile optimize edilmiş ve deneysel olarak doğrulanmış Eksenel Akılı Senkron Relüktans Motorun (EA-SynRM) farklı yüklerde termal davranışın ortaya çıkarılması ve deneysel olarak doğrulanmasıdır. Bu kapsamda 2.2 kW, 1500 d/d EA-SynRM termal modeli oluşturulmuş ve 3D SEY analizi ile motorun termal davranışı ortaya konulmuştur. Elde edilen sonuçlar deneysel sonuçlarla karşılaştırıldığında yüksek oranda tutarlılık elde edilmiştir. Yenilikçi rotor yapısına sahip EA-SynRM’nin farklı uygulamalarda kullanılabilirliği manyetik, yapısal ve termal olarak hem SEY hem de deneysel olarak doğrulanmıştır.

Supporting Institution

Tokat Gaziosmanpaşa Üniversitesi

Project Number

2020/41

References

  • Adouni, A., Cardoso, A. J. M., 2019. Thermal analysis of synchronous reluctance machines–A review. Electric Power Components and Systems, 47(6-7), 471-485.
  • Bertotti, G., 1988. General properties of power losses in soft ferromagnetic materials. IEEE Transactions on Magnetics, 24, 621-630.
  • Boglietti, A., Cavagnino, A., Lazzari, M., Pastorelli, A., 2002. A simplified thermal model for variable speed self cooled industrial induction motor. In Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No. 02CH37344). 2,723-730.
  • Boglietti, A., Cavagnino, A., Pastorelli, M., Staton, D., Vagati, A., 2006. Thermal analysis of induction and synchronous reluctance motors. IEEE Transactions on Industry Applications, 42(3), 675-680.
  • Elhomdy, E., Liu, Z., Li, G., 2019. Thermal and mechanical analysis of a 72/48 switched reluctance motor for low-speed direct-drive mining applications. Applied Sciences, 9(13), 2722.
  • Fasquelle, A., 2007. Contribution to multi-physics modeling: electro-vibro-acoustic and aerothermal traction machines. Ph.D. dissertation, Doctoral school SPI 072 (Lille I, Lille III, Artois, ULCO, UVHC, EC Lille), France.
  • Fernández-Bernal, F., García-Cerrada, A., Faure, R., 1999. Model-based loss minimization for DC and AC vector controlled motors including core saturation. Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), 3, 1608-1615 vol.3.
  • Gercekcioglu, H. S., 2021. Eksenel Akılı Senkron Relüktans Motor Tasarımı, Prototip Üretimi ve Testleri. Doktora Tezi, Tokat Gaziosmanpaşa Üniversitesi, Lisansüstü Eğitim Enstitüsü, Tokat.
  • Gercekcioglu, H. S., Akar, M., 2021. Optimal rotor design of novel axial flux synchronous reluctance motor and validation. International Transactions on Electrical Energy Systems, 31(5), e12866.
  • Ghahfarokhi, P.S., Kallaste, A., Belahcen, A., Vaimann, T., Rassõlkin, A., 2018. Hybrid thermal model of a synchronous reluctance machine. Case Studies in Thermal Engineering, 12, 381-389.
  • Jokinen, T., Hrabovcova, V., Pyrhonen, J., 2013. Design of rotating electrical machines. John Wiley & Sons. ISBN 978-1-118-58157-5.
  • Kim, J.C., Lee, J., Jung, I., Hyun, D., 1998. Vector control scheme of synchronous reluctance motor considering iron core loss. IEEE Transactions on Magnetics, 34, 3522-3527.
  • Lindström, J., 1999. Thermal Model of a Permanent-Magnet Motor for a Hybrid Electric Vehicle. Chalmers University of Technology, Internal report, Goteborg.
  • Mahmoudi, A., Kahourzade, S., Roshandel, E., Soong, W. L., 2020. Axial-flux synchronous reluctance motors: Introduction of a new machine. In 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES),1-6.
  • Mellor, P. H., Roberts, D., Turner, D. R., 1991. Lumped parameter thermal model for electrical machines of TEFC design. In IEE Proceedings B (Electric Power Applications). IET Digital Library. 138(5), 205-218.
  • Rehman, Z., Seong, K., 2018. Three-D numerical thermal analysis of electric motor with cooling jacket. Energies, 11(1), 92.
  • Wu, H., Depernet, D., Lanfranchi, V., 2017. Comparison of Torque Ripple Reductions and Copper Losses of Three Synchronous Reluctance Machines. 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), 1-6.
  • Xu, L., Yao, J., 1991. A compensated vector control scheme of a synchronous reluctance motor including saturation and iron losses. Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting, 1, 298-304.
  • Yamazaki, K., Fukushima, N., 2010. Iron-Loss Modeling for Rotating Machines: Comparison Between Bertotti's Three-Term Expression and 3-D Eddy-Current Analysis. IEEE Transactions on Magnetics, 46, 3121-3124
Year 2022, Volume: 11 Issue: 1, 118 - 127, 11.05.2022

Abstract

Project Number

2020/41

References

  • Adouni, A., Cardoso, A. J. M., 2019. Thermal analysis of synchronous reluctance machines–A review. Electric Power Components and Systems, 47(6-7), 471-485.
  • Bertotti, G., 1988. General properties of power losses in soft ferromagnetic materials. IEEE Transactions on Magnetics, 24, 621-630.
  • Boglietti, A., Cavagnino, A., Lazzari, M., Pastorelli, A., 2002. A simplified thermal model for variable speed self cooled industrial induction motor. In Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No. 02CH37344). 2,723-730.
  • Boglietti, A., Cavagnino, A., Pastorelli, M., Staton, D., Vagati, A., 2006. Thermal analysis of induction and synchronous reluctance motors. IEEE Transactions on Industry Applications, 42(3), 675-680.
  • Elhomdy, E., Liu, Z., Li, G., 2019. Thermal and mechanical analysis of a 72/48 switched reluctance motor for low-speed direct-drive mining applications. Applied Sciences, 9(13), 2722.
  • Fasquelle, A., 2007. Contribution to multi-physics modeling: electro-vibro-acoustic and aerothermal traction machines. Ph.D. dissertation, Doctoral school SPI 072 (Lille I, Lille III, Artois, ULCO, UVHC, EC Lille), France.
  • Fernández-Bernal, F., García-Cerrada, A., Faure, R., 1999. Model-based loss minimization for DC and AC vector controlled motors including core saturation. Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), 3, 1608-1615 vol.3.
  • Gercekcioglu, H. S., 2021. Eksenel Akılı Senkron Relüktans Motor Tasarımı, Prototip Üretimi ve Testleri. Doktora Tezi, Tokat Gaziosmanpaşa Üniversitesi, Lisansüstü Eğitim Enstitüsü, Tokat.
  • Gercekcioglu, H. S., Akar, M., 2021. Optimal rotor design of novel axial flux synchronous reluctance motor and validation. International Transactions on Electrical Energy Systems, 31(5), e12866.
  • Ghahfarokhi, P.S., Kallaste, A., Belahcen, A., Vaimann, T., Rassõlkin, A., 2018. Hybrid thermal model of a synchronous reluctance machine. Case Studies in Thermal Engineering, 12, 381-389.
  • Jokinen, T., Hrabovcova, V., Pyrhonen, J., 2013. Design of rotating electrical machines. John Wiley & Sons. ISBN 978-1-118-58157-5.
  • Kim, J.C., Lee, J., Jung, I., Hyun, D., 1998. Vector control scheme of synchronous reluctance motor considering iron core loss. IEEE Transactions on Magnetics, 34, 3522-3527.
  • Lindström, J., 1999. Thermal Model of a Permanent-Magnet Motor for a Hybrid Electric Vehicle. Chalmers University of Technology, Internal report, Goteborg.
  • Mahmoudi, A., Kahourzade, S., Roshandel, E., Soong, W. L., 2020. Axial-flux synchronous reluctance motors: Introduction of a new machine. In 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES),1-6.
  • Mellor, P. H., Roberts, D., Turner, D. R., 1991. Lumped parameter thermal model for electrical machines of TEFC design. In IEE Proceedings B (Electric Power Applications). IET Digital Library. 138(5), 205-218.
  • Rehman, Z., Seong, K., 2018. Three-D numerical thermal analysis of electric motor with cooling jacket. Energies, 11(1), 92.
  • Wu, H., Depernet, D., Lanfranchi, V., 2017. Comparison of Torque Ripple Reductions and Copper Losses of Three Synchronous Reluctance Machines. 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), 1-6.
  • Xu, L., Yao, J., 1991. A compensated vector control scheme of a synchronous reluctance motor including saturation and iron losses. Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting, 1, 298-304.
  • Yamazaki, K., Fukushima, N., 2010. Iron-Loss Modeling for Rotating Machines: Comparison Between Bertotti's Three-Term Expression and 3-D Eddy-Current Analysis. IEEE Transactions on Magnetics, 46, 3121-3124
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makaleleri
Authors

Mehmet Akar

Harun Serhat Gerçekcioğlu 0000-0003-0058-7529

Project Number 2020/41
Early Pub Date April 30, 2022
Publication Date May 11, 2022
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

APA Akar, M., & Gerçekcioğlu, H. S. (2022). Eksenel Akılı Senkron Relüktans Motorun Termal Analizi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 11(1), 118-127.
AMA Akar M, Gerçekcioğlu HS. Eksenel Akılı Senkron Relüktans Motorun Termal Analizi. GBAD. May 2022;11(1):118-127.
Chicago Akar, Mehmet, and Harun Serhat Gerçekcioğlu. “Eksenel Akılı Senkron Relüktans Motorun Termal Analizi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 11, no. 1 (May 2022): 118-27.
EndNote Akar M, Gerçekcioğlu HS (May 1, 2022) Eksenel Akılı Senkron Relüktans Motorun Termal Analizi. Gaziosmanpaşa Bilimsel Araştırma Dergisi 11 1 118–127.
IEEE M. Akar and H. S. Gerçekcioğlu, “Eksenel Akılı Senkron Relüktans Motorun Termal Analizi”, GBAD, vol. 11, no. 1, pp. 118–127, 2022.
ISNAD Akar, Mehmet - Gerçekcioğlu, Harun Serhat. “Eksenel Akılı Senkron Relüktans Motorun Termal Analizi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 11/1 (May 2022), 118-127.
JAMA Akar M, Gerçekcioğlu HS. Eksenel Akılı Senkron Relüktans Motorun Termal Analizi. GBAD. 2022;11:118–127.
MLA Akar, Mehmet and Harun Serhat Gerçekcioğlu. “Eksenel Akılı Senkron Relüktans Motorun Termal Analizi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 11, no. 1, 2022, pp. 118-27.
Vancouver Akar M, Gerçekcioğlu HS. Eksenel Akılı Senkron Relüktans Motorun Termal Analizi. GBAD. 2022;11(1):118-27.