BibTex RIS Cite

A MULTI-DIMENSIONAL APPROACH IN MATHEMATICS TEACHER EDUCATION PROGRAMS: "COMPUTATIONS IN FREE AND FINITELY GENERATED LIE ALGEBRAS" EXAMPLE

Year 2014, , 91 - 103, 21.11.2014
https://doi.org/10.17152/gefd.98884

Abstract

Let be a finitely generated Lie algebra and be an arbitrary subalgebra of . The maximal linearly independent set of the algebra modulo the subalgebra is called the modulo basis of . In this article we apply computer techniques to compute the modulo basis of using an algorithm given by Aydın in her PhD thesis.

References

  • Andary, P. (1997). Finely homogeneous computations in free Lie algebras. Discrete Math. Theor. Comput. Sci, 1(1), 101–114.
  • Aydın, E. (1997). Subalgbras of Lie Algebras of Finite Codimension, PhD Thesis, Çukurova University.
  • Berry, J. (1997). Improving discrete mathematics and algorithms curricula with LINK. ITICSE’ 97 2nd Conference on Integrating Technology into Computer Science Education, 14-20. ACM: New York.
  • Bourbaki N. (1975). Lie groups and lie algebras, Part II., Addison-Wesley.
  • Cohen, A. M., & de Graaf, W. A. (1996). Lie algebraic computation. Comput. Phys. Comm. 97(1-2), 53–62.
  • Gerdt, V. P., & Kornyak, V. V. (1996). Construction of finitely presented Lie algebras and superalgebras. J. Symbolic Comput, 21(3), 337–349. de Graaf, W. A. (2000). Lie Algebras: Theory and Algorithms, North Holland.
  • Goldhaber, D., & Anthony, E. (2003). Indicators of Teacher Quality. Retrieved from ERIC database. (ED478408).
  • Hill C., H., Rowon, B., & Ball D., L. (2005). The effects of teachers mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371-406.
  • Kryazhovskikh, G. V. (1983). Generating and defining relations of subalgebras of Lie algebras. Sibirsk. Mat. Zh. 24(6), 80–86.
  • Reutenauer, C. (1983). Free lie algebras, Oxford University Press.
  • Shirshov, A. I. (1953). Subalgebras of free Lie algebras. Mat. Sbornik N. S., 33(75), 441–452.
  • Shirshov, A. I. (1958). On free lie rings. Mat. Sbornik N. S., 45(87), 113–122.
  • Shulman, L., S. (1986). Those who understand knowledge growth in teaching. Educational Researcher, 15(2), 4-14.

MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: "LIE CEBİRİ" ÖRNEĞİ

Year 2014, , 91 - 103, 21.11.2014
https://doi.org/10.17152/gefd.98884

Abstract

References

  • Andary, P. (1997). Finely homogeneous computations in free Lie algebras. Discrete Math. Theor. Comput. Sci, 1(1), 101–114.
  • Aydın, E. (1997). Subalgbras of Lie Algebras of Finite Codimension, PhD Thesis, Çukurova University.
  • Berry, J. (1997). Improving discrete mathematics and algorithms curricula with LINK. ITICSE’ 97 2nd Conference on Integrating Technology into Computer Science Education, 14-20. ACM: New York.
  • Bourbaki N. (1975). Lie groups and lie algebras, Part II., Addison-Wesley.
  • Cohen, A. M., & de Graaf, W. A. (1996). Lie algebraic computation. Comput. Phys. Comm. 97(1-2), 53–62.
  • Gerdt, V. P., & Kornyak, V. V. (1996). Construction of finitely presented Lie algebras and superalgebras. J. Symbolic Comput, 21(3), 337–349. de Graaf, W. A. (2000). Lie Algebras: Theory and Algorithms, North Holland.
  • Goldhaber, D., & Anthony, E. (2003). Indicators of Teacher Quality. Retrieved from ERIC database. (ED478408).
  • Hill C., H., Rowon, B., & Ball D., L. (2005). The effects of teachers mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371-406.
  • Kryazhovskikh, G. V. (1983). Generating and defining relations of subalgebras of Lie algebras. Sibirsk. Mat. Zh. 24(6), 80–86.
  • Reutenauer, C. (1983). Free lie algebras, Oxford University Press.
  • Shirshov, A. I. (1953). Subalgebras of free Lie algebras. Mat. Sbornik N. S., 33(75), 441–452.
  • Shirshov, A. I. (1958). On free lie rings. Mat. Sbornik N. S., 45(87), 113–122.
  • Shulman, L., S. (1986). Those who understand knowledge growth in teaching. Educational Researcher, 15(2), 4-14.
There are 13 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ebubekir Topak This is me

Ela Aydın This is me

Orhan Sönmez This is me

Ahmet Temizyürek This is me

Publication Date November 21, 2014
Published in Issue Year 2014

Cite

APA Topak, E., Aydın, E., Sönmez, O., Temizyürek, A. (2014). MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: "LIE CEBİRİ" ÖRNEĞİ. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 34(1), 91-103. https://doi.org/10.17152/gefd.98884
AMA Topak E, Aydın E, Sönmez O, Temizyürek A. MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: "LIE CEBİRİ" ÖRNEĞİ. GEFAD. March 2014;34(1):91-103. doi:10.17152/gefd.98884
Chicago Topak, Ebubekir, Ela Aydın, Orhan Sönmez, and Ahmet Temizyürek. “MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: ‘LIE CEBİRİ’ ÖRNEĞİ”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 34, no. 1 (March 2014): 91-103. https://doi.org/10.17152/gefd.98884.
EndNote Topak E, Aydın E, Sönmez O, Temizyürek A (March 1, 2014) MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: "LIE CEBİRİ" ÖRNEĞİ. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 34 1 91–103.
IEEE E. Topak, E. Aydın, O. Sönmez, and A. Temizyürek, “MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: ‘LIE CEBİRİ’ ÖRNEĞİ”, GEFAD, vol. 34, no. 1, pp. 91–103, 2014, doi: 10.17152/gefd.98884.
ISNAD Topak, Ebubekir et al. “MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: ‘LIE CEBİRİ’ ÖRNEĞİ”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 34/1 (March 2014), 91-103. https://doi.org/10.17152/gefd.98884.
JAMA Topak E, Aydın E, Sönmez O, Temizyürek A. MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: "LIE CEBİRİ" ÖRNEĞİ. GEFAD. 2014;34:91–103.
MLA Topak, Ebubekir et al. “MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: ‘LIE CEBİRİ’ ÖRNEĞİ”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, vol. 34, no. 1, 2014, pp. 91-103, doi:10.17152/gefd.98884.
Vancouver Topak E, Aydın E, Sönmez O, Temizyürek A. MATEMATİK EĞİTİMİ PROGRAMLARINA ÇOK BOYUTLU BİR YAKLAŞIM: "LIE CEBİRİ" ÖRNEĞİ. GEFAD. 2014;34(1):91-103.