Research Article
BibTex RIS Cite

The Effects of Activities Conducted Through 3D Design Programs on The Development of Pre-Service Primary Teachers’ Spatial Skills

Year 2022, , 1681 - 1708, 29.08.2022
https://doi.org/10.17152/gefad.967350

Abstract

Spatial skills are versatile and complex skills that we encounter in many areas of daily life. In this study, the effects of activities conducted through three-dimensional design programs on the development of pre-service primary teachers' spatial skills were investigated. The quantitative part of the research was carried out using one group pretest – posttest experimental design. 23 pre-service primary teachers participated in the study. Data collection tools are spatial visualization test and semi-structured interview form. In the applications, three-dimensional designs were created using unit cubes on the three dimensional design programs, rotated into different perspectives and then drawn on isometric papers by pre-service teachers. At the end of the 4-week practice, the spatial visualization test was reapplied and interviews were conducted with pre-service teachers about the activities. The data analysis results revealed that there was a significant increase in the mental rotation skills of pre service teachers but the activities could not provide a significant increase in their spatial visualization skills. Besides, it was found that pre-service teachers' opinions on practices were gathered under three themes: contributions to personal development, contributions to mathematics education, and the features of the programs.
The results were discussed in light of the studies in the field.

References

  • Atasoy, B., Yüksel, A. O., & Özdemir, S. (2019). 3B Tasarım uygulamalarının uzamsal beceriye etkisi: Hackidhon örneği. Gazi University Journal of Gazi Educational Faculty (GUJGEF), 39(1).
  • Atit, K., Power, J. R., Veurink, N., Uttal, D. H., Sorby, S., Panther, G., ... & Carr, M. (2020). Examining the role of spatial skills and mathematics motivation on middle school mathematics achievement. International Journal of STEM Education, 7(1), 1-13. https://doi.org/10.1186/s40594-020-00234-3
  • Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in pre service elementary teachers. Journal for Research in Mathematics Education, 13(5), 332-340.
  • Benzer, A. I., & Yıldız, B. (2019). The effect of computer-aided 3D modeling activities on pre-service teachers’ spatial abilities and attitudes towards 3d modeling. Journal of Baltic Science Education, 18(3), 335.
  • Burghardt, M. D., Hacker, M., Hecht, D., Lauckhardt, J., & Russo, M. (2010). A study of mathematics infusion in middle school technology education classes. Journal of Technology Education, 22, 58–74.
  • Burnet, S. A. & Lane, D. M., 1980. Effects of academic instruction on spatial visualization. Intelligence, 4(3), 233-242.
  • Büyüköztürk, Ş. (2012). Sosyal bilimler için veri analizi el kitabı, istatistik, araştırma deseni, SPSS uygulamaları ve yorum (16. baskı). Ankara: Pegem Akademi.
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş. & Demirel, F. (2008). Bilimsel araştırma yöntemleri. Ankara: Pegem A Yayıncılık.
  • Can, A. (2016). SPSS ile bilimsel araştırma sürecinde nicel veri analizi (4. Baskı). Pegem Akademi.
  • Casey, B. M., Lombardi, C. M., Pollock, A., Fineman, B., & Pezaris, E. (2017). Girls’ spatial skills and arithmetic strategies in first grade as predictors of fifth-grade analytical math reasoning. Journal of Cognition and Development, 18(5), 530–555. https://doi.org/10.1080/15248372.2017.1363044
  • Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697–705. https://doi. org/10.1037/0012-1649.31.4.697.
  • Casey, B. M., Pezaris, E., Fineman, B., Pollock, A., Demers, L., & Dearing, E. (2015). A longitudinal analysis of early spatial skills compared to arithmetic and verbal skills as predictors of fifth-grade girls’ math reasoning. Learning and Individual Differences, 40, 90–100. doi:10.1016/j.lindif.2015.03.028
  • Chan, K. K., & Leung, S. W. (2014). Dynamic geometry software improves mathematical achievement: Systematic review and meta-analysis. Journal of Educational Computing Research, 51(3), 311-325.
  • Chou, P. N., & Wu, C. Y. (2014). Integrating 3D visualization tools into teaching surface area in elementary school classrooms: An example of Google Sketchup. Taiwan Journal of Mathematics Education, 1(1), 1-18.
  • Contero, M., Naya, F., Compnay, P., Saorin, J. K., & Conesa, J. (2005). Improving visualization skills in engineering education. Computer Graphics in Education, 25(5), 24-31.
  • Clements, D. H. (1998).Geometric and spatial thinking in young children. National Science Foundation.
  • Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches (second edition). Sage publications.
  • Creswell, J. W., Hanson, W. E., Clark Plano, V. L., & Morales, A. (2007). Qualitative research designs: Selection and implementation. The counseling psychologist, 35(2), 236-264. https://doi.org/10.1177/0011000006287390
  • Çetin, S. (2019). Artırılmış gerçeklik uygulamalarının teknik resim dersinde ortaöğretim öğrencilerinin akademik başarıları, tutumları ve uzamsal görselleştirme becerilerine etkisi (Yüksek lisans tezi). Bursa Uludağ Üniversitesi.
  • Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32, 25–32. https://doi.org/10.1016/S0160- 2896(03)00061-8.
  • Demirkaya, C., & Masal, M. (2017). Geometrik-mekanik oyunlar temelli etkinliklerin ortaokul öğrencilerinin uzamsal düşünebilme becerilerine etkisi. Sakarya University Journal of Education, 7(3), 600-610.
  • Dere, H. E., & Kalelioglu, F. (2020). The effects of using web-based 3d design environment on spatial visualisation and mental rotation abilities of secondary school students. Informatics in Education, 19(3), 399- 424. https://doi.org/10.15388/infedu.2020.18
  • Dilling, F., & Vogler, A. (2021). Fostering spatial ability through computer-aided design: a case study. Digital Experiences in Mathematics Education, 7,323–336. https://doi.org/10.1007/s40751-021-00084-w
  • Dursun, Ö. (2010). The relationships among the preservice teachers' spatial visualization ability, geometry self-efficacy, and spatial anxiety [İlköğretim öğretmen adaylarının uzamsal yetenekleri, geometriye yönelik özyeterlik algıları ve uzamsal kaygıları arasındaki ilişki] (Yüksek lisans tezi). Ortadoğu Teknik Üniversitesi.
  • Geer, E. A., Quinn, J. M., & Ganley, C. M. (2019). Relations between spatial skills and math performance in elementary school children: A longitudinal investigation. Developmental Psychology, 55(3), 637–652.
  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2013). Teachers' spatial anxiety relates to 1st‐and 2nd‐graders' spatial learning. Mind, Brain, and Education, 7(3), 196-199.
  • Hannafin, R. D., Truxaw, M. P., Vermillion, J. R., & Liu, Y. (2008). Effects of spatial ability and instructional program on geometry achievement. The Journal of Educational Research, 101(3), 148-156.
  • Karasar, N. (1998). Bilimsel Araştırma Yöntemi. Ankara: Nobel Yayıncılık.
  • Lauer, J. E., Esposito, A. G., & Bauer, P. J. (2018). Domain-specific anxiety relates to children’s math and spatial performance. Developmental psychology, 54(11), 2126.
  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of gender differences in spatial abilities: A meta-analysis. Child Development, 56, 1479-1498.
  • Lohman, D. F. (1979). Spatial ability: Individual differences in speed and level (technical report No:9). Aptitude Research Project, School of Education, Stanford University.
  • Lohman, D. F. (1993). Spatial ability and G. In First Spearman Seminar, University of Plymouth, Plymouth. United Kingdom.
  • Lombardi, C. M., Casey, B. M., Pezaris, E., Shadmehr, M., & Jong, M. (2019). Longitudinal analysis of associations between 3-D mental rotation and mathematics reasoning skills during middle school: Across and within genders. Journal of Cognition and Development, 20(4), 487–509.
  • Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22, 395–495.
  • McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal and neurological influences. Psychological Bulletin, 86, 889-918.
  • Milli Eğitim Bakanlığı [MEB] (2018). Matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara.
  • Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. Advances in child development and behavior, 42, 197-243.
  • Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C. J., Hambrick, D. Z., & Konstantopoulos, S. (2017). The latent structure of spatial skills and mathematics: A replication of the two-factor model. Journal of Cognition and Development, 18(4), 465–492.
  • Nurjanah, Latif, B., Yuliardi, R., & Tamur, M. (2020). Computer-assisted learning using the Cabri 3D for improving spatial ability and self-regulated learning. Heliyon, 6(11), 1-7.
  • Ondes, R. N. (2021). Research trends in dynamic geometry software: A content analysis from 2005 to 2021. World Journal on Educational Technology: Current Issues. 13(2), 236-260. https://doi.org/10.18844/wjet.v13i2.5695
  • Özcan, K. V., Akbay, M., & Karakuş, T. (2016). Üniversite öğrencilerinin oyun oynama alışkanlıklarının uzamsal becerilerine etkisi. Kastamonu Eğitim Dergisi, 24(1), 37-52.
  • Özdamar, K. (2017). Ölçek ve test geliştirme yapısal eşitlik modellemesi IBM SPSS, IBM SPSS AMOS ve MINTAB uygulamalı. Eskişehir: Nisan Kitabevi.
  • Panorkou, N. (2021) Exploring students’ dynamic measurement reasoning about right prisms and cylinders. Cognition and Instruction, 39(4), 477-511. Doi: 10.1080/07370008.2021.1958218
  • Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2012). Spatial anxiety relates to spatial abilities as a function of working memory in children. The Quarterly Journal of Experimental Psychology, 65(3), 474-487.
  • Robichaux, R. L. R. (2000). The spatial visualization of undergraduates majoring in particular fields of study and the relationship of this ability to individual background characteristics (Unpublished doctoral dissertation). University of Auburn, Alabama.
  • Sorby, S. A. (2007). Developing 3D spatial skills for engineering students. Australasian Journal of Engineering Education, 13(1), 1-11.
  • Sorby, S. A. (2009). Developing 3-D spatial visualization skills. Engineering Design Graphics Journal, 63(2).
  • Sung, Y. T., Shih, P. C., & Chang, K. E. (2015). The effects of 3D-representation instruction on composite-solid surface-area learning for elementary school students. Instructional Science, 43(1), 115-145.
  • Şimşek, E., & Yücekaya, G. (2014). Dinamik geometri yazılımı ile öğretimin ilköğretim 6. sınıf öğrencilerinin uzamsal yeteneklerine etkisi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 15(1), 65-80.
  • Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21, 216–229.
  • Tomic, M. K., Aberšek, B., & Pesek, I. (2019). GeoGebra as a spatial skills training tool among science, technology engineering and mathematics students. Computer Applications in Engineering Education, 27(6), 1506-1517.
  • Topuz, F., & Birgin, O. (2020). Developing teaching materials supported with GeoGebra for circle and disc subject at seventh grade. Ilkogretim Online, 19(3).
  • Tu, J. C., & Chiang, Y. H. (2016). The Influence of Design Strategy of Peer Learning on 3-D Software Learning. Eurasia Journal of Mathematics, Science & Technology Education, 12(5).
  • Turğut, M. (2007). İlköğretim II.kademe öğrencilerinin uzamsal yeteneklerinin İncelenmesi (Yüksek Lisans Tezi). Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü.
  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/https:// doi.org/10.1037/a0028446
  • Verdine, B. N., Golinkoff, R. M., Hirsch-Pasek, K., & Newcombe, N. S. (2017). Links between spatial and mathematical skills across the preschool years. Monographs of the Society for Research in Child Development, 82(1), 1–150
  • Voyer, D., Voyer, S. D., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250−270.
  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.
  • Wang, S., Hu, B. Y., & Zhang, X. (2021). Kindergarteners’ spatial skills and their reading and math achievement in second grade. Early Childhood Research Quarterly, 57, 156-166.
  • Xie, F., Zhang, L., Chen, X., & Xin, Z. (2020). Is spatial ability related to mathematical ability: A meta-analysis. Educ Psychol Rev, 32, 113–155. https://doi.org/10.1007/s10648-019-09496-y
  • Yang, W., Liu, H., Chen, N., Xu, P., & Lin, X. (2020). Is early spatial skills training effective? A Meta-analysis. Frontiers in Psychology, 11, 1-15. https://doi.org/10.3389/fpsyg.2020.01938
  • Yıldız, B., & Tüzün, H. (2011). Üç-boyutlu sanal ortam ve somut materyal kullanımının uzamsal yeteneğe etkileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41). 41(41).
  • Yuliardi, R., Mahpudin, A., & Rosyid, A. (2021). Implementation of mathematics learning-assisted Cabri 3D software to improve spatial ability of high school students on three dimensional geometry. Journal of Physics: Conference Series, 1764(1), 1-7. doi:10.1088/1742-6596/1764/1/012042

Üç Boyutlu Tasarım Programlarıyla Gerçekleştirilen Etkinliklerin Sınıf Öğretmeni Adaylarının Uzamsal Becerilerinin Gelişimine Etkileri

Year 2022, , 1681 - 1708, 29.08.2022
https://doi.org/10.17152/gefad.967350

Abstract

Uzamsal beceriler gündelik hayatın birçok alanında karşımıza çıkan, çok yönlü ve karmaşık becerilerdir. Bu araştırmada üç boyutlu tasarım programlarıyla yapılan uygulamaların sınıf öğretmeni adaylarının uzamsal becerilerinin gelişimi üzerindeki etkisi incelenmiştir. Araştırmanın nicel bölümünde tek grup ön test – son test deneysel model kullanılmıştır. Çalışma grubu Sınıf Öğretmenliği Bölümü 3. sınıfta öğrenim gören 23 sınıf öğretmeni adayından oluşmaktadır. Veriler uzamsal görselleştirme testi ve yarı yapılandırılmış görüşme formu ile toplanmıştır. Araştırma kapsamında üç boyutlu tasarım programları ile birim küplerle modeller oluşturma ve döndürme etkinlikleri yapılmış, daha sonra bilgisayarda tasarlanan modeller izometrik kâğıtlara çizilmiştir. 4 hafta süren uygulamalar sonunda uzamsal görselleştirme testi tekrar uygulanmış, ardından öğretmen adaylarının etkinliklere ilişkin görüşleri alınmıştır. Veri analizi sonuçları, üç boyutlu tasarım programlarıyla yapılan etkinliklerin öğretmen adaylarının zihinde döndürme becerilerini anlamlı olarak geliştirdiğini ancak uzamsal görselleştirme
becerilerinde anlamlı bir artış sağlamadığını göstermiştir. Nitel veriler ise öğretmen adaylarının uygulamalara ilişkin görüşlerinin; kişisel gelişime katkıları, matematik eğitimine katkıları ve programların özellikleri olmak üzere üç temada toplandığını ortaya koymuştur. Sonuçlar ilgili çalışmalar ışığında tartışılmıştır.

References

  • Atasoy, B., Yüksel, A. O., & Özdemir, S. (2019). 3B Tasarım uygulamalarının uzamsal beceriye etkisi: Hackidhon örneği. Gazi University Journal of Gazi Educational Faculty (GUJGEF), 39(1).
  • Atit, K., Power, J. R., Veurink, N., Uttal, D. H., Sorby, S., Panther, G., ... & Carr, M. (2020). Examining the role of spatial skills and mathematics motivation on middle school mathematics achievement. International Journal of STEM Education, 7(1), 1-13. https://doi.org/10.1186/s40594-020-00234-3
  • Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in pre service elementary teachers. Journal for Research in Mathematics Education, 13(5), 332-340.
  • Benzer, A. I., & Yıldız, B. (2019). The effect of computer-aided 3D modeling activities on pre-service teachers’ spatial abilities and attitudes towards 3d modeling. Journal of Baltic Science Education, 18(3), 335.
  • Burghardt, M. D., Hacker, M., Hecht, D., Lauckhardt, J., & Russo, M. (2010). A study of mathematics infusion in middle school technology education classes. Journal of Technology Education, 22, 58–74.
  • Burnet, S. A. & Lane, D. M., 1980. Effects of academic instruction on spatial visualization. Intelligence, 4(3), 233-242.
  • Büyüköztürk, Ş. (2012). Sosyal bilimler için veri analizi el kitabı, istatistik, araştırma deseni, SPSS uygulamaları ve yorum (16. baskı). Ankara: Pegem Akademi.
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş. & Demirel, F. (2008). Bilimsel araştırma yöntemleri. Ankara: Pegem A Yayıncılık.
  • Can, A. (2016). SPSS ile bilimsel araştırma sürecinde nicel veri analizi (4. Baskı). Pegem Akademi.
  • Casey, B. M., Lombardi, C. M., Pollock, A., Fineman, B., & Pezaris, E. (2017). Girls’ spatial skills and arithmetic strategies in first grade as predictors of fifth-grade analytical math reasoning. Journal of Cognition and Development, 18(5), 530–555. https://doi.org/10.1080/15248372.2017.1363044
  • Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697–705. https://doi. org/10.1037/0012-1649.31.4.697.
  • Casey, B. M., Pezaris, E., Fineman, B., Pollock, A., Demers, L., & Dearing, E. (2015). A longitudinal analysis of early spatial skills compared to arithmetic and verbal skills as predictors of fifth-grade girls’ math reasoning. Learning and Individual Differences, 40, 90–100. doi:10.1016/j.lindif.2015.03.028
  • Chan, K. K., & Leung, S. W. (2014). Dynamic geometry software improves mathematical achievement: Systematic review and meta-analysis. Journal of Educational Computing Research, 51(3), 311-325.
  • Chou, P. N., & Wu, C. Y. (2014). Integrating 3D visualization tools into teaching surface area in elementary school classrooms: An example of Google Sketchup. Taiwan Journal of Mathematics Education, 1(1), 1-18.
  • Contero, M., Naya, F., Compnay, P., Saorin, J. K., & Conesa, J. (2005). Improving visualization skills in engineering education. Computer Graphics in Education, 25(5), 24-31.
  • Clements, D. H. (1998).Geometric and spatial thinking in young children. National Science Foundation.
  • Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches (second edition). Sage publications.
  • Creswell, J. W., Hanson, W. E., Clark Plano, V. L., & Morales, A. (2007). Qualitative research designs: Selection and implementation. The counseling psychologist, 35(2), 236-264. https://doi.org/10.1177/0011000006287390
  • Çetin, S. (2019). Artırılmış gerçeklik uygulamalarının teknik resim dersinde ortaöğretim öğrencilerinin akademik başarıları, tutumları ve uzamsal görselleştirme becerilerine etkisi (Yüksek lisans tezi). Bursa Uludağ Üniversitesi.
  • Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32, 25–32. https://doi.org/10.1016/S0160- 2896(03)00061-8.
  • Demirkaya, C., & Masal, M. (2017). Geometrik-mekanik oyunlar temelli etkinliklerin ortaokul öğrencilerinin uzamsal düşünebilme becerilerine etkisi. Sakarya University Journal of Education, 7(3), 600-610.
  • Dere, H. E., & Kalelioglu, F. (2020). The effects of using web-based 3d design environment on spatial visualisation and mental rotation abilities of secondary school students. Informatics in Education, 19(3), 399- 424. https://doi.org/10.15388/infedu.2020.18
  • Dilling, F., & Vogler, A. (2021). Fostering spatial ability through computer-aided design: a case study. Digital Experiences in Mathematics Education, 7,323–336. https://doi.org/10.1007/s40751-021-00084-w
  • Dursun, Ö. (2010). The relationships among the preservice teachers' spatial visualization ability, geometry self-efficacy, and spatial anxiety [İlköğretim öğretmen adaylarının uzamsal yetenekleri, geometriye yönelik özyeterlik algıları ve uzamsal kaygıları arasındaki ilişki] (Yüksek lisans tezi). Ortadoğu Teknik Üniversitesi.
  • Geer, E. A., Quinn, J. M., & Ganley, C. M. (2019). Relations between spatial skills and math performance in elementary school children: A longitudinal investigation. Developmental Psychology, 55(3), 637–652.
  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2013). Teachers' spatial anxiety relates to 1st‐and 2nd‐graders' spatial learning. Mind, Brain, and Education, 7(3), 196-199.
  • Hannafin, R. D., Truxaw, M. P., Vermillion, J. R., & Liu, Y. (2008). Effects of spatial ability and instructional program on geometry achievement. The Journal of Educational Research, 101(3), 148-156.
  • Karasar, N. (1998). Bilimsel Araştırma Yöntemi. Ankara: Nobel Yayıncılık.
  • Lauer, J. E., Esposito, A. G., & Bauer, P. J. (2018). Domain-specific anxiety relates to children’s math and spatial performance. Developmental psychology, 54(11), 2126.
  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of gender differences in spatial abilities: A meta-analysis. Child Development, 56, 1479-1498.
  • Lohman, D. F. (1979). Spatial ability: Individual differences in speed and level (technical report No:9). Aptitude Research Project, School of Education, Stanford University.
  • Lohman, D. F. (1993). Spatial ability and G. In First Spearman Seminar, University of Plymouth, Plymouth. United Kingdom.
  • Lombardi, C. M., Casey, B. M., Pezaris, E., Shadmehr, M., & Jong, M. (2019). Longitudinal analysis of associations between 3-D mental rotation and mathematics reasoning skills during middle school: Across and within genders. Journal of Cognition and Development, 20(4), 487–509.
  • Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22, 395–495.
  • McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal and neurological influences. Psychological Bulletin, 86, 889-918.
  • Milli Eğitim Bakanlığı [MEB] (2018). Matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara.
  • Mix, K. S., & Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. Advances in child development and behavior, 42, 197-243.
  • Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C. J., Hambrick, D. Z., & Konstantopoulos, S. (2017). The latent structure of spatial skills and mathematics: A replication of the two-factor model. Journal of Cognition and Development, 18(4), 465–492.
  • Nurjanah, Latif, B., Yuliardi, R., & Tamur, M. (2020). Computer-assisted learning using the Cabri 3D for improving spatial ability and self-regulated learning. Heliyon, 6(11), 1-7.
  • Ondes, R. N. (2021). Research trends in dynamic geometry software: A content analysis from 2005 to 2021. World Journal on Educational Technology: Current Issues. 13(2), 236-260. https://doi.org/10.18844/wjet.v13i2.5695
  • Özcan, K. V., Akbay, M., & Karakuş, T. (2016). Üniversite öğrencilerinin oyun oynama alışkanlıklarının uzamsal becerilerine etkisi. Kastamonu Eğitim Dergisi, 24(1), 37-52.
  • Özdamar, K. (2017). Ölçek ve test geliştirme yapısal eşitlik modellemesi IBM SPSS, IBM SPSS AMOS ve MINTAB uygulamalı. Eskişehir: Nisan Kitabevi.
  • Panorkou, N. (2021) Exploring students’ dynamic measurement reasoning about right prisms and cylinders. Cognition and Instruction, 39(4), 477-511. Doi: 10.1080/07370008.2021.1958218
  • Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2012). Spatial anxiety relates to spatial abilities as a function of working memory in children. The Quarterly Journal of Experimental Psychology, 65(3), 474-487.
  • Robichaux, R. L. R. (2000). The spatial visualization of undergraduates majoring in particular fields of study and the relationship of this ability to individual background characteristics (Unpublished doctoral dissertation). University of Auburn, Alabama.
  • Sorby, S. A. (2007). Developing 3D spatial skills for engineering students. Australasian Journal of Engineering Education, 13(1), 1-11.
  • Sorby, S. A. (2009). Developing 3-D spatial visualization skills. Engineering Design Graphics Journal, 63(2).
  • Sung, Y. T., Shih, P. C., & Chang, K. E. (2015). The effects of 3D-representation instruction on composite-solid surface-area learning for elementary school students. Instructional Science, 43(1), 115-145.
  • Şimşek, E., & Yücekaya, G. (2014). Dinamik geometri yazılımı ile öğretimin ilköğretim 6. sınıf öğrencilerinin uzamsal yeteneklerine etkisi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 15(1), 65-80.
  • Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21, 216–229.
  • Tomic, M. K., Aberšek, B., & Pesek, I. (2019). GeoGebra as a spatial skills training tool among science, technology engineering and mathematics students. Computer Applications in Engineering Education, 27(6), 1506-1517.
  • Topuz, F., & Birgin, O. (2020). Developing teaching materials supported with GeoGebra for circle and disc subject at seventh grade. Ilkogretim Online, 19(3).
  • Tu, J. C., & Chiang, Y. H. (2016). The Influence of Design Strategy of Peer Learning on 3-D Software Learning. Eurasia Journal of Mathematics, Science & Technology Education, 12(5).
  • Turğut, M. (2007). İlköğretim II.kademe öğrencilerinin uzamsal yeteneklerinin İncelenmesi (Yüksek Lisans Tezi). Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü.
  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/https:// doi.org/10.1037/a0028446
  • Verdine, B. N., Golinkoff, R. M., Hirsch-Pasek, K., & Newcombe, N. S. (2017). Links between spatial and mathematical skills across the preschool years. Monographs of the Society for Research in Child Development, 82(1), 1–150
  • Voyer, D., Voyer, S. D., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250−270.
  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.
  • Wang, S., Hu, B. Y., & Zhang, X. (2021). Kindergarteners’ spatial skills and their reading and math achievement in second grade. Early Childhood Research Quarterly, 57, 156-166.
  • Xie, F., Zhang, L., Chen, X., & Xin, Z. (2020). Is spatial ability related to mathematical ability: A meta-analysis. Educ Psychol Rev, 32, 113–155. https://doi.org/10.1007/s10648-019-09496-y
  • Yang, W., Liu, H., Chen, N., Xu, P., & Lin, X. (2020). Is early spatial skills training effective? A Meta-analysis. Frontiers in Psychology, 11, 1-15. https://doi.org/10.3389/fpsyg.2020.01938
  • Yıldız, B., & Tüzün, H. (2011). Üç-boyutlu sanal ortam ve somut materyal kullanımının uzamsal yeteneğe etkileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41). 41(41).
  • Yuliardi, R., Mahpudin, A., & Rosyid, A. (2021). Implementation of mathematics learning-assisted Cabri 3D software to improve spatial ability of high school students on three dimensional geometry. Journal of Physics: Conference Series, 1764(1), 1-7. doi:10.1088/1742-6596/1764/1/012042
There are 63 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Özlem Özçakır Sümen 0000-0002-5140-4510

Publication Date August 29, 2022
Published in Issue Year 2022

Cite

APA Özçakır Sümen, Ö. (2022). Üç Boyutlu Tasarım Programlarıyla Gerçekleştirilen Etkinliklerin Sınıf Öğretmeni Adaylarının Uzamsal Becerilerinin Gelişimine Etkileri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 42(2), 1681-1708. https://doi.org/10.17152/gefad.967350
AMA Özçakır Sümen Ö. Üç Boyutlu Tasarım Programlarıyla Gerçekleştirilen Etkinliklerin Sınıf Öğretmeni Adaylarının Uzamsal Becerilerinin Gelişimine Etkileri. GEFAD. August 2022;42(2):1681-1708. doi:10.17152/gefad.967350
Chicago Özçakır Sümen, Özlem. “Üç Boyutlu Tasarım Programlarıyla Gerçekleştirilen Etkinliklerin Sınıf Öğretmeni Adaylarının Uzamsal Becerilerinin Gelişimine Etkileri”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 42, no. 2 (August 2022): 1681-1708. https://doi.org/10.17152/gefad.967350.
EndNote Özçakır Sümen Ö (August 1, 2022) Üç Boyutlu Tasarım Programlarıyla Gerçekleştirilen Etkinliklerin Sınıf Öğretmeni Adaylarının Uzamsal Becerilerinin Gelişimine Etkileri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 42 2 1681–1708.
IEEE Ö. Özçakır Sümen, “Üç Boyutlu Tasarım Programlarıyla Gerçekleştirilen Etkinliklerin Sınıf Öğretmeni Adaylarının Uzamsal Becerilerinin Gelişimine Etkileri”, GEFAD, vol. 42, no. 2, pp. 1681–1708, 2022, doi: 10.17152/gefad.967350.
ISNAD Özçakır Sümen, Özlem. “Üç Boyutlu Tasarım Programlarıyla Gerçekleştirilen Etkinliklerin Sınıf Öğretmeni Adaylarının Uzamsal Becerilerinin Gelişimine Etkileri”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 42/2 (August 2022), 1681-1708. https://doi.org/10.17152/gefad.967350.
JAMA Özçakır Sümen Ö. Üç Boyutlu Tasarım Programlarıyla Gerçekleştirilen Etkinliklerin Sınıf Öğretmeni Adaylarının Uzamsal Becerilerinin Gelişimine Etkileri. GEFAD. 2022;42:1681–1708.
MLA Özçakır Sümen, Özlem. “Üç Boyutlu Tasarım Programlarıyla Gerçekleştirilen Etkinliklerin Sınıf Öğretmeni Adaylarının Uzamsal Becerilerinin Gelişimine Etkileri”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, vol. 42, no. 2, 2022, pp. 1681-08, doi:10.17152/gefad.967350.
Vancouver Özçakır Sümen Ö. Üç Boyutlu Tasarım Programlarıyla Gerçekleştirilen Etkinliklerin Sınıf Öğretmeni Adaylarının Uzamsal Becerilerinin Gelişimine Etkileri. GEFAD. 2022;42(2):1681-708.