BibTex RIS Cite

MATHEMATICAL MODELING SKILLS OF PROSPECTIVE MATHEMATICS TEACHERS

Year 2013, Volume: 33 Issue: 1, 129 - 146, 01.03.2013

Abstract

The importance of mathematical modeling in mathematics education gradually increases. In this sense, it is important to examine mathematical modeling skill levels of teachers and prospective teachers, who will teach the students, and to take measures to improve their skill levels. This study investigates mathematical modeling skills of prospective mathematics teachers in solving real-life problems about the fractions. The research sample consists of prospective teachers studying at the department of mathematics education of a university located in the north of Turkey. Survey model was used for revealing an existing situation. Five questions containing real-life problems about fractions were prepared in order to examine modeling skills of the prospective teachers. The prospective teachers were asked to solve these questions through modeling method. It was concluded that the prospective teachers were incompetent especially in modeling the problems where the remainder was given, and the whole was asked.

References

  • Aksu, M. (1997). Student Performance in Dealing with Fractions. The Journal of Educational Research, 90(6), 375-380.
  • Arcavi, A. (2003). A Role of Visual Representations in the Learning of Mathematics. Educational Studies in Mathematics, 52(3), 215-241.
  • Goldin, G. (2002). Representation in Mathematical Learning and Problem Solving. In L. English (Ed.), Handbook of international research in mathematics education (pp. 197–218). Mahwah, NJ: Lawrence Erlbaum.
  • Doerr, H. M. (1997). Experiment, Simulation and Analysis: An Integrated Instructional Approach to the Concept of Force. International Journal of Science Education, 19, 265-282.
  • Dreyfus, T., & Eisenberg, T. (1996). On different facets of mathematical thinking. In R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 253–284). Mahwah, NJ: Lawrence Erlbaum.
  • Karasar, N.(1984). Bilimsel Araştırma Metodu. Ankara: Hacetepe Taş.
  • MEB. (2006). İlköğretim matematik 6 Öğretmen Klavuz Kitabı. Ankara: Milli Eğitim Bakanlığı.
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics: An overview. Reston: NCTM.
  • Post, T. R., Wachsmuth, I., Lesh, R., & Behr, M. J. (1985). Order and Equivalence of Rational Number: A Cognitive Analysis. Journal for Research in Mathematics Education, 16(1), 18-36.
  • Olkun, S. (2004). When does the Volume Formula Make Sense to Students. Hacettepe Univesity Journal of Faculty of Education, 25, 160-165.
  • Orhun, N. (2007). Kesir İşlemlerinde Formal Aritmetik ve Görselleştirme Arasındaki Bilişsel Boşluk. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 8(14), 99-111. Ossimitz, G. (1989). Some Theoretical Aspects of Descriptive Mathematical Models: Economic and Management Sciences. In M, Niss, W, Blum ve I, Huntley (Ed.), Modeling Applications and Applied Problem Solving (pp. 43-48). England: Halsted.
  • Stillman, G., Galbraith. P., Brown. J. & Edwards. I. (2007). A Framework for Success in Implementing Mathematical Modeling in the Secondary Classroom. Mathematics: Essential Research, Essential Practice, 2, 688-697.
  • Silver, E.A. (1987). Foundations of Cognitive Theory and Research for Mathematics Problem-Solving Instruction. In Alan H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education. NJ: Lawrence Erlbaum.

MATEMATİK ÖĞRETMENİ ADAYLARININ MATEMATİKSEL MODELLEME BECERİLERİ

Year 2013, Volume: 33 Issue: 1, 129 - 146, 01.03.2013

Abstract

Matematik eğitiminde matematiksel modellemenin önemi giderek artmaktadır. Bu nedenle öğrencileri yetiştirecek olan öğretmen ve dolayısıyla öğretmen adaylarının matematiksel modelleme beceri düzeylerini incelemek ve bu beceri düzeylerini geliştirmek için tedbirler almak önemlidir. Bu çalışma da matematik öğretmeni adaylarının kesirlerle ilgili gerçek hayat problemlerinin çözümündeki matematiksel modelleme becerileri araştırılmıştır. Çalışmanın örneklemini Türkiye\'nin kuzeyinde bulunan bir üniversitenin matematik öğretmenliği bölümünde öğrenim gören öğretmen adayları oluşturmaktadır. Araştırmada tarama modeli kullanılmıştır. Öğretmen adaylarının modelleme becerilerini inceleyebilmek için kesirlerle ilgili gerçek hayat problemini içeren 5 adet soru hazırlanmıştır. Adaylardan bu soruları modelleme yöntemiyle çözmeleri istenmiştir. Araştırma sonucunda adayların özellikle kalan verilip bütünü bulma problemlerini modellemede yetersiz oldukları gözlemlenmiştir.

References

  • Aksu, M. (1997). Student Performance in Dealing with Fractions. The Journal of Educational Research, 90(6), 375-380.
  • Arcavi, A. (2003). A Role of Visual Representations in the Learning of Mathematics. Educational Studies in Mathematics, 52(3), 215-241.
  • Goldin, G. (2002). Representation in Mathematical Learning and Problem Solving. In L. English (Ed.), Handbook of international research in mathematics education (pp. 197–218). Mahwah, NJ: Lawrence Erlbaum.
  • Doerr, H. M. (1997). Experiment, Simulation and Analysis: An Integrated Instructional Approach to the Concept of Force. International Journal of Science Education, 19, 265-282.
  • Dreyfus, T., & Eisenberg, T. (1996). On different facets of mathematical thinking. In R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 253–284). Mahwah, NJ: Lawrence Erlbaum.
  • Karasar, N.(1984). Bilimsel Araştırma Metodu. Ankara: Hacetepe Taş.
  • MEB. (2006). İlköğretim matematik 6 Öğretmen Klavuz Kitabı. Ankara: Milli Eğitim Bakanlığı.
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics: An overview. Reston: NCTM.
  • Post, T. R., Wachsmuth, I., Lesh, R., & Behr, M. J. (1985). Order and Equivalence of Rational Number: A Cognitive Analysis. Journal for Research in Mathematics Education, 16(1), 18-36.
  • Olkun, S. (2004). When does the Volume Formula Make Sense to Students. Hacettepe Univesity Journal of Faculty of Education, 25, 160-165.
  • Orhun, N. (2007). Kesir İşlemlerinde Formal Aritmetik ve Görselleştirme Arasındaki Bilişsel Boşluk. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 8(14), 99-111. Ossimitz, G. (1989). Some Theoretical Aspects of Descriptive Mathematical Models: Economic and Management Sciences. In M, Niss, W, Blum ve I, Huntley (Ed.), Modeling Applications and Applied Problem Solving (pp. 43-48). England: Halsted.
  • Stillman, G., Galbraith. P., Brown. J. & Edwards. I. (2007). A Framework for Success in Implementing Mathematical Modeling in the Secondary Classroom. Mathematics: Essential Research, Essential Practice, 2, 688-697.
  • Silver, E.A. (1987). Foundations of Cognitive Theory and Research for Mathematics Problem-Solving Instruction. In Alan H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education. NJ: Lawrence Erlbaum.
There are 13 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Abdulkadir Tuna This is me

A. Çağrı Biber This is me

Nisa Yurt This is me

Publication Date March 1, 2013
Published in Issue Year 2013 Volume: 33 Issue: 1

Cite

APA Tuna, A., Biber, A. Ç., & Yurt, N. (2013). MATEMATİK ÖĞRETMENİ ADAYLARININ MATEMATİKSEL MODELLEME BECERİLERİ. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 33(1), 129-146.
AMA Tuna A, Biber AÇ, Yurt N. MATEMATİK ÖĞRETMENİ ADAYLARININ MATEMATİKSEL MODELLEME BECERİLERİ. GUJGEF. March 2013;33(1):129-146.
Chicago Tuna, Abdulkadir, A. Çağrı Biber, and Nisa Yurt. “MATEMATİK ÖĞRETMENİ ADAYLARININ MATEMATİKSEL MODELLEME BECERİLERİ”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 33, no. 1 (March 2013): 129-46.
EndNote Tuna A, Biber AÇ, Yurt N (March 1, 2013) MATEMATİK ÖĞRETMENİ ADAYLARININ MATEMATİKSEL MODELLEME BECERİLERİ. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 33 1 129–146.
IEEE A. Tuna, A. Ç. Biber, and N. Yurt, “MATEMATİK ÖĞRETMENİ ADAYLARININ MATEMATİKSEL MODELLEME BECERİLERİ”, GUJGEF, vol. 33, no. 1, pp. 129–146, 2013.
ISNAD Tuna, Abdulkadir et al. “MATEMATİK ÖĞRETMENİ ADAYLARININ MATEMATİKSEL MODELLEME BECERİLERİ”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 33/1 (March 2013), 129-146.
JAMA Tuna A, Biber AÇ, Yurt N. MATEMATİK ÖĞRETMENİ ADAYLARININ MATEMATİKSEL MODELLEME BECERİLERİ. GUJGEF. 2013;33:129–146.
MLA Tuna, Abdulkadir et al. “MATEMATİK ÖĞRETMENİ ADAYLARININ MATEMATİKSEL MODELLEME BECERİLERİ”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, vol. 33, no. 1, 2013, pp. 129-46.
Vancouver Tuna A, Biber AÇ, Yurt N. MATEMATİK ÖĞRETMENİ ADAYLARININ MATEMATİKSEL MODELLEME BECERİLERİ. GUJGEF. 2013;33(1):129-46.