The Diagnostic Performance of Magnetic Resonance Texture Analysis in Histological Subtyping and Grading of the Renal Cell Carcinoma
Year 2025,
Volume: 35 Issue: 2, 255 - 263, 30.04.2025
Nusret Seher
,
Mustafa Koplay
,
Abidin Kılınçer
,
Lütfi Saltuk Demir
,
Mehmet Kaynar
,
Kadir Böcü
,
Serdar Göktaş
Abstract
Backgrounds-Aims: To evaluate the efficiency of MRTA in distinguishing RCC types and in the distinction of tumor grade.
Methods: 62 patients were analyzed retrospectively and grouped as 40 clear cell-RCC, 11 papillary-RCC and 11 chromophobe-RCC. In the MRI (1.5-T) protocol, the axial T2 weighted (W), axial T1W in-phase (IP) and apparent diffusion coefficient (ADC) images were used. Additionally, postcontrast images obtained in the corticomedullary (CM) phase and nephrogram (NG) phase of the axial fat-suppressed T1W (VIBE) sequence were used. In MRTA were used parameters as mean, median, entropy, skewness, kurtosis, variance, uniformity. Statistical analysis was performed to compare CC-RCC &NC-RCC, and high-grade& low-grade tumors and between the subtypes.
Results: Tissue parameters that perform best in separating CC-RCC from NC-RCC (AUC in brackets): Values obtained included entropy (0.67) in CM phase, mean (0.75) and median (0.76) in ADC, entropy (0,66) and variance (0.66) in NG phase were obtained. The p values in IP and T2W images in the distinction between the high and low degrees were significant.
Conclusion: Several MR texture parameters performed well (AUC> 0.75) in separating CC-RCC from NC-RCC. MRTA can be a useful noninvasive tool for this purpose. The first order parameters that we used in TA can be used to evaluate the prognosis in RCC patients.
References
- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68:7-30.
- 2. Capitanio U, Montorsi F. Renal cancer. Lancet 2016; 387: 894-906.
- 3. Capitanio U, Bensalah K, Bex A, et al. Epidemiology of Renal Cell Carcinoma. Eur Urol 2019; 75:74-84.
- 4. Posadas EM, Limvorasak S, Figlin RA. Targeted therapies for renal cell carcinoma. Nat Rev Nephro 2017; l13:496-511.
- 5. Shao Y, Xiong S, Sun G, et al. Prognostic analysis of postoperative clinically nonmetastatic renal cell carcinoma. Cancer Med 2020;9: 959-970.
- 6. Ficarra V, Galfano A, Novara G, et al. Risk stratification and prognostication of renal cell carcinoma. World J Urol 2008;26: 115-125.
- 7. Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 2015;48: 166-74.
- 8. Volpe A, Patard JJ. Prognostic factors in renal cell carcinoma. World J Urol 2010;28: 319-27.
- 9. Escudier B, Porta C, Schmidinger M, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27: 58-68.
- 10. Moore LE, Nickerson ML, Brennan P, et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 2011;7: e1002312.
- 11. Sudarshan S, Karam JA, Brugarolas J, et al. Metabolism of kidney cancer: from the lab to clinical practice. Eur Urol 2013;63: 244-251.
- 12. Kim JH, Bae JH, Lee KW, et al. Predicting the histology of small renal masses using preoperative dynamic contrast-enhanced magnetic resonance imaging. Urology 2012;80: 872-876.
- 13. Jung SC, Cho JY, Kim SH. Subtype differentiation of small renal cell carcinomas on three-phase MDCT: usefulness of the measurement of degree and heterogeneity of enhancement. Acta Radiol 2012;53: 112-118.
- 14. Young JR, Margolis D, Sauk S, et al. Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology 2013;267: 444-453.
- 15. Sasaguri K, Takahashi N. CT and MR imaging for solid renal mass characterization. Eur J Radiol 2018;99 :40-54.
- 16. Hodgdon T, McInnes MD, Schieda N, et al. Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology 2015;276: 787-796.
- 17. Lubner MG, Stabo N, Abel EJ, et al. CT Textural Analysis of Large Primary Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and Clinical Outcomes. Am J Roentgenol 2016;207: 96-105.
- 18. Yu H, Scalera J, Khalid M, et al. Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol (NY) 2017;42: 2470-2478.
- 19. Zhang GM, Shi B, Xue HD, et al. Can quantitative CT texture analysis be used to differentiate subtypes of renal cell carcinoma? Clin Radiol 2019;74: 287-294.
- 20. Bektas CT, Kocak B, Yardimci AH, et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade. EurRadiol 2019;29: 1153-1163.
- 21. Shu J, Tang Y, Cui J, et al. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Eur J Radiol 2018;109: 8-12.
- 22. Yasar S, Voyvoda N, Voyvoda B, Ozer T. Using texture analysis as a predictive factor of subtype, grade, and stage of renal cell carcinoma. Abdom Radiol (NY) 2020; Apr 6. doi: 10.1007/s00261-020-02495-6.
- 23. Schieda N, Lim RS, Krishna S, et al. Diagnostic Accuracy of Unenhanced CT Analysis to Differentiate Low-Grade From High-Grade Chromophobe Renal Cell Carcinoma. AJR Am J Roentgenol 2018;210: 1079-1087.
- 24. Andersen MFB, Norus TP. Tumor Seeding With Renal Cell Carcinoma After Renal Biopsy. Urol Case Rep 2016;9: 43–44.
- 25. Schieda N, Lim RS, McInnes MDF, et al. Characterization of small (<4cm) solid renal masses by computed tomography and magnetic resonance imaging: Current evidence and further development. Diagn Interv Imaging 2018;99: 443-455.
- 26. Cornelis F, Tricaud E, Lasserre AS, et al. Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumors. Eur Radiol 2014;24: 1068-1080.
- 27. Vargas HA, Chaim J, Lefkowitz RA et al. Renal cortical tumors: use of multiphasic contrast-enhanced MR imaging to differentiate benign and malignant histologic subtypes. Radiology 2012;2643: 779-788.
- 28. Vendrami CL, Velichko YS, Miller FH, et al. Differentiation of Papillary Renal Cell Carcinoma Subtypes on MRI: Qualitative and Texture Analysis. Am J Roentgenol 2018;211: 1234-1245.
- 29. Goyal A, Razik A, Kandasamy D, et al. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study. AbdomRadiol (NY) 2019;44: 3336-3349.
Year 2025,
Volume: 35 Issue: 2, 255 - 263, 30.04.2025
Nusret Seher
,
Mustafa Koplay
,
Abidin Kılınçer
,
Lütfi Saltuk Demir
,
Mehmet Kaynar
,
Kadir Böcü
,
Serdar Göktaş
References
- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68:7-30.
- 2. Capitanio U, Montorsi F. Renal cancer. Lancet 2016; 387: 894-906.
- 3. Capitanio U, Bensalah K, Bex A, et al. Epidemiology of Renal Cell Carcinoma. Eur Urol 2019; 75:74-84.
- 4. Posadas EM, Limvorasak S, Figlin RA. Targeted therapies for renal cell carcinoma. Nat Rev Nephro 2017; l13:496-511.
- 5. Shao Y, Xiong S, Sun G, et al. Prognostic analysis of postoperative clinically nonmetastatic renal cell carcinoma. Cancer Med 2020;9: 959-970.
- 6. Ficarra V, Galfano A, Novara G, et al. Risk stratification and prognostication of renal cell carcinoma. World J Urol 2008;26: 115-125.
- 7. Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 2015;48: 166-74.
- 8. Volpe A, Patard JJ. Prognostic factors in renal cell carcinoma. World J Urol 2010;28: 319-27.
- 9. Escudier B, Porta C, Schmidinger M, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27: 58-68.
- 10. Moore LE, Nickerson ML, Brennan P, et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 2011;7: e1002312.
- 11. Sudarshan S, Karam JA, Brugarolas J, et al. Metabolism of kidney cancer: from the lab to clinical practice. Eur Urol 2013;63: 244-251.
- 12. Kim JH, Bae JH, Lee KW, et al. Predicting the histology of small renal masses using preoperative dynamic contrast-enhanced magnetic resonance imaging. Urology 2012;80: 872-876.
- 13. Jung SC, Cho JY, Kim SH. Subtype differentiation of small renal cell carcinomas on three-phase MDCT: usefulness of the measurement of degree and heterogeneity of enhancement. Acta Radiol 2012;53: 112-118.
- 14. Young JR, Margolis D, Sauk S, et al. Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology 2013;267: 444-453.
- 15. Sasaguri K, Takahashi N. CT and MR imaging for solid renal mass characterization. Eur J Radiol 2018;99 :40-54.
- 16. Hodgdon T, McInnes MD, Schieda N, et al. Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology 2015;276: 787-796.
- 17. Lubner MG, Stabo N, Abel EJ, et al. CT Textural Analysis of Large Primary Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and Clinical Outcomes. Am J Roentgenol 2016;207: 96-105.
- 18. Yu H, Scalera J, Khalid M, et al. Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol (NY) 2017;42: 2470-2478.
- 19. Zhang GM, Shi B, Xue HD, et al. Can quantitative CT texture analysis be used to differentiate subtypes of renal cell carcinoma? Clin Radiol 2019;74: 287-294.
- 20. Bektas CT, Kocak B, Yardimci AH, et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade. EurRadiol 2019;29: 1153-1163.
- 21. Shu J, Tang Y, Cui J, et al. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Eur J Radiol 2018;109: 8-12.
- 22. Yasar S, Voyvoda N, Voyvoda B, Ozer T. Using texture analysis as a predictive factor of subtype, grade, and stage of renal cell carcinoma. Abdom Radiol (NY) 2020; Apr 6. doi: 10.1007/s00261-020-02495-6.
- 23. Schieda N, Lim RS, Krishna S, et al. Diagnostic Accuracy of Unenhanced CT Analysis to Differentiate Low-Grade From High-Grade Chromophobe Renal Cell Carcinoma. AJR Am J Roentgenol 2018;210: 1079-1087.
- 24. Andersen MFB, Norus TP. Tumor Seeding With Renal Cell Carcinoma After Renal Biopsy. Urol Case Rep 2016;9: 43–44.
- 25. Schieda N, Lim RS, McInnes MDF, et al. Characterization of small (<4cm) solid renal masses by computed tomography and magnetic resonance imaging: Current evidence and further development. Diagn Interv Imaging 2018;99: 443-455.
- 26. Cornelis F, Tricaud E, Lasserre AS, et al. Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumors. Eur Radiol 2014;24: 1068-1080.
- 27. Vargas HA, Chaim J, Lefkowitz RA et al. Renal cortical tumors: use of multiphasic contrast-enhanced MR imaging to differentiate benign and malignant histologic subtypes. Radiology 2012;2643: 779-788.
- 28. Vendrami CL, Velichko YS, Miller FH, et al. Differentiation of Papillary Renal Cell Carcinoma Subtypes on MRI: Qualitative and Texture Analysis. Am J Roentgenol 2018;211: 1234-1245.
- 29. Goyal A, Razik A, Kandasamy D, et al. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study. AbdomRadiol (NY) 2019;44: 3336-3349.