Research Article
BibTex RIS Cite

The Diagnostic Performance of Magnetic Resonance Texture Analysis in Histological Subtyping and Grading of the Renal Cell Carcinoma

Year 2025, Volume: 35 Issue: 2, 255 - 263, 30.04.2025
https://doi.org/10.54005/geneltip.1536404

Abstract

Backgrounds-Aims: To evaluate the efficiency of MRTA in distinguishing RCC types and in the distinction of tumor grade.
Methods: 62 patients were analyzed retrospectively and grouped as 40 clear cell-RCC, 11 papillary-RCC and 11 chromophobe-RCC. In the MRI (1.5-T) protocol, the axial T2 weighted (W), axial T1W in-phase (IP) and apparent diffusion coefficient (ADC) images were used. Additionally, postcontrast images obtained in the corticomedullary (CM) phase and nephrogram (NG) phase of the axial fat-suppressed T1W (VIBE) sequence were used. In MRTA were used parameters as mean, median, entropy, skewness, kurtosis, variance, uniformity. Statistical analysis was performed to compare CC-RCC &NC-RCC, and high-grade& low-grade tumors and between the subtypes.
Results: Tissue parameters that perform best in separating CC-RCC from NC-RCC (AUC in brackets): Values obtained included entropy (0.67) in CM phase, mean (0.75) and median (0.76) in ADC, entropy (0,66) and variance (0.66) in NG phase were obtained. The p values in IP and T2W images in the distinction between the high and low degrees were significant.
Conclusion: Several MR texture parameters performed well (AUC> 0.75) in separating CC-RCC from NC-RCC. MRTA can be a useful noninvasive tool for this purpose. The first order parameters that we used in TA can be used to evaluate the prognosis in RCC patients.

References

  • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68:7-30.
  • 2. Capitanio U, Montorsi F. Renal cancer. Lancet 2016; 387: 894-906.
  • 3. Capitanio U, Bensalah K, Bex A, et al. Epidemiology of Renal Cell Carcinoma. Eur Urol 2019; 75:74-84.
  • 4. Posadas EM, Limvorasak S, Figlin RA. Targeted therapies for renal cell carcinoma. Nat Rev Nephro 2017; l13:496-511.
  • 5. Shao Y, Xiong S, Sun G, et al. Prognostic analysis of postoperative clinically nonmetastatic renal cell carcinoma. Cancer Med 2020;9: 959-970.
  • 6. Ficarra V, Galfano A, Novara G, et al. Risk stratification and prognostication of renal cell carcinoma. World J Urol 2008;26: 115-125.
  • 7. Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 2015;48: 166-74.
  • 8. Volpe A, Patard JJ. Prognostic factors in renal cell carcinoma. World J Urol 2010;28: 319-27.
  • 9. Escudier B, Porta C, Schmidinger M, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27: 58-68.
  • 10. Moore LE, Nickerson ML, Brennan P, et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 2011;7: e1002312.
  • 11. Sudarshan S, Karam JA, Brugarolas J, et al. Metabolism of kidney cancer: from the lab to clinical practice. Eur Urol 2013;63: 244-251.
  • 12. Kim JH, Bae JH, Lee KW, et al. Predicting the histology of small renal masses using preoperative dynamic contrast-enhanced magnetic resonance imaging. Urology 2012;80: 872-876.
  • 13. Jung SC, Cho JY, Kim SH. Subtype differentiation of small renal cell carcinomas on three-phase MDCT: usefulness of the measurement of degree and heterogeneity of enhancement. Acta Radiol 2012;53: 112-118.
  • 14. Young JR, Margolis D, Sauk S, et al. Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology 2013;267: 444-453.
  • 15. Sasaguri K, Takahashi N. CT and MR imaging for solid renal mass characterization. Eur J Radiol 2018;99 :40-54.
  • 16. Hodgdon T, McInnes MD, Schieda N, et al. Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology 2015;276: 787-796.
  • 17. Lubner MG, Stabo N, Abel EJ, et al. CT Textural Analysis of Large Primary Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and Clinical Outcomes. Am J Roentgenol 2016;207: 96-105.
  • 18. Yu H, Scalera J, Khalid M, et al. Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol (NY) 2017;42: 2470-2478.
  • 19. Zhang GM, Shi B, Xue HD, et al. Can quantitative CT texture analysis be used to differentiate subtypes of renal cell carcinoma? Clin Radiol 2019;74: 287-294.
  • 20. Bektas CT, Kocak B, Yardimci AH, et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade. EurRadiol 2019;29: 1153-1163.
  • 21. Shu J, Tang Y, Cui J, et al. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Eur J Radiol 2018;109: 8-12.
  • 22. Yasar S, Voyvoda N, Voyvoda B, Ozer T. Using texture analysis as a predictive factor of subtype, grade, and stage of renal cell carcinoma. Abdom Radiol (NY) 2020; Apr 6. doi: 10.1007/s00261-020-02495-6.
  • 23. Schieda N, Lim RS, Krishna S, et al. Diagnostic Accuracy of Unenhanced CT Analysis to Differentiate Low-Grade From High-Grade Chromophobe Renal Cell Carcinoma. AJR Am J Roentgenol 2018;210: 1079-1087.
  • 24. Andersen MFB, Norus TP. Tumor Seeding With Renal Cell Carcinoma After Renal Biopsy. Urol Case Rep 2016;9: 43–44.
  • 25. Schieda N, Lim RS, McInnes MDF, et al. Characterization of small (<4cm) solid renal masses by computed tomography and magnetic resonance imaging: Current evidence and further development. Diagn Interv Imaging 2018;99: 443-455.
  • 26. Cornelis F, Tricaud E, Lasserre AS, et al. Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumors. Eur Radiol 2014;24: 1068-1080.
  • 27. Vargas HA, Chaim J, Lefkowitz RA et al. Renal cortical tumors: use of multiphasic contrast-enhanced MR imaging to differentiate benign and malignant histologic subtypes. Radiology 2012;2643: 779-788.
  • 28. Vendrami CL, Velichko YS, Miller FH, et al. Differentiation of Papillary Renal Cell Carcinoma Subtypes on MRI: Qualitative and Texture Analysis. Am J Roentgenol 2018;211: 1234-1245.
  • 29. Goyal A, Razik A, Kandasamy D, et al. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study. AbdomRadiol (NY) 2019;44: 3336-3349.
Year 2025, Volume: 35 Issue: 2, 255 - 263, 30.04.2025
https://doi.org/10.54005/geneltip.1536404

Abstract

References

  • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68:7-30.
  • 2. Capitanio U, Montorsi F. Renal cancer. Lancet 2016; 387: 894-906.
  • 3. Capitanio U, Bensalah K, Bex A, et al. Epidemiology of Renal Cell Carcinoma. Eur Urol 2019; 75:74-84.
  • 4. Posadas EM, Limvorasak S, Figlin RA. Targeted therapies for renal cell carcinoma. Nat Rev Nephro 2017; l13:496-511.
  • 5. Shao Y, Xiong S, Sun G, et al. Prognostic analysis of postoperative clinically nonmetastatic renal cell carcinoma. Cancer Med 2020;9: 959-970.
  • 6. Ficarra V, Galfano A, Novara G, et al. Risk stratification and prognostication of renal cell carcinoma. World J Urol 2008;26: 115-125.
  • 7. Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 2015;48: 166-74.
  • 8. Volpe A, Patard JJ. Prognostic factors in renal cell carcinoma. World J Urol 2010;28: 319-27.
  • 9. Escudier B, Porta C, Schmidinger M, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27: 58-68.
  • 10. Moore LE, Nickerson ML, Brennan P, et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 2011;7: e1002312.
  • 11. Sudarshan S, Karam JA, Brugarolas J, et al. Metabolism of kidney cancer: from the lab to clinical practice. Eur Urol 2013;63: 244-251.
  • 12. Kim JH, Bae JH, Lee KW, et al. Predicting the histology of small renal masses using preoperative dynamic contrast-enhanced magnetic resonance imaging. Urology 2012;80: 872-876.
  • 13. Jung SC, Cho JY, Kim SH. Subtype differentiation of small renal cell carcinomas on three-phase MDCT: usefulness of the measurement of degree and heterogeneity of enhancement. Acta Radiol 2012;53: 112-118.
  • 14. Young JR, Margolis D, Sauk S, et al. Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology 2013;267: 444-453.
  • 15. Sasaguri K, Takahashi N. CT and MR imaging for solid renal mass characterization. Eur J Radiol 2018;99 :40-54.
  • 16. Hodgdon T, McInnes MD, Schieda N, et al. Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology 2015;276: 787-796.
  • 17. Lubner MG, Stabo N, Abel EJ, et al. CT Textural Analysis of Large Primary Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and Clinical Outcomes. Am J Roentgenol 2016;207: 96-105.
  • 18. Yu H, Scalera J, Khalid M, et al. Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol (NY) 2017;42: 2470-2478.
  • 19. Zhang GM, Shi B, Xue HD, et al. Can quantitative CT texture analysis be used to differentiate subtypes of renal cell carcinoma? Clin Radiol 2019;74: 287-294.
  • 20. Bektas CT, Kocak B, Yardimci AH, et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade. EurRadiol 2019;29: 1153-1163.
  • 21. Shu J, Tang Y, Cui J, et al. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Eur J Radiol 2018;109: 8-12.
  • 22. Yasar S, Voyvoda N, Voyvoda B, Ozer T. Using texture analysis as a predictive factor of subtype, grade, and stage of renal cell carcinoma. Abdom Radiol (NY) 2020; Apr 6. doi: 10.1007/s00261-020-02495-6.
  • 23. Schieda N, Lim RS, Krishna S, et al. Diagnostic Accuracy of Unenhanced CT Analysis to Differentiate Low-Grade From High-Grade Chromophobe Renal Cell Carcinoma. AJR Am J Roentgenol 2018;210: 1079-1087.
  • 24. Andersen MFB, Norus TP. Tumor Seeding With Renal Cell Carcinoma After Renal Biopsy. Urol Case Rep 2016;9: 43–44.
  • 25. Schieda N, Lim RS, McInnes MDF, et al. Characterization of small (<4cm) solid renal masses by computed tomography and magnetic resonance imaging: Current evidence and further development. Diagn Interv Imaging 2018;99: 443-455.
  • 26. Cornelis F, Tricaud E, Lasserre AS, et al. Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumors. Eur Radiol 2014;24: 1068-1080.
  • 27. Vargas HA, Chaim J, Lefkowitz RA et al. Renal cortical tumors: use of multiphasic contrast-enhanced MR imaging to differentiate benign and malignant histologic subtypes. Radiology 2012;2643: 779-788.
  • 28. Vendrami CL, Velichko YS, Miller FH, et al. Differentiation of Papillary Renal Cell Carcinoma Subtypes on MRI: Qualitative and Texture Analysis. Am J Roentgenol 2018;211: 1234-1245.
  • 29. Goyal A, Razik A, Kandasamy D, et al. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study. AbdomRadiol (NY) 2019;44: 3336-3349.
There are 29 citations in total.

Details

Primary Language English
Subjects Radiology and Organ Imaging
Journal Section Original Article
Authors

Nusret Seher 0000-0003-2296-556X

Mustafa Koplay 0000-0001-7513-4968

Abidin Kılınçer 0000-0001-6027-874X

Lütfi Saltuk Demir 0000-0002-8022-3962

Mehmet Kaynar 0000-0002-6957-9060

Kadir Böcü 0000-0003-4323-4037

Serdar Göktaş 0000-0001-6538-7187

Publication Date April 30, 2025
Submission Date August 20, 2024
Acceptance Date November 14, 2024
Published in Issue Year 2025 Volume: 35 Issue: 2

Cite

Vancouver Seher N, Koplay M, Kılınçer A, Demir LS, Kaynar M, Böcü K, Göktaş S. The Diagnostic Performance of Magnetic Resonance Texture Analysis in Histological Subtyping and Grading of the Renal Cell Carcinoma. Genel Tıp Derg. 2025;35(2):255-63.

The Journal of General Medicine is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).