Review
BibTex RIS Cite

PSEUDO-TAHILLARIN ANTİ-BESİNSEL BİLEŞİKLERİ VE AZALTMA YÖNTEMLERİ

Year 2023, , 347 - 359, 15.04.2023
https://doi.org/10.15237/gida.GD22106

Abstract

Pseudo-tahıllar, karabuğday, kinoa ve amaranttan meydana gelmektedir. Glutensiz olmaları sebebiyle, çölyak hastalığı veya glutene hassasiyeti bulunan bireyler için çok önemli gıda kaynaklarıdır. Pseudo-tahılların tüketiminin, anti-besinsel bileşiklerinin gıda güvenliğini riske atması sebebiyle sınırlandığı bildirilmiştir. Pseudo-tahıllar, saponin, tanen, nitrat, okzalat, lektin, proteaz inhibitörleri ve fitik asit gibi bazı anti-besinsel bileşikleri içerirler. Anti-besinsel bileşiklerin, gıdanın sindirilirliğini ve besin ögelerinin emilimini engelleyerek, besinsel değerini azalttığı belirtilmiştir. Bu bileşiklerin sebep olduğu zararlı metabolik olayları azaltmak/ortadan kaldırmak için pseudo-tahılların tüketiminden önce uygun bir teknikle işlenmesi gerekir. Uygulanacak yöntem seçilirken anti-besinsel bileşiklerin kimyasal yapısı, tohum içerisindeki dağılımı, biyolojik etkileri, ısıya duyarlılıkları ve suda çözünürlükleri ile işlemin maliyetinin bilinmesi tavsiye edilmektedir. Bu yöntemler kavuz ayırma, mekanik aşındırma, su ile yıkama, ıslatma, kaynatma, kavurma, ekstrüzyon, çimlendirme, fermantasyon, yüksek hidrostatik basınç ve genetik yöntemlerdir.

References

  • KAYNAKLAR Aderibigbe, O.R., Ezekiel, O.O., Owolade, S.O., Korese, J.K., Sturm, B., Hensel, O. (2020). Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A Review. Crit Rev Food Sci Nutr, 62(3), 656-669.
  • Akin-Idowu, P.E., Ademoyegun, O.T., Olagunju, Y.O., Aduloju, A.O., Adebo, U.G. (2017). Phytochemical content and antioxidant activity of five grain amaranth species. American J of Food Sci and Tech, 5(6), 249-255.
  • Aloo, S.O., Ofosu, F.K., Oh., D.H. (2021). Effect of germination on alfalfa and buckwheat: Phytochemical profiling by UHPLC-ESI-QTOF-MS/MS, bioactive compounds, and in vitro studies of their diabetes and obesity-related functions. Antioxidants, 10(10): 1613, 1-18. Ando, H., Chen, Y.C., Tang, H., Shimizu, M., Watanabe, K., Mitsunaga, T. (2002). Food components in fractions of quinoa seed. Food Sci and Tech Res, 8(1), 80-84.
  • Beniwal, S.K., Devi, A., Sindhu, R. (2019). Effect of processing on nutritional and physico-chemical, functional and pasting properties of amaranth and quinoa flours. Indian J Trad Know, 18(3), 500-507.
  • Bhattarai, G. (2018). Amaranth: A golden crop for future. Review Article, Himalayan J of Sci and Tech, 2, 108-116.
  • Bhinder, S., Kumari, S., Singh, B., Kaur, A., Singh, N. (2021). Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chem, 346: 128915, 1-12. Bolívar-Monsalve, E.J., Ceballos-González, C., Ramírez-Toro, C., Bolívar, G.A. (2017). Reduction in saponin content and production of gluten-free cream soup base using quinoa fermented with Lactobacillus plantarum. J of Food Proc and Pre, 42(12): e13495, 1-10.
  • Caeiro, C., Pragosa, C., Cruz, M.C., Pereira, C.D., Pereira, S.G. (2022). The role of pseudocereals in celiac disease: Reducing nutritional deficiencies to improve well-being and health. J of Nut and Met, 2022: 8502169, 1-8.
  • Carrizo, S.L., Oca, M.C.E., Hébert, M.E., Saavedra, L., Vignolo, G., LeBlanc, J.G., Rollán, G.C. (2017). Lactic acid bacteria from Andean grain amaranth: A source of vitamins and functional value enzymes. J of Mol Mic and Bio, 27(5), 289-298.
  • Castro-Alba, V., Lazarte, C.E., Perez-Rea, D., Sandberg, A.S., Carlsson, N.G., Almgren, A., Bergenståhl, B., Granfeldt, Y. (2019). Effect of fermentation and dry roasting on the nutritional quality and sensory attributes of quinoa. Food Sci & Nut, 7(12), 3902-3911.
  • Cizeikiene, D., Gaide, I., Basinskiene, L. (2021). Effect of lactic acid fermentation on quinoa characteristics and quality of quinoa-wheat composite bread. Foods, 10(1): 171, 1-16.
  • Coelho, L.M., Silva, P.M. dos S., Martins, J.T., Pinheiro, A.C., Vicente, A.A. (2018). Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct, 9(11), 5499-5512.
  • Del Hierro, J.N., Herrera, T., García-Risco, M.R., Fornari, T., Reglero, G., Martin, D. (2018). Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: Quinoa, lentil, fenugreek, soybean and lupin. Food Res Int, 109, 440-447.
  • Demir, B., Bilgiçli, N. (2020). Changes in chemical and anti-nutritional properties of pasta enriched with raw and germinated quinoa (Chenopodium quinoa Willd.) flours. J of Food Sci and Tech, 57(4), 3884-3892.
  • Deng, Y., Padilla-Zakour, O., Zhao, Y., Tao, S. (2015). Influences of high hydrostatic pressure, microwave heating, and boiling on chemical compositions, antinutritional factors, fatty acids, in vitro protein digestibility, and microstructure of buckwheat. Food Biopro Tech, 8(11), 2235-2245.
  • Diaz-Valencia, Y.K., Alca, J.J., Calori-Domingues, M.A., Zanabria-Galvez, S.J., Cruz, S.H. (2018). Nutritional composition, total phenolic compounds and antioxidant activity of quinoa (Chenopodium quinoa Willd.) of different colours. Nova Biotechnol Chim, 17(1), 74-85.
  • Drzewiecki, J., Martinez-Ayala, A.L., Lozano-Grande, M.A., Leontowicz, H., Leontowicz, M., Jastrzebski, Z., Pasko, P., Gorinstein, S. (2018). In vitro screening of bioactive compounds in some gluten-free plants. Appl Biochem Biotechnol, 186(4), 847-860.
  • Filho, A.M.M., Pirozi, M.R., Borges, J.T.S., Sant’Ana, H.M.P., Chaves, J.B.P., Coimbra, J.S.R. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Crit Rev in Food Sci and Nutr, 57(8), 1618-1630.
  • Fotschki, B., Juśkiewicz, J., Jurgoński, A., Amarowicz, R., Opyd, P., Bez, J., Muranyi, I., Petersen, I.L., Llopis, M.L. (2020). Protein-rich flours from quinoa and buckwheat favourably affect the growth parameters, intestinal microbial activity and plasma lipid profile of rats. Nutrients, 12(9): 2781, 1-12.
  • Gélinas, B., Seguin, P. (2007). Oxalate in grain amaranth. J of Agric and Food Chem, 55(12), 4789-4794.
  • Gobbetti, M., Angelis, M., Cagno, R., Polo, A., Rizzello, C.G. (2020). The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Crit Rev in Food Sci and Nut, 60(13), 2158-2173.
  • Han, Y., Chi, J., Zhang, M., Zhang, R., Fan, S., Huang, F., Xue, K., Liu, L. (2019a). Characterization of saponins and phenolic compounds: Antioxidant activity and inhibitory effects on α-glucosidase in different varieties of colored quinoa (Chenopodium quinoa Willd.). Biosci Biotechnol Biochem, 83(11), 2128-2139.
  • Han, Y., Chi, J., Zhang, M., Zhang, R., Fan, S., Dong, L., Huang, F., Liu, L. (2019b). Changes in saponins, phenolics and antioxidant activity of quinoa (Chenopodium quinoa Willd.) during milling process. LWT-Food Sci and Tech, 114: 108381, 1-7.
  • Hejazi, S.N., Orsat, V., Azadi, B., Kubow, S. (2016). Improvement of the in vitro protein digestibility of amaranth grain through optimization of the malting process. J of Cereal Sci, 68, 59-65.
  • Hernández-Ledesma, B. (2019). Quinoa (Chenopodium quinoa Willd.) as a source of nutrients and bioactive compounds: A Review. Bioact Comp in Health and Dis, 2(3), 27-47.
  • Isaac-Bambgboye, F., Edema, M., Oshundahunsi, O.F. (2019). Nutritional quality, physicochemical properties and sensory evaluation of amaranth-kunu produced from fermented grain amaranth (Amaranthus hybridus). Annals Food Sci and Tech, 20(2), 322-331.
  • Jancurová, M., Minarovičová, L., Dandár, A. (2009). Quinoa – A Review. Czech J Food Sci, 27(2), 71-79.
  • Jin, J., Ohanenye, I.C., Udenigwe, C.C. (2020). Buckwheat proteins: Functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. Crit Rev Food Sci Nutr, 16: 1-13.
  • Kasar, C., Thanushree, M.P., Gupta, S., Inamdar, A.A. (2021). Milled fractions of common buckwheat (Fagopyrum esculentum) from the Himalayan regions: Grain characteristics, functional properties and nutrient composition. J Food Sci Tech, 58(10), 3871-3881.
  • Kozioł, M.J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J of Food Com and Analysis, 5(1), 35-68.
  • Kumar, Y., Basu, S., Goswami, D., Devi, M., Shivhare, U.S., Vishwakarma, R.K. (2022). Anti-nutritional compounds in pulses: Implications and alleviation methods. Legume Sci, 4(2), e111.
  • Manyelo, T.G., Sebola, N.A., Rensburg, E.J., Mabelebele, M. (2020). The probable use of genus amaranthus as feed material for monogastric animals. Animals, 10(9):1504, 1-17.
  • Mastebroek, H.D., Limburg, H., Gilles, T., Marvin, H.J.P. (2000). Occurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd.). J of The Sci of Food and Agric, 80(1), 152-156.
  • Mattila, P.H., Pihlava, J.M., Hellström, J., Nurmi, M., Eurola, M., Mäkinen, S., Jalava, T., Pihlanto, A. (2018). Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Qua and Safety, 2(4), 213-219.
  • Melini, F., Melini, V. (2021). Impact of fermentation on phenolic compounds and antioxidant capacity of quiona. Fermentation, 7(1): 20, 1-19.
  • Mezgebo, K., Belachew, T., Satheesh, N. (2018). Optimization of red teff flour, malted soybean flour, and papaya fruit powder blending ratios for better nutritional quality and sensory acceptability of porridge. Food Sci & Nut, 6:891-903.
  • Mir, N.A., Riar, C.S., Singh, S. (2018). Nutritional constituents of pseudo-cereals and their potential use in food systems: A Review. Trends in Food Sci & Tech, 75, 170-180.
  • Nyonje, W.A., Schafleitner, R., Abukutsa-Onyango, M., Yang, R.Y., Makokha, A., Owino, W. (2021). Precision phenotyping and association between morphological traits and nutritional content in vegetable amaranth (Amaranthus spp.). J of Agric and Food Res, 5: 100165, 1-8.
  • Reguera, M., Conesa, C.M., Gil-Gómez, A., Haros, C.M., Pérez-Casas, M.Á., Briones-Labarca, V., Bolaños L., Bonilla, I., Álvarez, R., Pinto, K., Mujica, Á., Bascuñán-Godoy, L. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 14;6:e4442.
  • Rollán, G.C., Gerez, C.L., LeBlanc, J.G. (2019). Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Front in Nutr, 6:98.
  • Saad-Allah, K.M., Youssef, M.S. (2018). Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiol Mol Biol Plants, 24(4), 617-629.
  • Satheesh, N., Fanta, S.W. (2018). Review on structural, nutritional and anti-nutritional composition of teff (Eragrostis tef) in comparison with quinoa (Chenopodium quinoa Willd.). Cogent Food & Agric, 4(1): 1546942, 1-27.
  • Shadi, H., Rouzbehan, Y., Rezaei, J., Fazaeli, H. (2020). Yield, chemical composition, fermentation characteristics, in vitro ruminal variables, and degradability of ensiled amaranth (Amaranthus hypochondriacus) cultivars compared with corn (Zea mays) silage. Trans Ani Sci, 4(4): txaa180, 1-12. Sinha, K., Khare, V. (2017). Review on: Antinutritional factors in vegetable crops. The Pharma Innov J, 6(12), 353-358.
  • Sobota, A., Świeca, M., Gęsiński, K., Wirklijowska, A., Bochnak, J. (2019). Yellow-coated quinoa (Chenopodium quinoa Willd) – Physicochemical, nutritional, and antioxidant properties. J of The Sci of Food and Agric, 100(5), 2035-2042.
  • Srujana, M.N.S., Kumari, B.A., Suneetha, W.J., Prathyusha, P. (2019). Processing technologies and health benefits of quinoa. The Pharma Innov J, 8(5), 155-160.
  • Suárez-Estrella, D., Torri, L., Pagani, M.A., Marti, A. (2018). Quinoa bitterness: Causes and solutions for improving product acceptability. J Sci Food Agric, 98(11), 4033-4041.
  • Thakur, A., Sharma, V., Thakur, A. (2019). An overview of anti-nutritional factors in food. Int J of Che Stud, 7(1), 2472-2479.
  • Thakur, P., Kumar, K. (2019). Nutritional importance and processing aspects of pseudo-cereals. J of Agric Eng and Food Tech, 6(2), 155-160.
  • Thakur, P., Kumar, K., Dhaliwal, H.S. (2021a). Nutritional facts, bio-active components and processing aspects of pseudocereals: A Comprehensive Review. Food Biosci, 42: 101170, 1-13.
  • Thakur, P., Kumar, K., Ahmed, N., Chauhan, D., Rizvi, Q.U.E.H., Jan, S., Singh, T.P., Dhaliwal, H.S. (2021b). Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Cur Res in Food Sci, 4: 917-925.
  • Valadez-Vega, C., Lugo-Magaña, O., Morales-González, J.A., Delgado-Olivares, L., Izquierdo-Vega, J.A., Sánchez-Gutiérrez, M., López-Contreras, L., Bautista, M., Velázquez-González, C. (2021). Phytochemical, cytotoxic, and genotoxic evaluation of protein extract of Amaranthus hypochondriacus seeds. CYTA – J of Food, 19(1): 701-709.
  • Villacrés, E., Quelal, M., Galarza, S., Iza, D., Silva, E. (2022). Nutritional value and bioactive compounds of leaves and grains from quinoa (Chenopodium quinoa Willd.). Plants, 11(2): 213, 1-11. Yousif, A.M., Snowball, R., D’Antuono, M.F., Dhammu, H.S., Sharma, D.L. (2020). Water droplet surface tension method – An innovation in quantifying saponin content in quinoa seed. Food Chem, 343(2): 128483, 1-20.
  • Zhang, Z.L., Zhou, M.L., Tang, Y., Li, F.L., Tang, Y.X., Shao, J.R., Xue, W.T., Wu, Y.M. (2012). Bioactive compounds in functional buckwheat food. Food Res Int, 49(1), 389-395.

ANTINUTRITIONAL COMPOUNDS OF PSEUDOCEREALS AND REDUCING METHODS

Year 2023, , 347 - 359, 15.04.2023
https://doi.org/10.15237/gida.GD22106

Abstract

seudocereals consist of buckwheat, quinoa and amaranth. Due to their gluten-free nature, they are very important food sources for people suffering from celiac disease or gluten sensitivity. It is reported that the consumption of pseudocereals is limited by antinutritional compounds which have some risks for food safety. Pseudocereals contain some antinutritional compounds, such as saponin, tannin, nitrate, oxalate, lectin, protease inhibitors and phytic acid. It is indicated that antinutritional compounds decrease the nutritional value by preventing the digestibility of food and the absorption of nutrients. Pseudocereals must be processed with appropriate technic in order to reduce or suppress unsafe metabolic pathways. It is recommended that the chemical structure of seeds, their distribution in the seed, biological effects, heat sensitivity, water solubility and processing cost of antinutritional compounds should be known while choosing the reducing method. These processing technics are hull/husk separating, mechanical abrasion, washing with water, steeping, boiling, roasting, extrusion, germination, fermentation, high hydrostatic pressure and genetic methods.

References

  • KAYNAKLAR Aderibigbe, O.R., Ezekiel, O.O., Owolade, S.O., Korese, J.K., Sturm, B., Hensel, O. (2020). Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A Review. Crit Rev Food Sci Nutr, 62(3), 656-669.
  • Akin-Idowu, P.E., Ademoyegun, O.T., Olagunju, Y.O., Aduloju, A.O., Adebo, U.G. (2017). Phytochemical content and antioxidant activity of five grain amaranth species. American J of Food Sci and Tech, 5(6), 249-255.
  • Aloo, S.O., Ofosu, F.K., Oh., D.H. (2021). Effect of germination on alfalfa and buckwheat: Phytochemical profiling by UHPLC-ESI-QTOF-MS/MS, bioactive compounds, and in vitro studies of their diabetes and obesity-related functions. Antioxidants, 10(10): 1613, 1-18. Ando, H., Chen, Y.C., Tang, H., Shimizu, M., Watanabe, K., Mitsunaga, T. (2002). Food components in fractions of quinoa seed. Food Sci and Tech Res, 8(1), 80-84.
  • Beniwal, S.K., Devi, A., Sindhu, R. (2019). Effect of processing on nutritional and physico-chemical, functional and pasting properties of amaranth and quinoa flours. Indian J Trad Know, 18(3), 500-507.
  • Bhattarai, G. (2018). Amaranth: A golden crop for future. Review Article, Himalayan J of Sci and Tech, 2, 108-116.
  • Bhinder, S., Kumari, S., Singh, B., Kaur, A., Singh, N. (2021). Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chem, 346: 128915, 1-12. Bolívar-Monsalve, E.J., Ceballos-González, C., Ramírez-Toro, C., Bolívar, G.A. (2017). Reduction in saponin content and production of gluten-free cream soup base using quinoa fermented with Lactobacillus plantarum. J of Food Proc and Pre, 42(12): e13495, 1-10.
  • Caeiro, C., Pragosa, C., Cruz, M.C., Pereira, C.D., Pereira, S.G. (2022). The role of pseudocereals in celiac disease: Reducing nutritional deficiencies to improve well-being and health. J of Nut and Met, 2022: 8502169, 1-8.
  • Carrizo, S.L., Oca, M.C.E., Hébert, M.E., Saavedra, L., Vignolo, G., LeBlanc, J.G., Rollán, G.C. (2017). Lactic acid bacteria from Andean grain amaranth: A source of vitamins and functional value enzymes. J of Mol Mic and Bio, 27(5), 289-298.
  • Castro-Alba, V., Lazarte, C.E., Perez-Rea, D., Sandberg, A.S., Carlsson, N.G., Almgren, A., Bergenståhl, B., Granfeldt, Y. (2019). Effect of fermentation and dry roasting on the nutritional quality and sensory attributes of quinoa. Food Sci & Nut, 7(12), 3902-3911.
  • Cizeikiene, D., Gaide, I., Basinskiene, L. (2021). Effect of lactic acid fermentation on quinoa characteristics and quality of quinoa-wheat composite bread. Foods, 10(1): 171, 1-16.
  • Coelho, L.M., Silva, P.M. dos S., Martins, J.T., Pinheiro, A.C., Vicente, A.A. (2018). Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct, 9(11), 5499-5512.
  • Del Hierro, J.N., Herrera, T., García-Risco, M.R., Fornari, T., Reglero, G., Martin, D. (2018). Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: Quinoa, lentil, fenugreek, soybean and lupin. Food Res Int, 109, 440-447.
  • Demir, B., Bilgiçli, N. (2020). Changes in chemical and anti-nutritional properties of pasta enriched with raw and germinated quinoa (Chenopodium quinoa Willd.) flours. J of Food Sci and Tech, 57(4), 3884-3892.
  • Deng, Y., Padilla-Zakour, O., Zhao, Y., Tao, S. (2015). Influences of high hydrostatic pressure, microwave heating, and boiling on chemical compositions, antinutritional factors, fatty acids, in vitro protein digestibility, and microstructure of buckwheat. Food Biopro Tech, 8(11), 2235-2245.
  • Diaz-Valencia, Y.K., Alca, J.J., Calori-Domingues, M.A., Zanabria-Galvez, S.J., Cruz, S.H. (2018). Nutritional composition, total phenolic compounds and antioxidant activity of quinoa (Chenopodium quinoa Willd.) of different colours. Nova Biotechnol Chim, 17(1), 74-85.
  • Drzewiecki, J., Martinez-Ayala, A.L., Lozano-Grande, M.A., Leontowicz, H., Leontowicz, M., Jastrzebski, Z., Pasko, P., Gorinstein, S. (2018). In vitro screening of bioactive compounds in some gluten-free plants. Appl Biochem Biotechnol, 186(4), 847-860.
  • Filho, A.M.M., Pirozi, M.R., Borges, J.T.S., Sant’Ana, H.M.P., Chaves, J.B.P., Coimbra, J.S.R. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Crit Rev in Food Sci and Nutr, 57(8), 1618-1630.
  • Fotschki, B., Juśkiewicz, J., Jurgoński, A., Amarowicz, R., Opyd, P., Bez, J., Muranyi, I., Petersen, I.L., Llopis, M.L. (2020). Protein-rich flours from quinoa and buckwheat favourably affect the growth parameters, intestinal microbial activity and plasma lipid profile of rats. Nutrients, 12(9): 2781, 1-12.
  • Gélinas, B., Seguin, P. (2007). Oxalate in grain amaranth. J of Agric and Food Chem, 55(12), 4789-4794.
  • Gobbetti, M., Angelis, M., Cagno, R., Polo, A., Rizzello, C.G. (2020). The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Crit Rev in Food Sci and Nut, 60(13), 2158-2173.
  • Han, Y., Chi, J., Zhang, M., Zhang, R., Fan, S., Huang, F., Xue, K., Liu, L. (2019a). Characterization of saponins and phenolic compounds: Antioxidant activity and inhibitory effects on α-glucosidase in different varieties of colored quinoa (Chenopodium quinoa Willd.). Biosci Biotechnol Biochem, 83(11), 2128-2139.
  • Han, Y., Chi, J., Zhang, M., Zhang, R., Fan, S., Dong, L., Huang, F., Liu, L. (2019b). Changes in saponins, phenolics and antioxidant activity of quinoa (Chenopodium quinoa Willd.) during milling process. LWT-Food Sci and Tech, 114: 108381, 1-7.
  • Hejazi, S.N., Orsat, V., Azadi, B., Kubow, S. (2016). Improvement of the in vitro protein digestibility of amaranth grain through optimization of the malting process. J of Cereal Sci, 68, 59-65.
  • Hernández-Ledesma, B. (2019). Quinoa (Chenopodium quinoa Willd.) as a source of nutrients and bioactive compounds: A Review. Bioact Comp in Health and Dis, 2(3), 27-47.
  • Isaac-Bambgboye, F., Edema, M., Oshundahunsi, O.F. (2019). Nutritional quality, physicochemical properties and sensory evaluation of amaranth-kunu produced from fermented grain amaranth (Amaranthus hybridus). Annals Food Sci and Tech, 20(2), 322-331.
  • Jancurová, M., Minarovičová, L., Dandár, A. (2009). Quinoa – A Review. Czech J Food Sci, 27(2), 71-79.
  • Jin, J., Ohanenye, I.C., Udenigwe, C.C. (2020). Buckwheat proteins: Functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. Crit Rev Food Sci Nutr, 16: 1-13.
  • Kasar, C., Thanushree, M.P., Gupta, S., Inamdar, A.A. (2021). Milled fractions of common buckwheat (Fagopyrum esculentum) from the Himalayan regions: Grain characteristics, functional properties and nutrient composition. J Food Sci Tech, 58(10), 3871-3881.
  • Kozioł, M.J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J of Food Com and Analysis, 5(1), 35-68.
  • Kumar, Y., Basu, S., Goswami, D., Devi, M., Shivhare, U.S., Vishwakarma, R.K. (2022). Anti-nutritional compounds in pulses: Implications and alleviation methods. Legume Sci, 4(2), e111.
  • Manyelo, T.G., Sebola, N.A., Rensburg, E.J., Mabelebele, M. (2020). The probable use of genus amaranthus as feed material for monogastric animals. Animals, 10(9):1504, 1-17.
  • Mastebroek, H.D., Limburg, H., Gilles, T., Marvin, H.J.P. (2000). Occurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd.). J of The Sci of Food and Agric, 80(1), 152-156.
  • Mattila, P.H., Pihlava, J.M., Hellström, J., Nurmi, M., Eurola, M., Mäkinen, S., Jalava, T., Pihlanto, A. (2018). Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Qua and Safety, 2(4), 213-219.
  • Melini, F., Melini, V. (2021). Impact of fermentation on phenolic compounds and antioxidant capacity of quiona. Fermentation, 7(1): 20, 1-19.
  • Mezgebo, K., Belachew, T., Satheesh, N. (2018). Optimization of red teff flour, malted soybean flour, and papaya fruit powder blending ratios for better nutritional quality and sensory acceptability of porridge. Food Sci & Nut, 6:891-903.
  • Mir, N.A., Riar, C.S., Singh, S. (2018). Nutritional constituents of pseudo-cereals and their potential use in food systems: A Review. Trends in Food Sci & Tech, 75, 170-180.
  • Nyonje, W.A., Schafleitner, R., Abukutsa-Onyango, M., Yang, R.Y., Makokha, A., Owino, W. (2021). Precision phenotyping and association between morphological traits and nutritional content in vegetable amaranth (Amaranthus spp.). J of Agric and Food Res, 5: 100165, 1-8.
  • Reguera, M., Conesa, C.M., Gil-Gómez, A., Haros, C.M., Pérez-Casas, M.Á., Briones-Labarca, V., Bolaños L., Bonilla, I., Álvarez, R., Pinto, K., Mujica, Á., Bascuñán-Godoy, L. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 14;6:e4442.
  • Rollán, G.C., Gerez, C.L., LeBlanc, J.G. (2019). Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Front in Nutr, 6:98.
  • Saad-Allah, K.M., Youssef, M.S. (2018). Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiol Mol Biol Plants, 24(4), 617-629.
  • Satheesh, N., Fanta, S.W. (2018). Review on structural, nutritional and anti-nutritional composition of teff (Eragrostis tef) in comparison with quinoa (Chenopodium quinoa Willd.). Cogent Food & Agric, 4(1): 1546942, 1-27.
  • Shadi, H., Rouzbehan, Y., Rezaei, J., Fazaeli, H. (2020). Yield, chemical composition, fermentation characteristics, in vitro ruminal variables, and degradability of ensiled amaranth (Amaranthus hypochondriacus) cultivars compared with corn (Zea mays) silage. Trans Ani Sci, 4(4): txaa180, 1-12. Sinha, K., Khare, V. (2017). Review on: Antinutritional factors in vegetable crops. The Pharma Innov J, 6(12), 353-358.
  • Sobota, A., Świeca, M., Gęsiński, K., Wirklijowska, A., Bochnak, J. (2019). Yellow-coated quinoa (Chenopodium quinoa Willd) – Physicochemical, nutritional, and antioxidant properties. J of The Sci of Food and Agric, 100(5), 2035-2042.
  • Srujana, M.N.S., Kumari, B.A., Suneetha, W.J., Prathyusha, P. (2019). Processing technologies and health benefits of quinoa. The Pharma Innov J, 8(5), 155-160.
  • Suárez-Estrella, D., Torri, L., Pagani, M.A., Marti, A. (2018). Quinoa bitterness: Causes and solutions for improving product acceptability. J Sci Food Agric, 98(11), 4033-4041.
  • Thakur, A., Sharma, V., Thakur, A. (2019). An overview of anti-nutritional factors in food. Int J of Che Stud, 7(1), 2472-2479.
  • Thakur, P., Kumar, K. (2019). Nutritional importance and processing aspects of pseudo-cereals. J of Agric Eng and Food Tech, 6(2), 155-160.
  • Thakur, P., Kumar, K., Dhaliwal, H.S. (2021a). Nutritional facts, bio-active components and processing aspects of pseudocereals: A Comprehensive Review. Food Biosci, 42: 101170, 1-13.
  • Thakur, P., Kumar, K., Ahmed, N., Chauhan, D., Rizvi, Q.U.E.H., Jan, S., Singh, T.P., Dhaliwal, H.S. (2021b). Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Cur Res in Food Sci, 4: 917-925.
  • Valadez-Vega, C., Lugo-Magaña, O., Morales-González, J.A., Delgado-Olivares, L., Izquierdo-Vega, J.A., Sánchez-Gutiérrez, M., López-Contreras, L., Bautista, M., Velázquez-González, C. (2021). Phytochemical, cytotoxic, and genotoxic evaluation of protein extract of Amaranthus hypochondriacus seeds. CYTA – J of Food, 19(1): 701-709.
  • Villacrés, E., Quelal, M., Galarza, S., Iza, D., Silva, E. (2022). Nutritional value and bioactive compounds of leaves and grains from quinoa (Chenopodium quinoa Willd.). Plants, 11(2): 213, 1-11. Yousif, A.M., Snowball, R., D’Antuono, M.F., Dhammu, H.S., Sharma, D.L. (2020). Water droplet surface tension method – An innovation in quantifying saponin content in quinoa seed. Food Chem, 343(2): 128483, 1-20.
  • Zhang, Z.L., Zhou, M.L., Tang, Y., Li, F.L., Tang, Y.X., Shao, J.R., Xue, W.T., Wu, Y.M. (2012). Bioactive compounds in functional buckwheat food. Food Res Int, 49(1), 389-395.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Ayşenur Arslan 0000-0003-1658-746X

Erkan Yalçın 0000-0002-7417-9088

Publication Date April 15, 2023
Published in Issue Year 2023

Cite

APA Arslan, A., & Yalçın, E. (2023). PSEUDO-TAHILLARIN ANTİ-BESİNSEL BİLEŞİKLERİ VE AZALTMA YÖNTEMLERİ. Gıda, 48(2), 347-359. https://doi.org/10.15237/gida.GD22106
AMA Arslan A, Yalçın E. PSEUDO-TAHILLARIN ANTİ-BESİNSEL BİLEŞİKLERİ VE AZALTMA YÖNTEMLERİ. GIDA. April 2023;48(2):347-359. doi:10.15237/gida.GD22106
Chicago Arslan, Ayşenur, and Erkan Yalçın. “PSEUDO-TAHILLARIN ANTİ-BESİNSEL BİLEŞİKLERİ VE AZALTMA YÖNTEMLERİ”. Gıda 48, no. 2 (April 2023): 347-59. https://doi.org/10.15237/gida.GD22106.
EndNote Arslan A, Yalçın E (April 1, 2023) PSEUDO-TAHILLARIN ANTİ-BESİNSEL BİLEŞİKLERİ VE AZALTMA YÖNTEMLERİ. Gıda 48 2 347–359.
IEEE A. Arslan and E. Yalçın, “PSEUDO-TAHILLARIN ANTİ-BESİNSEL BİLEŞİKLERİ VE AZALTMA YÖNTEMLERİ”, GIDA, vol. 48, no. 2, pp. 347–359, 2023, doi: 10.15237/gida.GD22106.
ISNAD Arslan, Ayşenur - Yalçın, Erkan. “PSEUDO-TAHILLARIN ANTİ-BESİNSEL BİLEŞİKLERİ VE AZALTMA YÖNTEMLERİ”. Gıda 48/2 (April 2023), 347-359. https://doi.org/10.15237/gida.GD22106.
JAMA Arslan A, Yalçın E. PSEUDO-TAHILLARIN ANTİ-BESİNSEL BİLEŞİKLERİ VE AZALTMA YÖNTEMLERİ. GIDA. 2023;48:347–359.
MLA Arslan, Ayşenur and Erkan Yalçın. “PSEUDO-TAHILLARIN ANTİ-BESİNSEL BİLEŞİKLERİ VE AZALTMA YÖNTEMLERİ”. Gıda, vol. 48, no. 2, 2023, pp. 347-59, doi:10.15237/gida.GD22106.
Vancouver Arslan A, Yalçın E. PSEUDO-TAHILLARIN ANTİ-BESİNSEL BİLEŞİKLERİ VE AZALTMA YÖNTEMLERİ. GIDA. 2023;48(2):347-59.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/