Research Article
BibTex RIS Cite

FARKLI DEPOLAMA KOŞULLARININ MERLOT ŞARAPLARINDA ANTOSİYANİN PROFİLİ ÜZERİNE ETKİSİ

Year 2023, , 160 - 170, 15.02.2023
https://doi.org/10.15237/gida.GD22111

Abstract

Üzüm çeşidi ve sağlığı, şarap yapım süreçleri, iklim ve toprak, kullanılan tarım teknikleri, depolama sıcaklığı ve depolama süresi kırmızı şarabın fenolik içeriğindeki en önemli etkenlerdir. Bu çalışmada, depolama sıcaklığının ve süresinin, Merlot şarabının antosiyanin bileşiklerinin dağılımı ve toplam monomerik antosiyanin (TMA) içeriği üzerindeki etkileri, depolamanın başlangıcında ve sonraki üç aylık dönemlerde incelenmiştir. Şarap örneklerinde siyanidin 3-glikozit, peonidin 3-glikozit, pelargonin 3-glikozit, delphinidin 3-glikozit ve malvidin 3-glikozit antosiyaninlerinin miktar ve dağılımı modifiye edilmiş HPLC yöntemi ile kantitatif olarak tanımlanmıştır. Şaraplarda 24 aylık depolama sonunda TMA içeriğindeki değişim değerlendirildiğinde depolama öncesi değerlere kıyasla 4-5 °C'de %13.77, 8-10 °C'de %24.28, 12-14 °C'de %43.93 ve 18-20 °C'de %66.29 oranında azalma olduğu belirlenmiştir.

References

  • Anlı, E.R. (2011). Şarap Tadımı. İnkılap Yayınları, İstanbul, Türkiye, 215 s.
  • Anonymous (1990). Recueil des Methodes Internationales D‟Analyse des Vins et des Mouts, Office International de la Vigne et du Vin, 368, Paris.
  • Anonymous (2003). Resolution Oeno 22/2003 HPLC-determination of nine major anthocyanins in red and rose wine.
  • Basli, A., Soulet, S., Chaher, N., Merillon, J.M., Chibane, M., Monti, J.P. (2012). Wine polyphenols: potential agents in neuroprotection. Oxidative Medicine Cellular Longevity, 2012: 1-14.
  • Benucci, I. (2020). Impact of post-bottling storage conditions on colour and sensory profile of a rosé sparkling wine. Food Science and Technology, 118:108732.
  • Biasi, F., Deiana, M., Guina, T., Gamba, P., Leonarduzzi, G., Poli, G. (2014). Wine consumption and intestinal redox homeostasis. Redox Biology, 2: 795-802.
  • Blanco-Vega, D., Gomez-Alonso, S., Hermosin-Gutierrez, I. (2014). Identification, content and distribution of anthocyanins and low molecular weight anthocyanin-derived pigments in Spanish commercial red wines. Food Chemistry, 158: 449-458.
  • Castillo-Munoz, N., Gomez-Alonso, S., Garcia-Romero, E., Hermosin-Gutierrez, I. (2010). Flavonol profiles of vitis vinifera white grape cultivars. Journal of Food Composition and Analysis, 23: 699-705.
  • Cheynier, V., Duenas-Paton, M., Salas, E., Maury, C., Souquet, J.M., Sarni-Manchado, P. (2006). Structure and properties of wine pigments and tannins. American Journal of Enology and Viticulture, 57(3): 298-305.
  • Fulcrand, H., Duenas, M., Salas, E., Cheynier, V. (2006). Phenolic reactions during winemaking and aging. American Journal of Enology and Viticulture, 57: 289-297.
  • Garcia-Falcon, M.S., Perez-Lamela, C., Martinez-Carballo, E., Simal-Gandara, J. (2007). Determination of phenolic compounds in wines: Influence of bottle storage of young red wines on their evolution. Food Chemistry, 105: 248-259.
  • Gomez-Plaza, E., Munoz-Gil, R., Lopez-Roca, J.M., Martinez, A. (2000). Color and phenolic compounds of a young red wine. Influence of wine-making techniques, storage temperature, and length of storage time. Journal of Agricultural and Food Chemistry, 48: 736-741.
  • Gomez-Plaza, E., Munoz-Gil, R., Lopez-Roca, J.M., Martinez-Cutillas, A., Fernandez, I. (2002). Maintenance of colour composition of a red wine during storage. Influence of prefermentative practices, maceration time and storage. Lebensmittel-Wissenschaft and Technologie, 35: 46-53.
  • Guisti, M., Wrolstad, R. (2003). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Wrolstad, R.E, Editor. Current protocols in food analytical chemistry. New York: John and Wiley, Inc. P F1.2.1-F1.2.13.
  • Han, F.L., Zhang, W.N., Pan, Q.H., Zheng, C.R., Chen, H.Y., Duan, C.Q. (2008). Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines. Molecules, 13: 2859-2870.
  • Han, F., Ju, Y., Ruan, X., Zhao, X., Yue, X., Zhuang, X., Qin, M., Fang, Y. (2017). Color, anthocyanin, and antioxidant characteristics of young wines produced from spine grapes (Vitis davidii Foex) in China. Journal of Food and Nutrition Research, 61: 1339552.
  • He, F., Liang, N.N., Mu, L., Pan, Q.H., Wang, J., Reeves, M.J., Duan, C.Q. (2012). Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules, 17(2): 1571-1601.
  • Hermosin Gutierrez, I., Sanchez-Palomo Lorenzo, E., Vicario Espinosa, A. (2005). Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from the cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chemistry, 92, 269-283.
  • Ifie, I., Abranko, L., Villa-Rodriquez, J.A., Papp, N., Ho, P., Williamson, G., Marshall, L.J. (2018). The effect of aging temperature on the physicochemical properties, phytochemical profile and a-glucosidase inhibition of Hibiscus sabdariffa (roselle) wine. Food Chemistry, 267: 263-270.
  • Ivanova, V., Dörnyei, A., Mark, L., Vojnoski, B., Stafilov, T., Stefova, M. ve Kilar, F. (2011). Polyphenolic content of Vranec wines produced by different vinification con-ditions. Food Chemistry, 124(1): 316-325.
  • Ivanova, V., Hermosın-Gutierrez, I., Boros, B., Stefova, M., Stafilov, T., Vojnoski, B., Dörnyei, A., Kilar, F. (2015). Phenolic compounds and antioxidant activity of Macedonian red wines. Journal of Food Composition and Analysis, 41: 1-14.
  • Lago-Vanzela, E.S., Procopio, D.P., Fontes, E.A.F., Ramos, A.M., Stringheta, P.C., Da-Silva, R., Castillo-Munoz, N., Hermosin-Gutierrez, I. (2014). Aging of red wines made from hybrid grape cv. BRS Violeta: Effects of accelerated aging conditions on phenolic composition, color and antioxidant activity. Food Research International, 56, 182-189.
  • Lingua, M.S., Wunderlin, D.A., Baroni, M.V. (2018). Effect of simulated digestion on the phenolic components of red grapes and their corresponding wines. Journal of Functional Foods, 44: 86-94.
  • Lukic, I., Radeka, S., Budic-Leto, I., Bubola, M., Vrhovsek, U. (2019). Targeted UPLCQqQ-MS/MS profiling of phenolic compounds for differentiation of monovarietal wines and corroboration of particular varietal typicity concepts. Food Chemistry, 300: 125251.
  • Marquez, A., Serratosa, M.P., Merida, J. (2014). Influence of bottle storage time on colour, phenolic composition and sensory properties of sweet red wines. Food Chemistry, 146: 507-514.
  • Maury, C., Clark, A.C., Scollary, G.R. (2010). Determination of the impact of bottle colour and phenolic concentrations on pigment development in white wines stored under external conditions. Analytica Chimica Acta, 660: 81-86.
  • Nardini, M., Garaguso, I. (2018). Effect of sulfites on antioxidant activity, total polyphenols, and flavonoid measurements in white wine. Foods, 7: 35-49.
  • Ough C.S., Amerine, M.A. (1988). Methods for analysis of must and wines. John Wiley and Sons. New York.
  • Paixao, N., Perestrelo, R., Marques, J.C., Camara, J.S. (2007). Relationship between antioxidant capacity and total phenolic content of red, rose and white wines. Food Chemistry, 105: 204-214.
  • Ribereau-Gayon, P., Glories, Y., Maujean, A., Dubourdieau., D. (2000). Handbook of Enology, Volume 2: The Chemistry of Wine and Stabilization and Treatments. John Wiley And Sons Ltd., England.
  • Robinson, A.L., Mueller, M., Heymann, H., Ebeler, S.E., Boss, P.K., Solomon, P.S., Trengove, R.D. (2010). Effect of simulated shipping conditions on sensory attributes and volatile composition of commercial white and red wines. American Journal of Enology and Viticulture, 61: 337-347.
  • Schrieks, I.C., Van den Berg, R., Sierksma, A., Beulens, J.W.J., Vaes, W.H.J., Hendriks, H.F.J., (2013). Effect of red wine consumption on biomarkers of oxidative stress. Alcohol and Alcoholism. 48: 153-159.
  • Scrimgeour, N., Nordestgaard, S., Lloyd, N.D.R., Wilkes, E.N. (2015). Exploring the effect of elevated storage temperature on wine composition. Australian Journal of Grape and Wine Research, 21: 713-722.
  • Somers, T.C. (1971). The polymeric nature of wine pigments. Phytochemistry, 10: 2175-2186.
  • Tuberosoa, C.I.G., Serrelia, G., Congiua, F., Montorob, P., Fenua, M.A. (2017). Characterization, phenolic profile, nitrogen compounds and antioxidant activity of Carignano wines. Journal of Food Composition and Analysis, 58: 60-68.
  • Walzem, R.L. (2008). Wine and health: state of proofs and research needs. Inflammopharmacology, 16: 265-271.
  • Waterhouse, A. L., Zhu, J. (2020). A quarter century of wine pigment discovery. Journal of the Science of Food and Agriculture, 100(14): 5093–5101.
  • Zafrilla, P., Morillas, J., Mulero, J., Cayuela, J.M., Martinez-Cacha, A., Pardo, F., Nicolas J.M.L. (2003). Changes during storage in conventional and ecological wine: Phenolic content and antioxidant activity. Journal of Agricultural and Food Chemistry, 51: 4694-4700.
  • Zhao, X., Zhang, N., He, F., Duan, C. (2022). Reactivity comparison of three malvidin-type anthocyanins forming derived pigments in model wine solutions. Food Chemistry, 384: 132534.

THE EFFECT OF DIFFERENT STORAGE CONDITIONS ON ANTHOCYANIN PROFILE OF MERLOT RED WINES

Year 2023, , 160 - 170, 15.02.2023
https://doi.org/10.15237/gida.GD22111

Abstract

Grape variety and health, soil and climate, agricultural techniques used, winemaking processes, storage time and temperature are the most important agents in the phenolic content of red wine. In this study, the effects of storage temperature and time on the distribution of anthocyanin compounds, and the total monomeric anthocyanin (TMA) content of Merlot wines were investigated at the beginning of storage and the following quarterly periods. The amount and distribution of delphinidin 3-glucoside, pelargonin 3-glucoside, malvidin 3-glucoside, cyanidin 3-glucoside, and peonidin 3-glucoside anthocyanins in wine samples were defined quantitatively by modifying HPLC method. When the change in TMA content in wines was evaluated, it was determined that there was a decrease of 13.77% at 4-5 °C, 24.28% at 8-10 °C, 43.93% at 12-14 °C, and 66.29% at 18-20 °C compared to the values before storage at the last of 24 months of storage.

References

  • Anlı, E.R. (2011). Şarap Tadımı. İnkılap Yayınları, İstanbul, Türkiye, 215 s.
  • Anonymous (1990). Recueil des Methodes Internationales D‟Analyse des Vins et des Mouts, Office International de la Vigne et du Vin, 368, Paris.
  • Anonymous (2003). Resolution Oeno 22/2003 HPLC-determination of nine major anthocyanins in red and rose wine.
  • Basli, A., Soulet, S., Chaher, N., Merillon, J.M., Chibane, M., Monti, J.P. (2012). Wine polyphenols: potential agents in neuroprotection. Oxidative Medicine Cellular Longevity, 2012: 1-14.
  • Benucci, I. (2020). Impact of post-bottling storage conditions on colour and sensory profile of a rosé sparkling wine. Food Science and Technology, 118:108732.
  • Biasi, F., Deiana, M., Guina, T., Gamba, P., Leonarduzzi, G., Poli, G. (2014). Wine consumption and intestinal redox homeostasis. Redox Biology, 2: 795-802.
  • Blanco-Vega, D., Gomez-Alonso, S., Hermosin-Gutierrez, I. (2014). Identification, content and distribution of anthocyanins and low molecular weight anthocyanin-derived pigments in Spanish commercial red wines. Food Chemistry, 158: 449-458.
  • Castillo-Munoz, N., Gomez-Alonso, S., Garcia-Romero, E., Hermosin-Gutierrez, I. (2010). Flavonol profiles of vitis vinifera white grape cultivars. Journal of Food Composition and Analysis, 23: 699-705.
  • Cheynier, V., Duenas-Paton, M., Salas, E., Maury, C., Souquet, J.M., Sarni-Manchado, P. (2006). Structure and properties of wine pigments and tannins. American Journal of Enology and Viticulture, 57(3): 298-305.
  • Fulcrand, H., Duenas, M., Salas, E., Cheynier, V. (2006). Phenolic reactions during winemaking and aging. American Journal of Enology and Viticulture, 57: 289-297.
  • Garcia-Falcon, M.S., Perez-Lamela, C., Martinez-Carballo, E., Simal-Gandara, J. (2007). Determination of phenolic compounds in wines: Influence of bottle storage of young red wines on their evolution. Food Chemistry, 105: 248-259.
  • Gomez-Plaza, E., Munoz-Gil, R., Lopez-Roca, J.M., Martinez, A. (2000). Color and phenolic compounds of a young red wine. Influence of wine-making techniques, storage temperature, and length of storage time. Journal of Agricultural and Food Chemistry, 48: 736-741.
  • Gomez-Plaza, E., Munoz-Gil, R., Lopez-Roca, J.M., Martinez-Cutillas, A., Fernandez, I. (2002). Maintenance of colour composition of a red wine during storage. Influence of prefermentative practices, maceration time and storage. Lebensmittel-Wissenschaft and Technologie, 35: 46-53.
  • Guisti, M., Wrolstad, R. (2003). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Wrolstad, R.E, Editor. Current protocols in food analytical chemistry. New York: John and Wiley, Inc. P F1.2.1-F1.2.13.
  • Han, F.L., Zhang, W.N., Pan, Q.H., Zheng, C.R., Chen, H.Y., Duan, C.Q. (2008). Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines. Molecules, 13: 2859-2870.
  • Han, F., Ju, Y., Ruan, X., Zhao, X., Yue, X., Zhuang, X., Qin, M., Fang, Y. (2017). Color, anthocyanin, and antioxidant characteristics of young wines produced from spine grapes (Vitis davidii Foex) in China. Journal of Food and Nutrition Research, 61: 1339552.
  • He, F., Liang, N.N., Mu, L., Pan, Q.H., Wang, J., Reeves, M.J., Duan, C.Q. (2012). Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules, 17(2): 1571-1601.
  • Hermosin Gutierrez, I., Sanchez-Palomo Lorenzo, E., Vicario Espinosa, A. (2005). Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from the cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chemistry, 92, 269-283.
  • Ifie, I., Abranko, L., Villa-Rodriquez, J.A., Papp, N., Ho, P., Williamson, G., Marshall, L.J. (2018). The effect of aging temperature on the physicochemical properties, phytochemical profile and a-glucosidase inhibition of Hibiscus sabdariffa (roselle) wine. Food Chemistry, 267: 263-270.
  • Ivanova, V., Dörnyei, A., Mark, L., Vojnoski, B., Stafilov, T., Stefova, M. ve Kilar, F. (2011). Polyphenolic content of Vranec wines produced by different vinification con-ditions. Food Chemistry, 124(1): 316-325.
  • Ivanova, V., Hermosın-Gutierrez, I., Boros, B., Stefova, M., Stafilov, T., Vojnoski, B., Dörnyei, A., Kilar, F. (2015). Phenolic compounds and antioxidant activity of Macedonian red wines. Journal of Food Composition and Analysis, 41: 1-14.
  • Lago-Vanzela, E.S., Procopio, D.P., Fontes, E.A.F., Ramos, A.M., Stringheta, P.C., Da-Silva, R., Castillo-Munoz, N., Hermosin-Gutierrez, I. (2014). Aging of red wines made from hybrid grape cv. BRS Violeta: Effects of accelerated aging conditions on phenolic composition, color and antioxidant activity. Food Research International, 56, 182-189.
  • Lingua, M.S., Wunderlin, D.A., Baroni, M.V. (2018). Effect of simulated digestion on the phenolic components of red grapes and their corresponding wines. Journal of Functional Foods, 44: 86-94.
  • Lukic, I., Radeka, S., Budic-Leto, I., Bubola, M., Vrhovsek, U. (2019). Targeted UPLCQqQ-MS/MS profiling of phenolic compounds for differentiation of monovarietal wines and corroboration of particular varietal typicity concepts. Food Chemistry, 300: 125251.
  • Marquez, A., Serratosa, M.P., Merida, J. (2014). Influence of bottle storage time on colour, phenolic composition and sensory properties of sweet red wines. Food Chemistry, 146: 507-514.
  • Maury, C., Clark, A.C., Scollary, G.R. (2010). Determination of the impact of bottle colour and phenolic concentrations on pigment development in white wines stored under external conditions. Analytica Chimica Acta, 660: 81-86.
  • Nardini, M., Garaguso, I. (2018). Effect of sulfites on antioxidant activity, total polyphenols, and flavonoid measurements in white wine. Foods, 7: 35-49.
  • Ough C.S., Amerine, M.A. (1988). Methods for analysis of must and wines. John Wiley and Sons. New York.
  • Paixao, N., Perestrelo, R., Marques, J.C., Camara, J.S. (2007). Relationship between antioxidant capacity and total phenolic content of red, rose and white wines. Food Chemistry, 105: 204-214.
  • Ribereau-Gayon, P., Glories, Y., Maujean, A., Dubourdieau., D. (2000). Handbook of Enology, Volume 2: The Chemistry of Wine and Stabilization and Treatments. John Wiley And Sons Ltd., England.
  • Robinson, A.L., Mueller, M., Heymann, H., Ebeler, S.E., Boss, P.K., Solomon, P.S., Trengove, R.D. (2010). Effect of simulated shipping conditions on sensory attributes and volatile composition of commercial white and red wines. American Journal of Enology and Viticulture, 61: 337-347.
  • Schrieks, I.C., Van den Berg, R., Sierksma, A., Beulens, J.W.J., Vaes, W.H.J., Hendriks, H.F.J., (2013). Effect of red wine consumption on biomarkers of oxidative stress. Alcohol and Alcoholism. 48: 153-159.
  • Scrimgeour, N., Nordestgaard, S., Lloyd, N.D.R., Wilkes, E.N. (2015). Exploring the effect of elevated storage temperature on wine composition. Australian Journal of Grape and Wine Research, 21: 713-722.
  • Somers, T.C. (1971). The polymeric nature of wine pigments. Phytochemistry, 10: 2175-2186.
  • Tuberosoa, C.I.G., Serrelia, G., Congiua, F., Montorob, P., Fenua, M.A. (2017). Characterization, phenolic profile, nitrogen compounds and antioxidant activity of Carignano wines. Journal of Food Composition and Analysis, 58: 60-68.
  • Walzem, R.L. (2008). Wine and health: state of proofs and research needs. Inflammopharmacology, 16: 265-271.
  • Waterhouse, A. L., Zhu, J. (2020). A quarter century of wine pigment discovery. Journal of the Science of Food and Agriculture, 100(14): 5093–5101.
  • Zafrilla, P., Morillas, J., Mulero, J., Cayuela, J.M., Martinez-Cacha, A., Pardo, F., Nicolas J.M.L. (2003). Changes during storage in conventional and ecological wine: Phenolic content and antioxidant activity. Journal of Agricultural and Food Chemistry, 51: 4694-4700.
  • Zhao, X., Zhang, N., He, F., Duan, C. (2022). Reactivity comparison of three malvidin-type anthocyanins forming derived pigments in model wine solutions. Food Chemistry, 384: 132534.
There are 39 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Esma Nur Geçer 0000-0002-0095-079X

Ertan Anlı 0000-0002-3320-0629

Publication Date February 15, 2023
Published in Issue Year 2023

Cite

APA Geçer, E. N., & Anlı, E. (2023). THE EFFECT OF DIFFERENT STORAGE CONDITIONS ON ANTHOCYANIN PROFILE OF MERLOT RED WINES. Gıda, 48(1), 160-170. https://doi.org/10.15237/gida.GD22111
AMA Geçer EN, Anlı E. THE EFFECT OF DIFFERENT STORAGE CONDITIONS ON ANTHOCYANIN PROFILE OF MERLOT RED WINES. GIDA. February 2023;48(1):160-170. doi:10.15237/gida.GD22111
Chicago Geçer, Esma Nur, and Ertan Anlı. “THE EFFECT OF DIFFERENT STORAGE CONDITIONS ON ANTHOCYANIN PROFILE OF MERLOT RED WINES”. Gıda 48, no. 1 (February 2023): 160-70. https://doi.org/10.15237/gida.GD22111.
EndNote Geçer EN, Anlı E (February 1, 2023) THE EFFECT OF DIFFERENT STORAGE CONDITIONS ON ANTHOCYANIN PROFILE OF MERLOT RED WINES. Gıda 48 1 160–170.
IEEE E. N. Geçer and E. Anlı, “THE EFFECT OF DIFFERENT STORAGE CONDITIONS ON ANTHOCYANIN PROFILE OF MERLOT RED WINES”, GIDA, vol. 48, no. 1, pp. 160–170, 2023, doi: 10.15237/gida.GD22111.
ISNAD Geçer, Esma Nur - Anlı, Ertan. “THE EFFECT OF DIFFERENT STORAGE CONDITIONS ON ANTHOCYANIN PROFILE OF MERLOT RED WINES”. Gıda 48/1 (February 2023), 160-170. https://doi.org/10.15237/gida.GD22111.
JAMA Geçer EN, Anlı E. THE EFFECT OF DIFFERENT STORAGE CONDITIONS ON ANTHOCYANIN PROFILE OF MERLOT RED WINES. GIDA. 2023;48:160–170.
MLA Geçer, Esma Nur and Ertan Anlı. “THE EFFECT OF DIFFERENT STORAGE CONDITIONS ON ANTHOCYANIN PROFILE OF MERLOT RED WINES”. Gıda, vol. 48, no. 1, 2023, pp. 160-7, doi:10.15237/gida.GD22111.
Vancouver Geçer EN, Anlı E. THE EFFECT OF DIFFERENT STORAGE CONDITIONS ON ANTHOCYANIN PROFILE OF MERLOT RED WINES. GIDA. 2023;48(1):160-7.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/