Research Article
BibTex RIS Cite

HYDROGEL FORMING POTENTIAL OF PECTIN DERIVED FROM SOUR CHERRY WASTE WITH SOY-BASED PLANT PROTEIN: EFFECT OF HYDROGEL NATURE ON PHENOLIC RELEASE

Year 2023, , 831 - 845, 15.08.2023
https://doi.org/10.15237/gida.GD23068

Abstract

This study aimed the usage of pectin (VCP) obtained from defatted and deproteinized cherry (Prunus cerasus L.) seeds as a supporting material in fabrication of soybean-based natural hydrogels. Production step of pectin powders was verified by Fourier transform infrared (FTIR) spectroscopy. Physicochemical and functional properties of VCP were discussed in comparison with commercial pectin (TP). Natural hydrogels with three different natures (SH: soybean protein alone; SVPH: soybean protein and VCP blend; STPH: soybean protein and TP blend) were constructed. Surface morphologies of gels were examined using scanning electron microscopy. Effective values for functional properties were determined in SVPH (water holding capacity: 91.65%; swelling ratio: 5.78%; protein leachability: 12.51%) followed by STPH (water holding capacity: 83.99%; swelling ratio: 5.37%; protein leachability: 15.81%), and SH (water holding capacity: 65.74%; swelling ratio: 3.56%; protein leachability: 23.11%). SVPH and STPH were ahead in terms of mechanical properties. Also, they were successful in phenolic delivery.

References

  • Abaee, A., Mohammadian, M., Jafari, S. M. (2017). Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology, 70: 69–81, https://doi.org/10.1016/j.tifs.2017.10.011
  • Andrade, J., Pereira, C. G., Almeida Junior, J. C. de, Viana, C. C. R., Neves, L. N. de O., Silva, P. H. F. da, Bell, M. J. V., Anjos, V. de C. dos. (2019). FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT-Food Science and Technology, 99: 166–172, https://doi.org/10.1016/j.lwt.2018.09.079
  • Bashash, M., Varidi, M., Varshosaz, J. (2022). Ultrasound-triggered transglutaminase-catalyzed egg white-bovine gelatin composite hydrogel: Physicochemical and rheological studies. Innovative Food Science & Emerging Technologies, 76: 102936, https://doi.org/10.1016/ j.ifset.2022.102936
  • Başyiğit, B., Altun, G., Yücetepe, M., Karaaslan, A., Karaaslan, M. (2023). Locust bean gum provides excellent mechanical and release attributes to soy protein-based natural hydrogels. International Journal of Biological Macromolecules, 231: 123352, https://doi.org/10.1016/ j.ijbiomac.2023.123352
  • Başyiğit, B., Görgüç, A., Gençdağ, E., Cansu, Ü., Yılmaz, F. M., Karaaslan, M. (2022). Functional characterization of high-yield plant protein powder valorized from de-oiled sour cherry seed using microwave-assisted enzymatic extraction followed by spray- and freeze-drying. Biomass Conversion and Biorefinery, https://doi.org/ 10.1007/s13399-022-03225-2
  • Başyiğit, B., Sağlam, H., Hayoğlu, İ., & Karaaslan, M. (2021a). Spectroscopic (LC‐ESI‐MS/MS, FT‐IR, NMR) and functional characterization of fruit seed oils extracted with green technology: A comparative study with Prunus cerasus and Punica granatum oils. Journal of Food Processing and Preservation, 45(5): e15451, https://doi.org/ 10.1111/jfpp.15451
  • Başyiğit, B., Yücetepe, M., Karaaslan, A., Karaaslan, M. (2021b). High efficiency microencapsulation of extra virgin olive oil (EVOO) with novel carrier agents: Fruit proteins. Materials Today Communications, 28: 102618, https://doi.org/10.1016/j.mtcomm.2021.102618
  • Cairone, F., Fraschetti, C., Menghini, L., Zengin, G., Filippi, A., Casadei, M. A., Cesa, S. (2023). Effects of processing on chemical composition of extracts from sour cherry fruits, a neglected functional food. Antioxidants, 12(2): 445, https://doi.org/10.3390/antiox12020445
  • Çam, M., İçyer, N. C., Erdoğan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT - Food Science and Technology, 55(1): 117–123, https://doi.org/10.1016/j.lwt.2013.09.011
  • Casas-Orozco, D., Villa, A. L., Bustamante, F., González, L.-M. (2015). Process development and simulation of pectin extraction from orange peels. Food and Bioproducts Processing, 96: 86–98, https://doi.org/10.1016/j.fbp.2015.06.006
  • Chaovanalikit, A., Wrolstad, R. E. (2004). Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Journal of Food Science, 69(1): FCT67–FCT72, https://doi.org/10.1111/j.1365-2621.2004.tb17858.x
  • Cho, S. M., Kwak, K. S., Park, D. C., Gu, Y. S., Ji, C. I., Jang, D. H., Lee, Y. B., Kim, S. B. (2004). Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage. Food Hydrocolloids, 18(4): 573–579, https://doi.org/10.1016/j.foodhyd.2003.10.001
  • Chouaibi, M., Rezig, L., Hamdi, S., Ferrari, G. (2019). Chemical characteristics and compositions of red pepper seed oils extracted by different methods. Industrial Crops and Products, 128: 363–370, https://doi.org/10.1016/ j.indcrop.2018.11.030
  • Demirkıran, E., Başyi̇ğit, B., Altun, G., Yücetepe, M., Sağlam, H., Karaaslan, M. (2022). Facile construction of fruit protein based natural hydrogel via intra/inter molecular cross-linking. Food Hydrocolloids, 133: 107899, https://doi.org/10.1016/j.foodhyd.2022.107899
  • Dinerman, A. A., Cappello, J., Ghandehari, H., Hoag, S. W. (2002). Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel. Biomaterials, 23(21): 4203–4210, https://doi.org/10.1016/S0142-9612(02)00164-3
  • Duangmal, K., Saicheua, B., Sueeprasan, S. (2008). Colour evaluation of freeze-dried roselle extract as a natural food colorant in a model system of a drink. LWT - Food Science and Technology, 41(8): 1437–1445, https://doi.org/ 10.1016/j.lwt.2007.08.014
  • Feki, A., Hamdi, M., Jaballi, I., Zghal, S., Nasri, M., Ben Amara, I. (2020). Conception and characterization of a multi-sensitive composite chitosan-red marine alga-polysaccharide hydrogels for insulin controlled-release. Carbohydrate Polymers, 236: 116046, https://doi.org/10.1016/j.carbpol.2020.116046
  • Ghanbari, M., Sadjadinia, A., Zahmatkesh, N., Mohandes, F., Dolatyar, B., Zeynali, B., Salavati-Niasari, M. (2022). Synthesis and investigation of physicochemical properties of alginate dialdehyde/gelatin/ZnO nanocomposites as injectable hydrogels. Polymer Testing, 110: 107562, https://doi.org/10.1016/j.polymertesting.2022.107562
  • González, A. D., Frostell, B., Carlsson-Kanyama, A. (2011). Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation. Food Policy, 36(5): 562–570. https://doi.org/10.1016/j.foodpol.2011.07.003
  • Görgüç, A., Bircan, C., Yılmaz, F. M. (2019). Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chemistry, 283: 637–645, https://doi.org/10.1016/j.foodchem.2019.01.077
  • Güzel, M., Akpınar, Ö. (2019). Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food and Bioproducts Processing, 115: 126–133, https://doi.org/10.1016/j.fbp.2019.03.009
  • He, Z., Liu, C., Zhao, J., Li, W., Wang, Y. (2021a). Physicochemical properties of a ginkgo seed protein-pectin composite gel. Food Hydrocolloids, 118: 106781, https://doi.org/10.1016/ j.foodhyd.2021.106781
  • He, Z., Ma, T., Zhang, W., Su, E., Cao, F., Huang, M., Wang, Y. (2021b). Heat-induced gel formation by whey protein isolate-Lycium barbarum polysaccharides at varying pHs. Food Hydrocolloids, 115: 106607, https://doi.org/ 10.1016/j.foodhyd.2021.106607
  • Hennink, W. E., van Nostrum, C. F. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64: 223–236, https://doi.org/10.1016/j.addr.2012.09.009
  • Herrera-Rodríguez, S. E., Pacheco, N., Ayora-Talavera, T., Pech-Cohuo, S., & Cuevas-Bernardino, J. C. (2022). Advances in the green extraction methods and pharmaceutical applications of bioactive pectins from unconventional sources: A review. Studies in Natural Products Chemistry, 73: 221-264, https://doi.org/10.1016/B978-0-323-91097-2.00015-7
  • Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64: 18–23, https://doi.org/10.1016/ j.addr.2012.09.010
  • Junlapong, K., Maijan, P., Chaibundit, C., & Chantarak, S. (2020). Effective adsorption of methylene blue by biodegradable superabsorbent cassava starch-based hydrogel. International Journal of Biological Macromolecules, 158, 258-264, https://doi.org/10.1016/j.ijbiomac.2020.04.247
  • Kamal, Md. M., Akhtaruzzaman, Md., Sharmin, T., Rahman, M., Mondal, S. C. (2023). Optimization of extraction parameters for pectin from guava pomace using response surface methodology. Journal of Agriculture and Food Research, 11: 100530, https://doi.org/ 10.1016/j.jafr.2023.100530
  • Lee, H. W., Lu, Y., Zhang, Y., Fu, C., Huang, D. (2021). Physicochemical and functional properties of red lentil protein isolates from three origins at different pH. Food Chemistry, 358: 129749, https://doi.org/10.1016/ j.foodchem.2021.129749
  • Liu, J., Li, Z., Lin, Q., Jiang, X., Yao, J., Yang, Y., Shao, Z., Chen, X. (2018). A Robust, Resilient, and Multi-Functional Soy Protein-Based Hydrogel. ACS Sustainable Chemistry & Engineering, 6(11): 13730–13738, https://doi.org/10.1021/acssuschemeng.8b01450
  • Liu, K. (2019). Effects of sample size, dry ashing temperature and duration on determination of ash content in algae and other biomass. Algal Research, 40: 101486, https://doi.org/10.1016/ j.algal.2019.101486
  • Liu, X., Renard, C. M. G. C., Bureau, S., Le Bourvellec, C. (2021). Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydrate Polymers, 262: 117935, https://doi.org/10.1016/ j.carbpol.2021.117935
  • Moslemi, M. (2021). Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydrate Polymers, 254: 117324, https://doi.org/10.1016/j.carbpol.2020.117324
  • Muhialdin, B. J., Ubbink, J. (2023). Effects of pH and aging on the texture and physicochemical properties of extruded pea protein isolate. Food Hydrocolloids, 140: 108639, https://doi.org/ 10.1016/j.foodhyd.2023.108639
  • Naji, A. M., Başyiğit, B., Alaşalvar, H., Salum, P., Berktaş, S., Erbay, Z., Çam, M. (2023). Instant soluble roselle (Hibiscus sabdariffa L.) powder rich in bioactive compounds: Effect of the production process on volatile compounds. Journal of Food Measurement and Characterization, 17(1): 108–120, https://doi.org/10.1007/s11694-022-01593-x
  • Panahi, R., & Baghban-Salehi, M. (2019). Protein-based hydrogels. In Cellulose-based superabsorbent hydrogels (pp. 1561-1600). Springer, Cham, https://doi.org/10.1007/978-3-319-77830-3_52
  • Samuelsson, R., Burvall, J., Jirjis, R. (2006). Comparison of different methods for the determination of moisture content in biomass. Biomass and Bioenergy, 30(11): 929–934, https://doi.org/10.1016/j.biombioe.2006.06.004
  • Santomaso, A., Lazzaro, P., Canu, P. (2003). Powder flowability and density ratios: the impact of granules packing. Chemical Engineering Science, 58(13): 2857–2874, https://doi.org/10.1016/ S0009-2509(03)00137-4
  • Shah, R. B., Tawakkul, M. A., Khan, M. A. (2008). Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech, 9(1): 250–258, https://doi.org/ 10.1208/s12249-008-9046-8
  • Shivamathi, C. S., Moorthy, I. G., Kumar, R. V., Soosai, M. R., Maran, J. P., Kumar, R. S., Varalakshmi, P. (2019). Optimization of ultrasound assisted extraction of pectin from custard apple peel: Potential and new source. Carbohydrate Polymers, 225: 115240, https://doi.org/10.1016/j.carbpol.2019.115240
  • Singhal, R., Gupta, K. (2016). A Review: Tailor-made hydrogel structures (classifications and synthesis parameters). Polymer-Plastics Technology and Engineering, 55(1): 54–70, https://doi.org/10.1080/03602559.2015.1050520
  • Sivam, A. S., Sun-Waterhouse, D., Perera, C. O., Waterhouse, G. I. N. (2012). Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chemistry, 131(3): 802–810, https://doi.org/10.1016/ j.foodchem.2011.09.047
  • Slavutsky, A. M., Bertuzzi, M. A. (2019). Formulation and characterization of hydrogel based on pectin and brea gum. International Journal of Biological Macromolecules, 123: 784–791, https://doi.org/10.1016/j.ijbiomac.2018.11.038
  • Sun, X., Agate, S., Salem, K. S., Lucia, L., Pal, L. (2021). Hydrogel-based sensor networks: Compositions, properties, and applications—a review. ACS Applied Bio Materials, 4(1): 140–162, https://doi.org/10.1021/acsabm.0c01011
  • Szymanska-Chargot, M., Chylinska, M., Kruk, B., Zdunek, A. (2015). Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development. Carbohydrate Polymers, 115: 93–103, https://doi.org/10.1016/j.carbpol.2014.08.039
  • Tian, Y., Xu, Z., Zheng, B., Martin Lo, Y. (2013). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry, 20(1): 202–208, https://doi.org/10.1016/j.ultsonch.2012.07.010
  • Turchiuli, C., Eloualia, Z., El Mansouri, N., Dumoulin, E. (2005). Fluidised bed agglomeration: Agglomerates shape and end-use properties. Powder Technology, 157(1-3): 168-175, https://doi.org/10.1016/j.powtec.2005.05.024.
  • Tülek, Z., Alaşalvar, H., Başyiğit, B., Berktas, S., Salum, P., Erbay, Z., Telci, I., Çam, M. (2021). Extraction optimization and microencapsulation of phenolic antioxidant compounds from lemon balm (Melissa officinalis L.): Instant soluble tea production. Journal of Food Processing and Preservation, 45(1), https://doi.org/10.1111/ jfpp.14995
  • Varghese, J. S., Chellappa, N., Fathima, N. N. (2014). Gelatin–carrageenan hydrogels: Role of pore size distribution on drug delivery process. Colloids and Surfaces B: Biointerfaces, 113: 346–351, https://doi.org/10.1016/j.colsurfb.2013.08.049
  • Wang, H., Wan, L., Chen, D., Guo, X., Liu, F., Pan, S. (2019). Unexpected gelation behavior of citrus pectin induced by monovalent cations under alkaline conditions. Carbohydrate Polymers, 212: 51–58, https://doi.org/10.1016/j.carbpol.2019.02.012
  • Wang, Y., Zhao, J., Liu, C., Li, W. (2019). Influence of γ-aminobutyric acid on gelling properties of heat-induced whey protein gels. Food Hydrocolloids, 94: 287–293, https://doi.org/ 10.1016/j.foodhyd.2019.03.031
  • Yan, W., Yin, L., Li, J., Yadav, M. P., Jia, X. (2020). Development of corn fiber gum–soybean protein isolate double network hydrogels through synergistic gelation. Food and Bioprocess Technology, 13(3): 511–521, https://doi.org/10.1007/ s11947-020-02412-1
  • Yang, J., Shen, M., Luo, Y., Wu, T., Wen, H., Xie, J. (2021). Construction and characterization of Mesona chinensis polysaccharide-chitosan hydrogels, role of chitosan deacetylation degree. Carbohydrate Polymers, 257: 117608, https://doi.org/10.1016/j.carbpol.2020.117608
  • Zhang, H., Zhang, F., Yuan, R. (2020). Applications of natural polymer-based hydrogels in the food industry. In Hydrogels Based on Natural Polymers (pp. 357–410), Elsevier, https://doi.org/10.1016/B978-0-12-816421-1.00015-X
  • Zhang, Q., Liu, Y., Yang, G., Kong, H., Guo, L., Wei, G. (2023). Recent advances in protein hydrogels: From design, structural and functional regulations to healthcare applications. Chemical Engineering Journal, 451: 138494 https://doi.org/ 10.1016/j.cej.2022.138494

VİŞNE ÇEKİRDEĞİ ATIĞINDAN ÜRETİLEN PEKTİNİN SOYA BAZLI BİTKİSEL PROTEİN İLE HİDROJEL OLUŞTURMA POTANSİYELİ: FENOLİK MADDE SALINIMI ÜZERİNE HİDROJEL DOĞASININ ETKİSİ

Year 2023, , 831 - 845, 15.08.2023
https://doi.org/10.15237/gida.GD23068

Abstract

Mevcut çalışmada yağı ve proteini alınmış vişne (Prunus cerasus L.) çekirdeklerinden elde edilen pektinin (VÇP) soya fasulyesi orijinli doğal hidrojellerin üretiminde destekleyici materyal olarak kullanımı amaçlanmıştır. Pektin tozlarının üretim aşaması Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi ile doğrulanmıştır. Ayrıca VÇP’nin fizikokimyasal ve fonksiyonel özellikleri ticari pektin (TP) ile karşılaştırmalı olarak tartışılmıştır. Üç farklı doğaya sahip doğal hidrojel sistemleri (SH: sadece soya fasulyesi proteini; SVPH: soya fasulyesi proteini ve VÇP karışımı; STPH: soya fasulyesi proteini ve TP karışımı) üretilmiştir. Jellerin yüzey morfolojileri taramalı elektron mikroskobu ile incelenmiştir. Fonksiyonel özellikler açısından efektif değerler SVPH’de (su tutma kapasitesi: %91.65; şişme oranı: %5.78; protein sızma oranı: %12.51) tespit edilmiş bu jeli sırasıyla STPH (su tutma kapasitesi: %83.99; şişme oranı: %5.37; protein sızma oranı: %15.81) ve SH (su tutma kapasitesi: %65.74; şişme oranı: %3.56; protein sızma oranı: %23.11) takip etmiştir. Mekanik özellikler açısından ve biyoaktif madde taşıma araçları olarak da SVPH ve STPH ön plana çıkmıştır.

References

  • Abaee, A., Mohammadian, M., Jafari, S. M. (2017). Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology, 70: 69–81, https://doi.org/10.1016/j.tifs.2017.10.011
  • Andrade, J., Pereira, C. G., Almeida Junior, J. C. de, Viana, C. C. R., Neves, L. N. de O., Silva, P. H. F. da, Bell, M. J. V., Anjos, V. de C. dos. (2019). FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT-Food Science and Technology, 99: 166–172, https://doi.org/10.1016/j.lwt.2018.09.079
  • Bashash, M., Varidi, M., Varshosaz, J. (2022). Ultrasound-triggered transglutaminase-catalyzed egg white-bovine gelatin composite hydrogel: Physicochemical and rheological studies. Innovative Food Science & Emerging Technologies, 76: 102936, https://doi.org/10.1016/ j.ifset.2022.102936
  • Başyiğit, B., Altun, G., Yücetepe, M., Karaaslan, A., Karaaslan, M. (2023). Locust bean gum provides excellent mechanical and release attributes to soy protein-based natural hydrogels. International Journal of Biological Macromolecules, 231: 123352, https://doi.org/10.1016/ j.ijbiomac.2023.123352
  • Başyiğit, B., Görgüç, A., Gençdağ, E., Cansu, Ü., Yılmaz, F. M., Karaaslan, M. (2022). Functional characterization of high-yield plant protein powder valorized from de-oiled sour cherry seed using microwave-assisted enzymatic extraction followed by spray- and freeze-drying. Biomass Conversion and Biorefinery, https://doi.org/ 10.1007/s13399-022-03225-2
  • Başyiğit, B., Sağlam, H., Hayoğlu, İ., & Karaaslan, M. (2021a). Spectroscopic (LC‐ESI‐MS/MS, FT‐IR, NMR) and functional characterization of fruit seed oils extracted with green technology: A comparative study with Prunus cerasus and Punica granatum oils. Journal of Food Processing and Preservation, 45(5): e15451, https://doi.org/ 10.1111/jfpp.15451
  • Başyiğit, B., Yücetepe, M., Karaaslan, A., Karaaslan, M. (2021b). High efficiency microencapsulation of extra virgin olive oil (EVOO) with novel carrier agents: Fruit proteins. Materials Today Communications, 28: 102618, https://doi.org/10.1016/j.mtcomm.2021.102618
  • Cairone, F., Fraschetti, C., Menghini, L., Zengin, G., Filippi, A., Casadei, M. A., Cesa, S. (2023). Effects of processing on chemical composition of extracts from sour cherry fruits, a neglected functional food. Antioxidants, 12(2): 445, https://doi.org/10.3390/antiox12020445
  • Çam, M., İçyer, N. C., Erdoğan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT - Food Science and Technology, 55(1): 117–123, https://doi.org/10.1016/j.lwt.2013.09.011
  • Casas-Orozco, D., Villa, A. L., Bustamante, F., González, L.-M. (2015). Process development and simulation of pectin extraction from orange peels. Food and Bioproducts Processing, 96: 86–98, https://doi.org/10.1016/j.fbp.2015.06.006
  • Chaovanalikit, A., Wrolstad, R. E. (2004). Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Journal of Food Science, 69(1): FCT67–FCT72, https://doi.org/10.1111/j.1365-2621.2004.tb17858.x
  • Cho, S. M., Kwak, K. S., Park, D. C., Gu, Y. S., Ji, C. I., Jang, D. H., Lee, Y. B., Kim, S. B. (2004). Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage. Food Hydrocolloids, 18(4): 573–579, https://doi.org/10.1016/j.foodhyd.2003.10.001
  • Chouaibi, M., Rezig, L., Hamdi, S., Ferrari, G. (2019). Chemical characteristics and compositions of red pepper seed oils extracted by different methods. Industrial Crops and Products, 128: 363–370, https://doi.org/10.1016/ j.indcrop.2018.11.030
  • Demirkıran, E., Başyi̇ğit, B., Altun, G., Yücetepe, M., Sağlam, H., Karaaslan, M. (2022). Facile construction of fruit protein based natural hydrogel via intra/inter molecular cross-linking. Food Hydrocolloids, 133: 107899, https://doi.org/10.1016/j.foodhyd.2022.107899
  • Dinerman, A. A., Cappello, J., Ghandehari, H., Hoag, S. W. (2002). Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel. Biomaterials, 23(21): 4203–4210, https://doi.org/10.1016/S0142-9612(02)00164-3
  • Duangmal, K., Saicheua, B., Sueeprasan, S. (2008). Colour evaluation of freeze-dried roselle extract as a natural food colorant in a model system of a drink. LWT - Food Science and Technology, 41(8): 1437–1445, https://doi.org/ 10.1016/j.lwt.2007.08.014
  • Feki, A., Hamdi, M., Jaballi, I., Zghal, S., Nasri, M., Ben Amara, I. (2020). Conception and characterization of a multi-sensitive composite chitosan-red marine alga-polysaccharide hydrogels for insulin controlled-release. Carbohydrate Polymers, 236: 116046, https://doi.org/10.1016/j.carbpol.2020.116046
  • Ghanbari, M., Sadjadinia, A., Zahmatkesh, N., Mohandes, F., Dolatyar, B., Zeynali, B., Salavati-Niasari, M. (2022). Synthesis and investigation of physicochemical properties of alginate dialdehyde/gelatin/ZnO nanocomposites as injectable hydrogels. Polymer Testing, 110: 107562, https://doi.org/10.1016/j.polymertesting.2022.107562
  • González, A. D., Frostell, B., Carlsson-Kanyama, A. (2011). Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation. Food Policy, 36(5): 562–570. https://doi.org/10.1016/j.foodpol.2011.07.003
  • Görgüç, A., Bircan, C., Yılmaz, F. M. (2019). Sesame bran as an unexploited by-product: Effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chemistry, 283: 637–645, https://doi.org/10.1016/j.foodchem.2019.01.077
  • Güzel, M., Akpınar, Ö. (2019). Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food and Bioproducts Processing, 115: 126–133, https://doi.org/10.1016/j.fbp.2019.03.009
  • He, Z., Liu, C., Zhao, J., Li, W., Wang, Y. (2021a). Physicochemical properties of a ginkgo seed protein-pectin composite gel. Food Hydrocolloids, 118: 106781, https://doi.org/10.1016/ j.foodhyd.2021.106781
  • He, Z., Ma, T., Zhang, W., Su, E., Cao, F., Huang, M., Wang, Y. (2021b). Heat-induced gel formation by whey protein isolate-Lycium barbarum polysaccharides at varying pHs. Food Hydrocolloids, 115: 106607, https://doi.org/ 10.1016/j.foodhyd.2021.106607
  • Hennink, W. E., van Nostrum, C. F. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64: 223–236, https://doi.org/10.1016/j.addr.2012.09.009
  • Herrera-Rodríguez, S. E., Pacheco, N., Ayora-Talavera, T., Pech-Cohuo, S., & Cuevas-Bernardino, J. C. (2022). Advances in the green extraction methods and pharmaceutical applications of bioactive pectins from unconventional sources: A review. Studies in Natural Products Chemistry, 73: 221-264, https://doi.org/10.1016/B978-0-323-91097-2.00015-7
  • Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64: 18–23, https://doi.org/10.1016/ j.addr.2012.09.010
  • Junlapong, K., Maijan, P., Chaibundit, C., & Chantarak, S. (2020). Effective adsorption of methylene blue by biodegradable superabsorbent cassava starch-based hydrogel. International Journal of Biological Macromolecules, 158, 258-264, https://doi.org/10.1016/j.ijbiomac.2020.04.247
  • Kamal, Md. M., Akhtaruzzaman, Md., Sharmin, T., Rahman, M., Mondal, S. C. (2023). Optimization of extraction parameters for pectin from guava pomace using response surface methodology. Journal of Agriculture and Food Research, 11: 100530, https://doi.org/ 10.1016/j.jafr.2023.100530
  • Lee, H. W., Lu, Y., Zhang, Y., Fu, C., Huang, D. (2021). Physicochemical and functional properties of red lentil protein isolates from three origins at different pH. Food Chemistry, 358: 129749, https://doi.org/10.1016/ j.foodchem.2021.129749
  • Liu, J., Li, Z., Lin, Q., Jiang, X., Yao, J., Yang, Y., Shao, Z., Chen, X. (2018). A Robust, Resilient, and Multi-Functional Soy Protein-Based Hydrogel. ACS Sustainable Chemistry & Engineering, 6(11): 13730–13738, https://doi.org/10.1021/acssuschemeng.8b01450
  • Liu, K. (2019). Effects of sample size, dry ashing temperature and duration on determination of ash content in algae and other biomass. Algal Research, 40: 101486, https://doi.org/10.1016/ j.algal.2019.101486
  • Liu, X., Renard, C. M. G. C., Bureau, S., Le Bourvellec, C. (2021). Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydrate Polymers, 262: 117935, https://doi.org/10.1016/ j.carbpol.2021.117935
  • Moslemi, M. (2021). Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydrate Polymers, 254: 117324, https://doi.org/10.1016/j.carbpol.2020.117324
  • Muhialdin, B. J., Ubbink, J. (2023). Effects of pH and aging on the texture and physicochemical properties of extruded pea protein isolate. Food Hydrocolloids, 140: 108639, https://doi.org/ 10.1016/j.foodhyd.2023.108639
  • Naji, A. M., Başyiğit, B., Alaşalvar, H., Salum, P., Berktaş, S., Erbay, Z., Çam, M. (2023). Instant soluble roselle (Hibiscus sabdariffa L.) powder rich in bioactive compounds: Effect of the production process on volatile compounds. Journal of Food Measurement and Characterization, 17(1): 108–120, https://doi.org/10.1007/s11694-022-01593-x
  • Panahi, R., & Baghban-Salehi, M. (2019). Protein-based hydrogels. In Cellulose-based superabsorbent hydrogels (pp. 1561-1600). Springer, Cham, https://doi.org/10.1007/978-3-319-77830-3_52
  • Samuelsson, R., Burvall, J., Jirjis, R. (2006). Comparison of different methods for the determination of moisture content in biomass. Biomass and Bioenergy, 30(11): 929–934, https://doi.org/10.1016/j.biombioe.2006.06.004
  • Santomaso, A., Lazzaro, P., Canu, P. (2003). Powder flowability and density ratios: the impact of granules packing. Chemical Engineering Science, 58(13): 2857–2874, https://doi.org/10.1016/ S0009-2509(03)00137-4
  • Shah, R. B., Tawakkul, M. A., Khan, M. A. (2008). Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech, 9(1): 250–258, https://doi.org/ 10.1208/s12249-008-9046-8
  • Shivamathi, C. S., Moorthy, I. G., Kumar, R. V., Soosai, M. R., Maran, J. P., Kumar, R. S., Varalakshmi, P. (2019). Optimization of ultrasound assisted extraction of pectin from custard apple peel: Potential and new source. Carbohydrate Polymers, 225: 115240, https://doi.org/10.1016/j.carbpol.2019.115240
  • Singhal, R., Gupta, K. (2016). A Review: Tailor-made hydrogel structures (classifications and synthesis parameters). Polymer-Plastics Technology and Engineering, 55(1): 54–70, https://doi.org/10.1080/03602559.2015.1050520
  • Sivam, A. S., Sun-Waterhouse, D., Perera, C. O., Waterhouse, G. I. N. (2012). Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chemistry, 131(3): 802–810, https://doi.org/10.1016/ j.foodchem.2011.09.047
  • Slavutsky, A. M., Bertuzzi, M. A. (2019). Formulation and characterization of hydrogel based on pectin and brea gum. International Journal of Biological Macromolecules, 123: 784–791, https://doi.org/10.1016/j.ijbiomac.2018.11.038
  • Sun, X., Agate, S., Salem, K. S., Lucia, L., Pal, L. (2021). Hydrogel-based sensor networks: Compositions, properties, and applications—a review. ACS Applied Bio Materials, 4(1): 140–162, https://doi.org/10.1021/acsabm.0c01011
  • Szymanska-Chargot, M., Chylinska, M., Kruk, B., Zdunek, A. (2015). Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development. Carbohydrate Polymers, 115: 93–103, https://doi.org/10.1016/j.carbpol.2014.08.039
  • Tian, Y., Xu, Z., Zheng, B., Martin Lo, Y. (2013). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry, 20(1): 202–208, https://doi.org/10.1016/j.ultsonch.2012.07.010
  • Turchiuli, C., Eloualia, Z., El Mansouri, N., Dumoulin, E. (2005). Fluidised bed agglomeration: Agglomerates shape and end-use properties. Powder Technology, 157(1-3): 168-175, https://doi.org/10.1016/j.powtec.2005.05.024.
  • Tülek, Z., Alaşalvar, H., Başyiğit, B., Berktas, S., Salum, P., Erbay, Z., Telci, I., Çam, M. (2021). Extraction optimization and microencapsulation of phenolic antioxidant compounds from lemon balm (Melissa officinalis L.): Instant soluble tea production. Journal of Food Processing and Preservation, 45(1), https://doi.org/10.1111/ jfpp.14995
  • Varghese, J. S., Chellappa, N., Fathima, N. N. (2014). Gelatin–carrageenan hydrogels: Role of pore size distribution on drug delivery process. Colloids and Surfaces B: Biointerfaces, 113: 346–351, https://doi.org/10.1016/j.colsurfb.2013.08.049
  • Wang, H., Wan, L., Chen, D., Guo, X., Liu, F., Pan, S. (2019). Unexpected gelation behavior of citrus pectin induced by monovalent cations under alkaline conditions. Carbohydrate Polymers, 212: 51–58, https://doi.org/10.1016/j.carbpol.2019.02.012
  • Wang, Y., Zhao, J., Liu, C., Li, W. (2019). Influence of γ-aminobutyric acid on gelling properties of heat-induced whey protein gels. Food Hydrocolloids, 94: 287–293, https://doi.org/ 10.1016/j.foodhyd.2019.03.031
  • Yan, W., Yin, L., Li, J., Yadav, M. P., Jia, X. (2020). Development of corn fiber gum–soybean protein isolate double network hydrogels through synergistic gelation. Food and Bioprocess Technology, 13(3): 511–521, https://doi.org/10.1007/ s11947-020-02412-1
  • Yang, J., Shen, M., Luo, Y., Wu, T., Wen, H., Xie, J. (2021). Construction and characterization of Mesona chinensis polysaccharide-chitosan hydrogels, role of chitosan deacetylation degree. Carbohydrate Polymers, 257: 117608, https://doi.org/10.1016/j.carbpol.2020.117608
  • Zhang, H., Zhang, F., Yuan, R. (2020). Applications of natural polymer-based hydrogels in the food industry. In Hydrogels Based on Natural Polymers (pp. 357–410), Elsevier, https://doi.org/10.1016/B978-0-12-816421-1.00015-X
  • Zhang, Q., Liu, Y., Yang, G., Kong, H., Guo, L., Wei, G. (2023). Recent advances in protein hydrogels: From design, structural and functional regulations to healthcare applications. Chemical Engineering Journal, 451: 138494 https://doi.org/ 10.1016/j.cej.2022.138494
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Food Sciences (Other)
Journal Section Articles
Authors

Baran Ay 0009-0009-9310-1540

Bülent Başyiğit 0000-0002-6617-1836

Publication Date August 15, 2023
Published in Issue Year 2023

Cite

APA Ay, B., & Başyiğit, B. (2023). VİŞNE ÇEKİRDEĞİ ATIĞINDAN ÜRETİLEN PEKTİNİN SOYA BAZLI BİTKİSEL PROTEİN İLE HİDROJEL OLUŞTURMA POTANSİYELİ: FENOLİK MADDE SALINIMI ÜZERİNE HİDROJEL DOĞASININ ETKİSİ. Gıda, 48(4), 831-845. https://doi.org/10.15237/gida.GD23068
AMA Ay B, Başyiğit B. VİŞNE ÇEKİRDEĞİ ATIĞINDAN ÜRETİLEN PEKTİNİN SOYA BAZLI BİTKİSEL PROTEİN İLE HİDROJEL OLUŞTURMA POTANSİYELİ: FENOLİK MADDE SALINIMI ÜZERİNE HİDROJEL DOĞASININ ETKİSİ. GIDA. August 2023;48(4):831-845. doi:10.15237/gida.GD23068
Chicago Ay, Baran, and Bülent Başyiğit. “VİŞNE ÇEKİRDEĞİ ATIĞINDAN ÜRETİLEN PEKTİNİN SOYA BAZLI BİTKİSEL PROTEİN İLE HİDROJEL OLUŞTURMA POTANSİYELİ: FENOLİK MADDE SALINIMI ÜZERİNE HİDROJEL DOĞASININ ETKİSİ”. Gıda 48, no. 4 (August 2023): 831-45. https://doi.org/10.15237/gida.GD23068.
EndNote Ay B, Başyiğit B (August 1, 2023) VİŞNE ÇEKİRDEĞİ ATIĞINDAN ÜRETİLEN PEKTİNİN SOYA BAZLI BİTKİSEL PROTEİN İLE HİDROJEL OLUŞTURMA POTANSİYELİ: FENOLİK MADDE SALINIMI ÜZERİNE HİDROJEL DOĞASININ ETKİSİ. Gıda 48 4 831–845.
IEEE B. Ay and B. Başyiğit, “VİŞNE ÇEKİRDEĞİ ATIĞINDAN ÜRETİLEN PEKTİNİN SOYA BAZLI BİTKİSEL PROTEİN İLE HİDROJEL OLUŞTURMA POTANSİYELİ: FENOLİK MADDE SALINIMI ÜZERİNE HİDROJEL DOĞASININ ETKİSİ”, GIDA, vol. 48, no. 4, pp. 831–845, 2023, doi: 10.15237/gida.GD23068.
ISNAD Ay, Baran - Başyiğit, Bülent. “VİŞNE ÇEKİRDEĞİ ATIĞINDAN ÜRETİLEN PEKTİNİN SOYA BAZLI BİTKİSEL PROTEİN İLE HİDROJEL OLUŞTURMA POTANSİYELİ: FENOLİK MADDE SALINIMI ÜZERİNE HİDROJEL DOĞASININ ETKİSİ”. Gıda 48/4 (August 2023), 831-845. https://doi.org/10.15237/gida.GD23068.
JAMA Ay B, Başyiğit B. VİŞNE ÇEKİRDEĞİ ATIĞINDAN ÜRETİLEN PEKTİNİN SOYA BAZLI BİTKİSEL PROTEİN İLE HİDROJEL OLUŞTURMA POTANSİYELİ: FENOLİK MADDE SALINIMI ÜZERİNE HİDROJEL DOĞASININ ETKİSİ. GIDA. 2023;48:831–845.
MLA Ay, Baran and Bülent Başyiğit. “VİŞNE ÇEKİRDEĞİ ATIĞINDAN ÜRETİLEN PEKTİNİN SOYA BAZLI BİTKİSEL PROTEİN İLE HİDROJEL OLUŞTURMA POTANSİYELİ: FENOLİK MADDE SALINIMI ÜZERİNE HİDROJEL DOĞASININ ETKİSİ”. Gıda, vol. 48, no. 4, 2023, pp. 831-45, doi:10.15237/gida.GD23068.
Vancouver Ay B, Başyiğit B. VİŞNE ÇEKİRDEĞİ ATIĞINDAN ÜRETİLEN PEKTİNİN SOYA BAZLI BİTKİSEL PROTEİN İLE HİDROJEL OLUŞTURMA POTANSİYELİ: FENOLİK MADDE SALINIMI ÜZERİNE HİDROJEL DOĞASININ ETKİSİ. GIDA. 2023;48(4):831-45.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/