Research Article
BibTex RIS Cite

ZIZIPHUS JUJUBA (HÜNNAP) MEYVESİNİN POLAR VE APOLAR EKSTRAKLARININ ACE İNHİBİTÖR AKTİVİTESİ, ANTİOKSİDAN KAPASİTESİ VE FİTOKİMYASAL BİLEŞENLERİNİN İNCELENMESİ: BİYOAKTİVİTEDEN SORUMLU ANA BİLEŞENLERİN İSTATİSTİKSEL İNCELENMESİ

Year 2024, , 554 - 566, 15.06.2024
https://doi.org/10.15237/gida.GD24028

Abstract

Bu çalışmada Ziziphus jujuba’nın kurutulmuş meyvelerinin polar ve apolar ekstraktlarının anjiyotensin I-dönüştürücü enzim (ACE) inhibitör aktivitesi, antioksidan kapasitesi, toplam polifenol içerikleri (TPC) ve fitokimyasal profilleri araştırılmıştır ve ACE inhibitör aktivitesinden sorumlu temel bileşenler istatistiksel olarak analiz edilmiştir. En yüksek ACE inhibitör aktivitesi (%99.81) meyvenin apolar ekstraktında tespit edilmiştir. Apolar ekstrakt ayrıca en yüksek DPPH radikal süpürme aktivitesi (IC50 : 30,63), linoleik asit/β-karoten ağartma kapasitesi (%89.31) ve TPC'yi (59.47 mg GAE/g) sergilemiştir. Ekstraktların fenolik profilleri LC-MS/MS ile tanımlanmış ve ekstraktlardaki yedi triterpenoid türünün varlığı GC-MS teknikleri kullanılarak incelenmiş ve 19 fenolik, 2 organik asit ve 4 triterpenoid tanımlanmıştır. ACE inhibisyon aktivitesinden sorumlu fenolik bileşenlerin belirlenmesi amacı ile Pearson korelasyonu ve temel bileşen analizi kullanılmıştır.

References

  • Agunloye, O. M., Oboh, G. (2018). Caffeic acid and chlorogenic acid: Evaluation of antioxidant effect and inhibition of key enzymes linked with hypertension. Journal of Food Biochemistry, 42(4): e12541. https://doi.org/10.1111/jfbc.12541
  • Ali, M. Y., Seong, S. H., Jung, H. A., Choi, J. S. (2019). Angiotensin-I-converting enzyme inhibitory activity of coumarins from Angelica decursiva. Molecules, 24(21). https://doi.org/ 10.3390/molecules24213937
  • Al-Saeedi, A. H., Al- Ghafri, M. T. H., Hossain, M. A. (2016). Comparative evaluation of total phenols, flavonoids content and antioxidant potential of leaf and fruit extracts of Omani Ziziphus jujuba L. Pacific Science Review A: Natural Science and Engineering, 18(1): 78–83. https://doi.org/10.1016/J.PSRA.2016.09.001
  • Bakir, D., Akdeniz, M., Ertas, A., Yilmaz, M. A., Yener, I., Firat, M., Kolak, U. (2020). A GC–MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & C.A. Mey. of Turkey: Enzyme inhibitory potential of ferruginol. Journal of Food Biochemistry, 44(9): e13350. https://doi.org/10.1111/ jfbc.13350
  • Castellano, J. M., Ramos-Romero, S., Perona, J. S. (2022). Oleanolic Acid: Extraction, characterization and biological activity. Nutrients, 14(3): 623.
  • Ciniviz, M., Yildiz, H. (2020). Determination of phenolic acid profiles by HPLC in lacto-fermented fruits and vegetables (pickle): Effect of pulp and juice portions. Journal of Food Processing and Preservation, 44(7): 1–11. https://doi.org/10.1111/jfpp.14542
  • Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378: 131918. https://doi.org/10.1016/ J.FOODCHEM.2021.131918
  • Guerrero, L., Castillo, J., Quiñones, M., Garcia-Vallvé, S., Arola, L., Pujadas, G., Muguerza, B. (2012). Inhibition of Angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLOS ONE, 7(11): e49493.
  • Hernández, F., Noguera-Artiaga, L., Burló, F., Wojdyło, A., Carbonell-Barrachina, Á. A., Legua, P. (2016). Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. Journal of the Science of Food and Agriculture, 96(8): 2682–2691. https://doi.org/10.1002/jsfa.7386
  • Hui, Z., Wen, H., Zhu, J., Deng, H., Jiang, X., Ye, X. Y., Wang, L., Xie, T., Bai, R. (2024). Discovery of plant-derived anti-tumor natural products: Potential leads for anti-tumor drug discovery. Bioorganic Chemistry, 142: 106957. https://doi.org/10.1016/J.BIOORG.2023.106957
  • Kamkar-Del, Y., Mohebbati, R., Hosseini, M., Khajavir, A., Shafei, M., Rakhshandeh, H. (2020). Ethyl acetate and aqueous fractions of Ziziphus jujuba prevent acute hypertension induced by Angiotensin II in rats. Cardiovasc Hematol Disord Drug Targets, 20(2): 108-115. https://doi.org/ 10.2174/1871529X19666191119141400
  • Kwon, Y. I., Vattem, D. A., Shetty, K. (2006). Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition, 15:107–118.
  • Li, D., Yue, D., Liu, D., Zhang, L., Song, S. (2020). Phytochemical and chemotaxonomic study on Ziziphus jujuba Mill. (Rhamnaceae). Biochemical Systematics and Ecology, 91: 104058. https://doi.org/10.1016/J.BSE.2020.104058
  • Lin, Y. S., Lin, W. S., Tung, J. W., Cheng, Y. C., Chang, M. Y., Chen, C. Y., Huang, S. L. (2020). Antioxidant capacities of jujube fruit seeds and peel pulp. Applied Sciences (Switzerland), 10(17):6007. https://doi.org/10.3390/ app10176007
  • Memarpoor-Yazdi, M., Zare-Zardini, H., Mogharrab, N., Navapour, L. (2020). Purification, characterization and mechanistic evaluation of angiotensin converting enzyme inhibitory peptides derived from Zizyphus jujuba fruit. Scientific Reports, 10(1): 3976. https://doi.org/10.1038/s41598-020-60972-w
  • Meng, J., Fang, Y., Zhang, A., Chen, S., Xu, T., Ren, Z., Han, G., Liu, J., Li, H., Zhang, Z., Wang, H. (2011). Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang Province. Food Research International, 44(9): 2830–2836. https://doi.org/10.1016/ j.foodres.2011.06.032
  • Ng, Z. X., Soh, E. Y. W., Yong, P. H. (2022). The influence of fermentation and drying methods on the functional activities and sensory quality of Artemisia argyi H.Lév. & Vaniot herbal tea. Journal of Applied Research on Medicinal and Aromatic Plants, 30: 100393. https://doi.org/10.1016/ J.JARMAP.2022.100393
  • Oliveira, A. C. de, Mar, J. M., Corrêa, R. F., Sanches, E. A., Campelo, P. H., Ramos, A. da S., Bezerra, J. de A. (2023). Pouteria spp. fruits: Health benefits of bioactive compounds and their potential for the food industry. Food Research International, 173: 113310. https://doi.org/ 10.1016/J.FOODRES.2023.113310
  • Paiva, L., Lima, E., Marcone, M., Baptista, J. (2023). Angiotensin I-converting enzyme (ACE) inhibition and biological activities of green and black tea samples from Azorean Camellia sinensis. Journal of Functional Foods, 107: 105701. https://doi.org/10.1016/J.JFF.2023.105701
  • Pan, F., Zhao, X., Liu, F., Luo, Z., Chen, S., Liu, Z., Zhao, Z., Liu, M., Wang, L. (2023). Triterpenoids in jujube: A review of composition, content diversity, pharmacological effects, synthetic pathway, and variation during domestication. Plants, 12(7): 1501 https://doi.org/10.3390/plants12071501
  • Ruiz Rodríguez, L. G., Zamora Gasga, V. M., Pescuma, M., Van Nieuwenhove, C., Mozzi, F., Sánchez Burgos, J. A. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140: 109854. https://doi.org/10.1016/J.FOODRES.2020.109854
  • Safaeian, L., Emami, R., Hajhashemi, V., Haghighatian, Z. (2018). Antihypertensive and antioxidant effects of protocatechuic acid in deoxycorticosterone acetate-salt hypertensive rats. Biomedicine & Pharmacotherapy, 100: 147–155. https://doi.org/10.1016/J.BIOPHA.2018.01.107
  • Saleem, H., Yaqub, A., Rafique, R., Ali Chohan, T., Malik, D.-S., Tousif, M. I., Khurshid, U., Ahemad, N., Ramasubburayan, R., Rengasamy, K. R. R. (2023). Nutritional and medicinal plants as potential sources of enzyme inhibitors toward the bioactive functional foods: An updated review. Critical Reviews in Food Science and Nutrition, 1–24. https://doi.org/10.1080/ 10408398.2023.2217264
  • Şensu, E., Duran, A., Özcelik, B., Yucetepe, A. (2023). Investigation of changes in some bioactive properties of phenolic extracts from pulp and seed tissues of Ziziphus jujuba during in vitro digestion. Gıda, 48(3): 602–613. https://doi.org/10.15237/gida.gd23033
  • Song, L., Zhang, L., Xu, L., Ma, Y., Lian, W., Liu, Y., Wang, Y. (2020). Optimized Extraction of Total Triterpenoids from Jujube (Ziziphus jujuba Mill.) and Comprehensive Analysis of Triterpenic Acids in Different Cultivars. Plants, 9(4): 412 https://doi.org/10.3390/plants9040412
  • Wang, B., Huang, Q., Venkitasamy, C., Chai, H., Gao, H., Cheng, N., Cao, W., Lv, X., Pan, Z. (2016). Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. LWT - Food Science and Technology, 66: 56–62. https://doi.org/10.1016/J.LWT.2015.10.005
  • Wink, M. (2010). Functions and biotechnology of plant secondary metabolites. Annual Plant Reviews, (39). Wiley-Blackwell Publishing Ltda, USA.
  • Wu, N., Zhao, Y., Wang, Y., Shuang, Q. (2022). Effects of ultra-high pressure treatment on angiotensin-converting enzyme (ACE) inhibitory activity, antioxidant activity, and physicochemical properties of milk fermented with Lactobacillus delbrueckii QS306. Journal of Dairy Science, 105(3): 1837–1847. https://doi.org/10.3168/JDS.2021-20990
  • Yamamoto, M., Suzuki, A., Hase, T. (2008). Short-term effects of glucosyl hesperidin and hesperetin on blood pressure and vascular endothelial function in spontaneously hypertensive rats. Journal of Nutritional Science and Vitaminology, 54(1): 95–98. https://doi.org/ 10.3177/jnsv.54.95
  • Yan, M., Wang, Y., Watharkar, R. B., Pu, Y., Wu, C., Lin, M., Lu, D., Liu, M., Bao, J., Xia, Y. (2022). Physicochemical and antioxidant activity of fruit harvested from eight jujube (Ziziphus jujuba Mill.) cultivars at different development stages. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-06313-5
  • Yilmaz, M. A. (2020). Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Industrial Crops and Products, 149: 112347. https://doi.org/10.1016/ j.indcrop.2020.112347
  • Yilmaz, M. A., Ertas, A., Yener, I., Akdeniz, M., Cakir, O., Altun, M., Demirtas, I., Boga, M., Temel, H. (2018). A comprehensive LC–MS/MS method validation for the quantitative investigation of 37 fingerprint phytochemicals in Achillea species: A detailed examination of A. coarctata and A. monocephala. Journal of Pharmaceutical and Biomedical Analysis, 154: 413–424. https://doi.org/10.1016/ J.JPBA.2018.02.059
  • Yücetepe, A., Şensu, E., Duran, A., Özçelik, B. (2023). Investigation of changes in some bioactive properties of phenolic extracts from pulp and seed tissues of Ziziphus jujuba during in vitro digestion. Gıda, 48(3): 602–613. https://doi.org/ 10.15237/gida.GD23033
  • Zargoosh, Z., Ghavam, M., Bacchetta, G., Tavili, A. (2019). Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Scientific Reports, 9(1):16021. https://doi.org/10.1038/s41598-019-52605-8
  • Zheng, Y., Li, Y., Zhang, Y., Ruan, X., Zhang, R. (2017). Purification, characterization, synthesis, in vitro ACE inhibition and in vivo antihypertensive activity of bioactive peptides derived from oil palm kernel glutelin-2 hydrolysates. Journal of Functional Foods, 28: 48–58. https://doi.org/ 10.1016/J.JFF.2016.11.021
  • Zhu, J., Lu, Y., He, Q. (2024). Recent advances on bioactive compounds, health benefits, and potential applications of jujube (Ziziphus Jujuba Mill.): A perspective of by-products valorization. Trends in Food Science & Technology, 145: 104368. https://doi.org/10.1016/J.TIFS.2024.104368

AN INVESTIGATION OF THE ACE INHIBITORY ACTIVITY, ANTIOXIDANT CAPACITY, AND PHYTOCHEMICAL CONSTITUENTS OF POLAR AND NON-POLAR EXTRACTS OF ZIZIPHUS JUJUBA FRUIT: STATISTICAL SCREENING THE MAIN COMPONENTS RESPONSIBLE FOR BIOACTIVITY

Year 2024, , 554 - 566, 15.06.2024
https://doi.org/10.15237/gida.GD24028

Abstract

Herein, the angiotensin I-converting enzyme (ACE) inhibitory activity, antioxidant capacity, total polyphenol contents (TPC), and phytochemical profiles of polar and non-polar extracts of dried Ziziphus jujuba fruits were investigated, along with the statistical determination of the main components responsible for ACE inhibitory activity. The non-polar extract expressed the strongest ACE inhibitory activity (99.81%) among the extracts. The non-polar extract also exhibited the highest DPPH scavenging activity (IC50 of 30.63), linoleic acid/β-carotene bleaching capacity (89.31%), and TPC (59.47 mg GAE/g). The phenolic profiles of the extracts were identified by LC-MS/MS, and the presence of seven triterpenoid species in the extracts was examined using GC-MS techniques. The principal constituents included 19 phenolics, 2 organic acids, and 4 triterpenoids. A Pearson correlation and principal component analysis were conducted to find the correlation between individual phenolic compounds and ACE inhibitory activity.

References

  • Agunloye, O. M., Oboh, G. (2018). Caffeic acid and chlorogenic acid: Evaluation of antioxidant effect and inhibition of key enzymes linked with hypertension. Journal of Food Biochemistry, 42(4): e12541. https://doi.org/10.1111/jfbc.12541
  • Ali, M. Y., Seong, S. H., Jung, H. A., Choi, J. S. (2019). Angiotensin-I-converting enzyme inhibitory activity of coumarins from Angelica decursiva. Molecules, 24(21). https://doi.org/ 10.3390/molecules24213937
  • Al-Saeedi, A. H., Al- Ghafri, M. T. H., Hossain, M. A. (2016). Comparative evaluation of total phenols, flavonoids content and antioxidant potential of leaf and fruit extracts of Omani Ziziphus jujuba L. Pacific Science Review A: Natural Science and Engineering, 18(1): 78–83. https://doi.org/10.1016/J.PSRA.2016.09.001
  • Bakir, D., Akdeniz, M., Ertas, A., Yilmaz, M. A., Yener, I., Firat, M., Kolak, U. (2020). A GC–MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & C.A. Mey. of Turkey: Enzyme inhibitory potential of ferruginol. Journal of Food Biochemistry, 44(9): e13350. https://doi.org/10.1111/ jfbc.13350
  • Castellano, J. M., Ramos-Romero, S., Perona, J. S. (2022). Oleanolic Acid: Extraction, characterization and biological activity. Nutrients, 14(3): 623.
  • Ciniviz, M., Yildiz, H. (2020). Determination of phenolic acid profiles by HPLC in lacto-fermented fruits and vegetables (pickle): Effect of pulp and juice portions. Journal of Food Processing and Preservation, 44(7): 1–11. https://doi.org/10.1111/jfpp.14542
  • Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378: 131918. https://doi.org/10.1016/ J.FOODCHEM.2021.131918
  • Guerrero, L., Castillo, J., Quiñones, M., Garcia-Vallvé, S., Arola, L., Pujadas, G., Muguerza, B. (2012). Inhibition of Angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLOS ONE, 7(11): e49493.
  • Hernández, F., Noguera-Artiaga, L., Burló, F., Wojdyło, A., Carbonell-Barrachina, Á. A., Legua, P. (2016). Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. Journal of the Science of Food and Agriculture, 96(8): 2682–2691. https://doi.org/10.1002/jsfa.7386
  • Hui, Z., Wen, H., Zhu, J., Deng, H., Jiang, X., Ye, X. Y., Wang, L., Xie, T., Bai, R. (2024). Discovery of plant-derived anti-tumor natural products: Potential leads for anti-tumor drug discovery. Bioorganic Chemistry, 142: 106957. https://doi.org/10.1016/J.BIOORG.2023.106957
  • Kamkar-Del, Y., Mohebbati, R., Hosseini, M., Khajavir, A., Shafei, M., Rakhshandeh, H. (2020). Ethyl acetate and aqueous fractions of Ziziphus jujuba prevent acute hypertension induced by Angiotensin II in rats. Cardiovasc Hematol Disord Drug Targets, 20(2): 108-115. https://doi.org/ 10.2174/1871529X19666191119141400
  • Kwon, Y. I., Vattem, D. A., Shetty, K. (2006). Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition, 15:107–118.
  • Li, D., Yue, D., Liu, D., Zhang, L., Song, S. (2020). Phytochemical and chemotaxonomic study on Ziziphus jujuba Mill. (Rhamnaceae). Biochemical Systematics and Ecology, 91: 104058. https://doi.org/10.1016/J.BSE.2020.104058
  • Lin, Y. S., Lin, W. S., Tung, J. W., Cheng, Y. C., Chang, M. Y., Chen, C. Y., Huang, S. L. (2020). Antioxidant capacities of jujube fruit seeds and peel pulp. Applied Sciences (Switzerland), 10(17):6007. https://doi.org/10.3390/ app10176007
  • Memarpoor-Yazdi, M., Zare-Zardini, H., Mogharrab, N., Navapour, L. (2020). Purification, characterization and mechanistic evaluation of angiotensin converting enzyme inhibitory peptides derived from Zizyphus jujuba fruit. Scientific Reports, 10(1): 3976. https://doi.org/10.1038/s41598-020-60972-w
  • Meng, J., Fang, Y., Zhang, A., Chen, S., Xu, T., Ren, Z., Han, G., Liu, J., Li, H., Zhang, Z., Wang, H. (2011). Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang Province. Food Research International, 44(9): 2830–2836. https://doi.org/10.1016/ j.foodres.2011.06.032
  • Ng, Z. X., Soh, E. Y. W., Yong, P. H. (2022). The influence of fermentation and drying methods on the functional activities and sensory quality of Artemisia argyi H.Lév. & Vaniot herbal tea. Journal of Applied Research on Medicinal and Aromatic Plants, 30: 100393. https://doi.org/10.1016/ J.JARMAP.2022.100393
  • Oliveira, A. C. de, Mar, J. M., Corrêa, R. F., Sanches, E. A., Campelo, P. H., Ramos, A. da S., Bezerra, J. de A. (2023). Pouteria spp. fruits: Health benefits of bioactive compounds and their potential for the food industry. Food Research International, 173: 113310. https://doi.org/ 10.1016/J.FOODRES.2023.113310
  • Paiva, L., Lima, E., Marcone, M., Baptista, J. (2023). Angiotensin I-converting enzyme (ACE) inhibition and biological activities of green and black tea samples from Azorean Camellia sinensis. Journal of Functional Foods, 107: 105701. https://doi.org/10.1016/J.JFF.2023.105701
  • Pan, F., Zhao, X., Liu, F., Luo, Z., Chen, S., Liu, Z., Zhao, Z., Liu, M., Wang, L. (2023). Triterpenoids in jujube: A review of composition, content diversity, pharmacological effects, synthetic pathway, and variation during domestication. Plants, 12(7): 1501 https://doi.org/10.3390/plants12071501
  • Ruiz Rodríguez, L. G., Zamora Gasga, V. M., Pescuma, M., Van Nieuwenhove, C., Mozzi, F., Sánchez Burgos, J. A. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140: 109854. https://doi.org/10.1016/J.FOODRES.2020.109854
  • Safaeian, L., Emami, R., Hajhashemi, V., Haghighatian, Z. (2018). Antihypertensive and antioxidant effects of protocatechuic acid in deoxycorticosterone acetate-salt hypertensive rats. Biomedicine & Pharmacotherapy, 100: 147–155. https://doi.org/10.1016/J.BIOPHA.2018.01.107
  • Saleem, H., Yaqub, A., Rafique, R., Ali Chohan, T., Malik, D.-S., Tousif, M. I., Khurshid, U., Ahemad, N., Ramasubburayan, R., Rengasamy, K. R. R. (2023). Nutritional and medicinal plants as potential sources of enzyme inhibitors toward the bioactive functional foods: An updated review. Critical Reviews in Food Science and Nutrition, 1–24. https://doi.org/10.1080/ 10408398.2023.2217264
  • Şensu, E., Duran, A., Özcelik, B., Yucetepe, A. (2023). Investigation of changes in some bioactive properties of phenolic extracts from pulp and seed tissues of Ziziphus jujuba during in vitro digestion. Gıda, 48(3): 602–613. https://doi.org/10.15237/gida.gd23033
  • Song, L., Zhang, L., Xu, L., Ma, Y., Lian, W., Liu, Y., Wang, Y. (2020). Optimized Extraction of Total Triterpenoids from Jujube (Ziziphus jujuba Mill.) and Comprehensive Analysis of Triterpenic Acids in Different Cultivars. Plants, 9(4): 412 https://doi.org/10.3390/plants9040412
  • Wang, B., Huang, Q., Venkitasamy, C., Chai, H., Gao, H., Cheng, N., Cao, W., Lv, X., Pan, Z. (2016). Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. LWT - Food Science and Technology, 66: 56–62. https://doi.org/10.1016/J.LWT.2015.10.005
  • Wink, M. (2010). Functions and biotechnology of plant secondary metabolites. Annual Plant Reviews, (39). Wiley-Blackwell Publishing Ltda, USA.
  • Wu, N., Zhao, Y., Wang, Y., Shuang, Q. (2022). Effects of ultra-high pressure treatment on angiotensin-converting enzyme (ACE) inhibitory activity, antioxidant activity, and physicochemical properties of milk fermented with Lactobacillus delbrueckii QS306. Journal of Dairy Science, 105(3): 1837–1847. https://doi.org/10.3168/JDS.2021-20990
  • Yamamoto, M., Suzuki, A., Hase, T. (2008). Short-term effects of glucosyl hesperidin and hesperetin on blood pressure and vascular endothelial function in spontaneously hypertensive rats. Journal of Nutritional Science and Vitaminology, 54(1): 95–98. https://doi.org/ 10.3177/jnsv.54.95
  • Yan, M., Wang, Y., Watharkar, R. B., Pu, Y., Wu, C., Lin, M., Lu, D., Liu, M., Bao, J., Xia, Y. (2022). Physicochemical and antioxidant activity of fruit harvested from eight jujube (Ziziphus jujuba Mill.) cultivars at different development stages. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-06313-5
  • Yilmaz, M. A. (2020). Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Industrial Crops and Products, 149: 112347. https://doi.org/10.1016/ j.indcrop.2020.112347
  • Yilmaz, M. A., Ertas, A., Yener, I., Akdeniz, M., Cakir, O., Altun, M., Demirtas, I., Boga, M., Temel, H. (2018). A comprehensive LC–MS/MS method validation for the quantitative investigation of 37 fingerprint phytochemicals in Achillea species: A detailed examination of A. coarctata and A. monocephala. Journal of Pharmaceutical and Biomedical Analysis, 154: 413–424. https://doi.org/10.1016/ J.JPBA.2018.02.059
  • Yücetepe, A., Şensu, E., Duran, A., Özçelik, B. (2023). Investigation of changes in some bioactive properties of phenolic extracts from pulp and seed tissues of Ziziphus jujuba during in vitro digestion. Gıda, 48(3): 602–613. https://doi.org/ 10.15237/gida.GD23033
  • Zargoosh, Z., Ghavam, M., Bacchetta, G., Tavili, A. (2019). Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Scientific Reports, 9(1):16021. https://doi.org/10.1038/s41598-019-52605-8
  • Zheng, Y., Li, Y., Zhang, Y., Ruan, X., Zhang, R. (2017). Purification, characterization, synthesis, in vitro ACE inhibition and in vivo antihypertensive activity of bioactive peptides derived from oil palm kernel glutelin-2 hydrolysates. Journal of Functional Foods, 28: 48–58. https://doi.org/ 10.1016/J.JFF.2016.11.021
  • Zhu, J., Lu, Y., He, Q. (2024). Recent advances on bioactive compounds, health benefits, and potential applications of jujube (Ziziphus Jujuba Mill.): A perspective of by-products valorization. Trends in Food Science & Technology, 145: 104368. https://doi.org/10.1016/J.TIFS.2024.104368
There are 36 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Bahar Fındık 0000-0002-0030-4106

Hilal Yıldız 0000-0002-7966-455X

Esma Birişçi 0000-0002-2963-650X

Serkan Yiğitkan 0000-0002-6202-1515

Pelin Köseoğlu Yılmaz 0000-0002-9871-1710

Abdulselam Ertaş 0000-0002-2193-8386

Publication Date June 15, 2024
Submission Date February 22, 2024
Acceptance Date May 17, 2024
Published in Issue Year 2024

Cite

APA Fındık, B., Yıldız, H., Birişçi, E., Yiğitkan, S., et al. (2024). AN INVESTIGATION OF THE ACE INHIBITORY ACTIVITY, ANTIOXIDANT CAPACITY, AND PHYTOCHEMICAL CONSTITUENTS OF POLAR AND NON-POLAR EXTRACTS OF ZIZIPHUS JUJUBA FRUIT: STATISTICAL SCREENING THE MAIN COMPONENTS RESPONSIBLE FOR BIOACTIVITY. Gıda, 49(3), 554-566. https://doi.org/10.15237/gida.GD24028
AMA Fındık B, Yıldız H, Birişçi E, Yiğitkan S, Köseoğlu Yılmaz P, Ertaş A. AN INVESTIGATION OF THE ACE INHIBITORY ACTIVITY, ANTIOXIDANT CAPACITY, AND PHYTOCHEMICAL CONSTITUENTS OF POLAR AND NON-POLAR EXTRACTS OF ZIZIPHUS JUJUBA FRUIT: STATISTICAL SCREENING THE MAIN COMPONENTS RESPONSIBLE FOR BIOACTIVITY. GIDA. June 2024;49(3):554-566. doi:10.15237/gida.GD24028
Chicago Fındık, Bahar, Hilal Yıldız, Esma Birişçi, Serkan Yiğitkan, Pelin Köseoğlu Yılmaz, and Abdulselam Ertaş. “AN INVESTIGATION OF THE ACE INHIBITORY ACTIVITY, ANTIOXIDANT CAPACITY, AND PHYTOCHEMICAL CONSTITUENTS OF POLAR AND NON-POLAR EXTRACTS OF ZIZIPHUS JUJUBA FRUIT: STATISTICAL SCREENING THE MAIN COMPONENTS RESPONSIBLE FOR BIOACTIVITY”. Gıda 49, no. 3 (June 2024): 554-66. https://doi.org/10.15237/gida.GD24028.
EndNote Fındık B, Yıldız H, Birişçi E, Yiğitkan S, Köseoğlu Yılmaz P, Ertaş A (June 1, 2024) AN INVESTIGATION OF THE ACE INHIBITORY ACTIVITY, ANTIOXIDANT CAPACITY, AND PHYTOCHEMICAL CONSTITUENTS OF POLAR AND NON-POLAR EXTRACTS OF ZIZIPHUS JUJUBA FRUIT: STATISTICAL SCREENING THE MAIN COMPONENTS RESPONSIBLE FOR BIOACTIVITY. Gıda 49 3 554–566.
IEEE B. Fındık, H. Yıldız, E. Birişçi, S. Yiğitkan, P. Köseoğlu Yılmaz, and A. Ertaş, “AN INVESTIGATION OF THE ACE INHIBITORY ACTIVITY, ANTIOXIDANT CAPACITY, AND PHYTOCHEMICAL CONSTITUENTS OF POLAR AND NON-POLAR EXTRACTS OF ZIZIPHUS JUJUBA FRUIT: STATISTICAL SCREENING THE MAIN COMPONENTS RESPONSIBLE FOR BIOACTIVITY”, GIDA, vol. 49, no. 3, pp. 554–566, 2024, doi: 10.15237/gida.GD24028.
ISNAD Fındık, Bahar et al. “AN INVESTIGATION OF THE ACE INHIBITORY ACTIVITY, ANTIOXIDANT CAPACITY, AND PHYTOCHEMICAL CONSTITUENTS OF POLAR AND NON-POLAR EXTRACTS OF ZIZIPHUS JUJUBA FRUIT: STATISTICAL SCREENING THE MAIN COMPONENTS RESPONSIBLE FOR BIOACTIVITY”. Gıda 49/3 (June 2024), 554-566. https://doi.org/10.15237/gida.GD24028.
JAMA Fındık B, Yıldız H, Birişçi E, Yiğitkan S, Köseoğlu Yılmaz P, Ertaş A. AN INVESTIGATION OF THE ACE INHIBITORY ACTIVITY, ANTIOXIDANT CAPACITY, AND PHYTOCHEMICAL CONSTITUENTS OF POLAR AND NON-POLAR EXTRACTS OF ZIZIPHUS JUJUBA FRUIT: STATISTICAL SCREENING THE MAIN COMPONENTS RESPONSIBLE FOR BIOACTIVITY. GIDA. 2024;49:554–566.
MLA Fındık, Bahar et al. “AN INVESTIGATION OF THE ACE INHIBITORY ACTIVITY, ANTIOXIDANT CAPACITY, AND PHYTOCHEMICAL CONSTITUENTS OF POLAR AND NON-POLAR EXTRACTS OF ZIZIPHUS JUJUBA FRUIT: STATISTICAL SCREENING THE MAIN COMPONENTS RESPONSIBLE FOR BIOACTIVITY”. Gıda, vol. 49, no. 3, 2024, pp. 554-66, doi:10.15237/gida.GD24028.
Vancouver Fındık B, Yıldız H, Birişçi E, Yiğitkan S, Köseoğlu Yılmaz P, Ertaş A. AN INVESTIGATION OF THE ACE INHIBITORY ACTIVITY, ANTIOXIDANT CAPACITY, AND PHYTOCHEMICAL CONSTITUENTS OF POLAR AND NON-POLAR EXTRACTS OF ZIZIPHUS JUJUBA FRUIT: STATISTICAL SCREENING THE MAIN COMPONENTS RESPONSIBLE FOR BIOACTIVITY. GIDA. 2024;49(3):554-66.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/