Review
BibTex RIS Cite

SUSTAINABLE KOMBUCHA AND BACTEIAL CELLULOSE PRODUCTION

Year 2026, Volume: 51 Issue: 1, 225 - 238, 02.02.2026
https://doi.org/10.15237//gida.GD25068

Abstract

This review aims to evaluate the sustainable production potential of bacterial cellulose (BC) produced through kombucha fermentation from a biotechnological perspective. Kombucha is a fermented beverage obtained by the fermentation of black or green tea with a symbiotic culture of bacteria and yeast (SCOBY), during which a cellulosic biofilm is formed that exhibits high purity, biocompatibility, and mechanical strength. Unlike plant-derived cellulose, bacterial cellulose does not require chemical pretreatment, involves lower energy and water consumption, and generates minimal waste, making it a more environmentally sustainable biomaterial. Furthermore, the use of agricultural and food industry by-products as substrates not only reduces production costs but also supports the principles of the circular economy. This review discusses the effects of various waste-based substrates on bacterial cellulose production and quality characteristics, as well as the critical role of microbial consortia and fermentation parameters in sustainable production. Overall, bacterial cellulose obtained via kombucha fermentation is considered a promising alternative for environmentally and economically sustainable biomaterial production.

References

  • Abol-Fotouh, D., Hassan, M. A., Shokry, H., Roig, A., Azab, M. S., & Kashyout, A. E. H. B. (2020). Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific reports, 10(1), 3491.
  • Aguiar Cavicchia, L. O., & Ferreira de Almeida, M. E. (2024). The risks, toxicity and contamination of Kombucha beverage: a perspective on its production, storage, and consumption. Segurança Alimentar e Nutricional, 31.
  • Amnuaikit, T., Chusuit, T., Raknam, P., & Boonme, P. (2011). Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Medical Devices: Evidence and Research, 77-81.
  • Amorim, L. F., Li, L., Gomes, A. P., Fangueiro, R., & Gouveia, I. C. (2023). Sustainable bacterial cellulose production by low cost feedstock: evaluation of apple and tea by-products as alternative sources of nutrients. Cellulose, 30(9), 5589-5606.
  • Antolak, H., Piechota, D., & Kucharska, A. (2021). Kombucha tea—A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants, 10(10), 1541.
  • Aprilia Ely, E., Shelly Taurhesia, S., & Teti Indrawati, T. E. T. I.(2023) Antibacterial Effectiveness (Propionibacterium Acnes) Of Kombucha Face Toner Formula with Green Tea Leaf (Camellia sinensis L.).
  • Aung, T., & Kim, M. J. (2024). A comprehensive review on Kombucha biofilms: A promising candidate for sustainable food product development. Trends in Food Science & Technology, 144, 104325. Aung, T., Lee, W.-H., & Eun, J.-B. (2022). Metabolite profiling and pathway prediction of laver (Porphyra dentata) Kombucha during fermentation at different temperatures. Food Chemistry, 397, Article 133636. https://doi.org/10.1016/j. foodchem.2022.133636
  • Avcioglu, N. H., Birben, M., & Bilkay, I. S. (2021). Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium. Process Biochemistry, 108, 60-68.
  • Bishop, P., Pitts, E. R., Budner, D., & Thompson-Witrick, K. A. (2022). Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chemistry Advances, 1, 100025.
  • Buzia, O. D., Fasie, V. A. L. E. R. I. A., Mardare, N. E. L. A., Diaconu, C. A. M. E. L. I. A., Gurau, G. A. B. R. I. E. L. A., & Tatu, A. L. (2018). Formulation, preparation, physico-chimical analysis, microbiological peculiarities and therapeutic challenges of extractive solution of Kombucha. Rev Chim, 69, 720-724.
  • Chen, L., Hong, F., Yang, X.X. and Han, S.F., 2017 Biotransformation of wheat straw to bacterial cellulose and its mechanism, Bioresource Technology, 135:464-468pp.
  • Chong, A. Q., Chin, N. L., Talib, R. A., & Basha, R. K. (2024). Modelling pH dynamics, SCOBY biomass formation, and acetic acid production of Kombucha fermentation using black, green, and oolong teas. Processes, 12(7), 1301.
  • Chong, A. Q., Chin, N. L., Talib, R. A., & Basha, R. K. (2025). Application of scoby bacterial cellulose as hydrocolloids on physicochemical, textural and sensory characteristics of mango jam. Journal of the Science of Food and Agriculture, 105(1), 285-293.
  • Chu, S. C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of Kombucha. Food Chemistry, 98(3), 502-507.
  • Crum, H., & LaGory, A. (2016). The big book of Kombucha: Brewing, flavoring, and enjoying the health benefits of fermented tea. North Adams, MA: Storey Publishing.
  • de Farias Nascimento, A.; Ramos, S.M.T.; Bergamo, V.N.; dos Santos Araujo, E.; Valencia, G.A. (2024) Pickering Emulsions Stabilized Using Bacterial Cellulose from Kombucha. Starch—Stärke, 77, 2400103.
  • Dartora, B., Voltaire, S. A., Hickert, L. R., Fensterseifer, M., Ayub, M. A. Z., Flôres, S. H., & Perez, K. J. (2023). Factors Influencing Kombucha Production: Effects of Tea Composition, Sugar, And Scoby. Food Science and Technology, 43.
  • Değirmencioğlu, N., Yıldız, E., Sahan, Y., Güldas, M., & Gürbüz, O. (2021). Impact of tea leaves types on antioxidant properties and bioaccessibility of Kombucha. Journal of Food Science and Technology, 58(6), 2304-2312.
  • El-Wakil, N. A., Hassan, E. A., Hassan, M. L., & Abd El-Salam, S. S. (2019). Bacterial cellulose/phytochemical’s extracts biocomposites for potential active wound dressings. Environmental Science and Pollution Research, 26, 26529-26541.
  • Emiljanowicz, K. E., & Malinowska-Pańczyk, E. (2020). Kombucha from alternative raw materials–The review. Critical Reviews in Food Science and Nutrition, 60(19), 3185-3194.
  • Fatma, N., Al-Shemy, M. T., & Dawwam, G. E. (2023). Multifunction smart nanocomposite film for food packaging based on carboxymethyl cellulose/ SCOBY/pomegranate anthocyanin pigment. International Journal of Biological Macromolecules, 242, 125101.
  • Feng, X., Ge, Z., Wang, Y., Xia, X., Zhao, B., & Dong, M. (2024). Production and characterization of bacterial cellulose from Kombucha-fermented soy whey. Food Production, Processing and Nutrition, 6(1), 20.
  • Greenwalt, C. J., Steinkraus, K. H., & Ledford, R. A. (2000). Kombucha, the fermented tea: Microbiology, composition, and claimed health effects. Journal of Food Protection, 63 (7), 976–981. doi: 10.4315/0362-028x-63.7.976
  • Gregory, D. A., Tripathi, L., Fricker, A. T., Asare, E., Orlando, I., Raghavendran, V., & Roy, I. (2021). Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports, 145, 100623. Hasanin, M. S., Abdelraof, M., Hashem, A. H., & El Saied, H. (2023). Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories, 22(1), 24.
  • He, F., Yang, H., Zeng, L., Hu, H., & Hu, C. (2020). Production and characterization of bacterial cellulose obtained by Gluconacetobacter xylinus utilizing the by-products from Baijiu production. Bioprocess and biosystems engineering, 43, 927-936.
  • Jayabalan, R., Malba š a, R., Lon čar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A re- view on Kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13 (4), 538–550. doi: 10.1111/1541- 4337.12073.
  • Laavanya, D., Shirkole, S., & Balasubramanian, P. (2021). Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. Journal of Cleaner Production, 295, 126454.
  • Laureys, D., Britton, S. J., & De Clippeleer, J. (2020). Kombucha tea fermentation: a review. Journal of the American Society of Brewing Chemists, 78(3), 165–174. https:// doi.org/10.1080/03610470.2020.1734150
  • Lawton II, J. K., & Kumar, R. B. (2016). Characterization of water-types and their influence on the antimicrobial proper-ties of Kombucha ferments against bacteria and yeast. Fine Focus, 2(1), 39-49.
  • Leonarski, E., Cesca, K., Zanella, E., Stambuk, B. U., de Oliveira, D., & Poletto, P. (2021). Production of Kombucha-like beverage and bacterial cellulose by acerola byproduct as raw material. Lwt, 135, 110075.
  • Li, J., Ma, J., Li, Q., Fan, S., Fan, L., Ma, H., ... & Zheng, L. (2021). Determination of 35 free amino acids in tea using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Frontiers in Nutrition, 8, 767801.
  • Li, S., Zhang, Y., Gao, J., Li, T., Li, H., Mastroyannis, A., ... & Chang, K. (2022). Effect of fermentation time on physiochemical properties of Kombucha produced from different teas and fruits: Comparative study. Journal of Food Quality, 2022(1), 2342954.
  • Li, Z., Hu, W., Dong, J., Azi, F., Xu, X., Tu, C., et al. (2023). The use of bacterial cellulose from Kombucha to produce curcumin loaded Pickering emulsion with improved stability and antioxidant properties. Food Science and Human Wellness, 12, 669–679. https://doi. org/10.1016/j.fshw.2022.07.069
  • Liamkaew, R., Chattrawanit, J., & Danvirutai, P. (2016). Kombucha production by combinations of black tea and apple juice. Progress in Applied gScience and Technology, 6(2), 139-146.
  • Liao, T., Li, X. R., Fan, L., Zhang, B., Zheng, W. M., Hua, J. J., ... & Cheng, L. H. (2024). Nature of back slopping Kombucha fermentation process: insights from the microbial succession, metabolites composition changes and their correlations. Frontiers in Microbiology, 15, 1433127.
  • Malbaša, R., Lončar, E., Djurić, M., Klašnja, M., Kolarov, L. J., & Markov, S. (2006). Scale-up of black tea batch fermentation by Kombucha. Food and bioproducts processing, 84(3), 193-199.
  • Mirmohammadsadegh, N., Shakoori, M., Moghaddam, H. N., Farhadi, R., Shahverdi, A. R., & Amin, M. (2021). Wound healing and anti-inflammatory effects of bacterial cellulose coated with Pistacia atlantica fruit oil. DARU Journal of Pharmaceutical Sciences, 1-10.
  • Mishra, S., Singh, P. K. and Pattnaik, R., 2022, Biochemistry, synthesis, and applications of bacterial cellulose: a review Frontiers in Bioengineering and Biotechnology:1–12
  • Mishra, T., Machireddy, J., & Vuppu, S. (2024). Comprehensive Study on Hygiene and Quality Assessment Practices in the Production of Drinkable Dairy-Based and Plant-Based Fermented Products. Fermentation, 10(9), 489.
  • Muralidharan, V., Jebathomas, C. R. T., Sundaramoorthy, S., Madhan, B., & Palanivel, S. (2024). Preparation and evaluation of novel biodegradable Kombucha cellulose-based multi-layered composite tableware. Industrial Crops and Products, 215, 118629.
  • Neera, Ramana, K. V., & Batra, H. V. (2015). Occurrence of cellulose-producing Gluconacetobacter spp. in fruit samples and Kombucha tea, and production of the biopolymer. Applied biochemistry and biotechnology, 176, 1162-1173.
  • Nguyen, H. T., Saha, N., Ngwabebhoh, F. A., Zandraa, O., Saha, T., & Saha, P. (2021). Kombucha-derived bacterial cellulose from diverse wastes: a prudent leather alternative. Cellulose, 28, 9335-9353.
  • Nuryastuti, T., van der Mei, H. C., Busscher, H. J., Iravati, S., Aman, A. T., & Krom, B. P. (2009). Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Applied and Environmental Microbiology, 75(21), 6850-6855.
  • Nyhan, L. M., Lynch, K. M., Sahin, A. W., & Arendt, E. K. (2022). Advances in Kombucha tea fermentation: A review. Applied Microbiology, 2(1), 73-103.
  • Öz, Y. E. (2017). Farklı kültür teknikleri kullanılarak bakteriyel selüloz üretimi ve karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Enstitüsü'nde Biyomühendislik Anabilim Dalı Yüksek Lisans Tezi,Elazığ
  • Patil, S. V., Dulait, K., Shirkole, S. S., Thorat, B. N., & Deshmukh, S. P. (2024). Dewatering and drying of Kombucha Bacterial Cellulose for preparation of biodegradable film for food packaging. International Journal of Biological Macromolecules, 280, 136334.
  • Pino, A., De Angelis, M., Chieppa, M., Caggia, C., & Randazzo, C. (2020). Gut microbiota, probiotics and colorectal cancer: a tight relation. World Cancer Research Journal, 7, 1456.
  • Raiszadeh-Jahromi, Y., Rezazadeh-Bari, M., Almasi, H., & Amiri, S. (2020). Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. Journal of food science and technology, 57, 2524- 2533.
  • Raval, A. A., Raval, U. G., & Sayyed, R. Z. (2020). Utilization of industrial waste for the sustainable production of bacterial cellulose. Environmental Sustainability, 3(4), 427-435.
  • Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., & Shchankin, M. (2018). Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, 49(suppl 1), 151-159. Salas-Millán, J. Á., & Aguayo, E. (2024). Fermentation for Revalorisation of Fruit and Vegetable By-Products: A Sustainable Approach Towards Minimising Food Loss and Waste. Foods, 13(22), 3680.
  • Savary, O., Mounier, J., Thierry, A., Poirier, E., Jourdren, J., Maillard, M. B., ... & Coton, M. (2021). Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation. Food Research International, 147, 110549.
  • Sharma, C., Bhardwaj, N. K., & Pathak, P. (2021). Static intermittent fed-batch production of bacterial nanocellulose from black tea and its modification using chitosan to develop antibacterial green packaging material. Journal of Cleaner Production, 279, 123608.
  • Souza, E. F., Furtado, M. R., Carvalho, C. W., Freitas-Silva, O., & Gottschalk, L. M. (2020). Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. International Journal of Biological Macromolecules, 146, 285-289.
  • Tapias, Y. A. R., Di Monte, M. V., Peltzer, M. A., & Salvay, A. G. (2023). Kombucha fermentation in yerba mate Cellulose production, films formulation and its characterisation. Carbohydrate Polymer Technologies and Applications, 5, 100310.
  • Treviso, R. L., Sant’Anna, V., Fabricio, M. F., Ayub, M. A. Z., Brandelli, A., & Hickert, L. R. (2024). Time and temperature influence on physicochemical, microbiological, and sensory profiles of yerba mate Kombucha. Journal of Food Science and Technology, 61(9), 1733-1742.
  • Tsouko, E., Pilafidis, S., Kourmentza, K., Gomes, H. I., Sarris, G., Koralli, P., ... & Sarris, D. (2024). A sustainable bioprocess to produce bacterial cellulose (BC) using waste streams from wine distilleries and the biodiesel industry: evaluation of BC for adsorption of phenolic compounds, dyes and metals. Biotechnology for Biofuels and Bioproducts, 17(1), 40.
  • Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydrate polymers, 219, 63-76.
  • Yilmaz, M., & Goksungur, Y. (2024). Optimization of Bacterial Cellulose Production from Waste Figs by Komagataeibacter xylinus. Fermentation, 10(9), 466.
  • Ziemlewska, A., Nizioł-Łukaszewska, Z., Bujak, T., Zagórska-Dziok, M., Wójciak, M., & Sowa, I. (2021). Effect of fermentation time on the content of bioactive compounds with cosmetic and dermatological properties in Kombucha Yerba Mate extracts. Scientific Reports, 11(1), 18792.

SÜRDÜRÜLEBİLİR KOMBUCHA VE BAKTERİYEL SELÜLOZ ÜRETİMİ

Year 2026, Volume: 51 Issue: 1, 225 - 238, 02.02.2026
https://doi.org/10.15237//gida.GD25068

Abstract

Kombucha fermantasyonu yoluyla üretilen bakteriyel selülozun (BC) sürdürülebilir üretim potansiyelini biyoteknolojik açıdan değerlendirmektir. Kombucha, siyah veya yeşil çayın simbiyotik bakteri ve maya kültürü (SCOBY) ile fermente edilmesi sonucu elde edilen bir içecektir ve fermantasyon sürecinde oluşan selülozik biyofilm, yüksek saflık, biyouyumluluk ve mekanik dayanıklılık gibi özelliklere sahiptir. Bitkisel kaynaklı selülozun aksine kimyasal ön işlem gerektirmemesi, enerji ve su tüketiminin düşük olması ve atık oluşumunu azaltması, bakteriyel selülozu çevresel açıdan daha sürdürülebilir bir biyomalzeme haline getirmektedir. Ayrıca tarım ve gıda endüstrisi yan ürünlerinin substrat olarak kullanılması, hem üretim maliyetlerini düşürmekte hem de döngüsel ekonomi yaklaşımını desteklemektedir. Bu derlemede, farklı atık bazlı substratların bakteriyel selüloz üretimi ve kalite özelliklerine etkileri ile mikrobiyal konsorsiyum ve fermantasyon parametrelerinin sürdürülebilir üretim üzerindeki belirleyici rolü ele alınmıştır. Sonuç olarak, Kombucha fermantasyonu ile elde edilen bakteriyel selüloz, hem çevresel hem de ekonomik açıdan sürdürülebilir biyomalzeme üretimi için umut vadeden bir alternatif olarak değerlendirilmektedir.

References

  • Abol-Fotouh, D., Hassan, M. A., Shokry, H., Roig, A., Azab, M. S., & Kashyout, A. E. H. B. (2020). Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific reports, 10(1), 3491.
  • Aguiar Cavicchia, L. O., & Ferreira de Almeida, M. E. (2024). The risks, toxicity and contamination of Kombucha beverage: a perspective on its production, storage, and consumption. Segurança Alimentar e Nutricional, 31.
  • Amnuaikit, T., Chusuit, T., Raknam, P., & Boonme, P. (2011). Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Medical Devices: Evidence and Research, 77-81.
  • Amorim, L. F., Li, L., Gomes, A. P., Fangueiro, R., & Gouveia, I. C. (2023). Sustainable bacterial cellulose production by low cost feedstock: evaluation of apple and tea by-products as alternative sources of nutrients. Cellulose, 30(9), 5589-5606.
  • Antolak, H., Piechota, D., & Kucharska, A. (2021). Kombucha tea—A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants, 10(10), 1541.
  • Aprilia Ely, E., Shelly Taurhesia, S., & Teti Indrawati, T. E. T. I.(2023) Antibacterial Effectiveness (Propionibacterium Acnes) Of Kombucha Face Toner Formula with Green Tea Leaf (Camellia sinensis L.).
  • Aung, T., & Kim, M. J. (2024). A comprehensive review on Kombucha biofilms: A promising candidate for sustainable food product development. Trends in Food Science & Technology, 144, 104325. Aung, T., Lee, W.-H., & Eun, J.-B. (2022). Metabolite profiling and pathway prediction of laver (Porphyra dentata) Kombucha during fermentation at different temperatures. Food Chemistry, 397, Article 133636. https://doi.org/10.1016/j. foodchem.2022.133636
  • Avcioglu, N. H., Birben, M., & Bilkay, I. S. (2021). Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium. Process Biochemistry, 108, 60-68.
  • Bishop, P., Pitts, E. R., Budner, D., & Thompson-Witrick, K. A. (2022). Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chemistry Advances, 1, 100025.
  • Buzia, O. D., Fasie, V. A. L. E. R. I. A., Mardare, N. E. L. A., Diaconu, C. A. M. E. L. I. A., Gurau, G. A. B. R. I. E. L. A., & Tatu, A. L. (2018). Formulation, preparation, physico-chimical analysis, microbiological peculiarities and therapeutic challenges of extractive solution of Kombucha. Rev Chim, 69, 720-724.
  • Chen, L., Hong, F., Yang, X.X. and Han, S.F., 2017 Biotransformation of wheat straw to bacterial cellulose and its mechanism, Bioresource Technology, 135:464-468pp.
  • Chong, A. Q., Chin, N. L., Talib, R. A., & Basha, R. K. (2024). Modelling pH dynamics, SCOBY biomass formation, and acetic acid production of Kombucha fermentation using black, green, and oolong teas. Processes, 12(7), 1301.
  • Chong, A. Q., Chin, N. L., Talib, R. A., & Basha, R. K. (2025). Application of scoby bacterial cellulose as hydrocolloids on physicochemical, textural and sensory characteristics of mango jam. Journal of the Science of Food and Agriculture, 105(1), 285-293.
  • Chu, S. C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of Kombucha. Food Chemistry, 98(3), 502-507.
  • Crum, H., & LaGory, A. (2016). The big book of Kombucha: Brewing, flavoring, and enjoying the health benefits of fermented tea. North Adams, MA: Storey Publishing.
  • de Farias Nascimento, A.; Ramos, S.M.T.; Bergamo, V.N.; dos Santos Araujo, E.; Valencia, G.A. (2024) Pickering Emulsions Stabilized Using Bacterial Cellulose from Kombucha. Starch—Stärke, 77, 2400103.
  • Dartora, B., Voltaire, S. A., Hickert, L. R., Fensterseifer, M., Ayub, M. A. Z., Flôres, S. H., & Perez, K. J. (2023). Factors Influencing Kombucha Production: Effects of Tea Composition, Sugar, And Scoby. Food Science and Technology, 43.
  • Değirmencioğlu, N., Yıldız, E., Sahan, Y., Güldas, M., & Gürbüz, O. (2021). Impact of tea leaves types on antioxidant properties and bioaccessibility of Kombucha. Journal of Food Science and Technology, 58(6), 2304-2312.
  • El-Wakil, N. A., Hassan, E. A., Hassan, M. L., & Abd El-Salam, S. S. (2019). Bacterial cellulose/phytochemical’s extracts biocomposites for potential active wound dressings. Environmental Science and Pollution Research, 26, 26529-26541.
  • Emiljanowicz, K. E., & Malinowska-Pańczyk, E. (2020). Kombucha from alternative raw materials–The review. Critical Reviews in Food Science and Nutrition, 60(19), 3185-3194.
  • Fatma, N., Al-Shemy, M. T., & Dawwam, G. E. (2023). Multifunction smart nanocomposite film for food packaging based on carboxymethyl cellulose/ SCOBY/pomegranate anthocyanin pigment. International Journal of Biological Macromolecules, 242, 125101.
  • Feng, X., Ge, Z., Wang, Y., Xia, X., Zhao, B., & Dong, M. (2024). Production and characterization of bacterial cellulose from Kombucha-fermented soy whey. Food Production, Processing and Nutrition, 6(1), 20.
  • Greenwalt, C. J., Steinkraus, K. H., & Ledford, R. A. (2000). Kombucha, the fermented tea: Microbiology, composition, and claimed health effects. Journal of Food Protection, 63 (7), 976–981. doi: 10.4315/0362-028x-63.7.976
  • Gregory, D. A., Tripathi, L., Fricker, A. T., Asare, E., Orlando, I., Raghavendran, V., & Roy, I. (2021). Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports, 145, 100623. Hasanin, M. S., Abdelraof, M., Hashem, A. H., & El Saied, H. (2023). Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories, 22(1), 24.
  • He, F., Yang, H., Zeng, L., Hu, H., & Hu, C. (2020). Production and characterization of bacterial cellulose obtained by Gluconacetobacter xylinus utilizing the by-products from Baijiu production. Bioprocess and biosystems engineering, 43, 927-936.
  • Jayabalan, R., Malba š a, R., Lon čar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A re- view on Kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13 (4), 538–550. doi: 10.1111/1541- 4337.12073.
  • Laavanya, D., Shirkole, S., & Balasubramanian, P. (2021). Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. Journal of Cleaner Production, 295, 126454.
  • Laureys, D., Britton, S. J., & De Clippeleer, J. (2020). Kombucha tea fermentation: a review. Journal of the American Society of Brewing Chemists, 78(3), 165–174. https:// doi.org/10.1080/03610470.2020.1734150
  • Lawton II, J. K., & Kumar, R. B. (2016). Characterization of water-types and their influence on the antimicrobial proper-ties of Kombucha ferments against bacteria and yeast. Fine Focus, 2(1), 39-49.
  • Leonarski, E., Cesca, K., Zanella, E., Stambuk, B. U., de Oliveira, D., & Poletto, P. (2021). Production of Kombucha-like beverage and bacterial cellulose by acerola byproduct as raw material. Lwt, 135, 110075.
  • Li, J., Ma, J., Li, Q., Fan, S., Fan, L., Ma, H., ... & Zheng, L. (2021). Determination of 35 free amino acids in tea using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Frontiers in Nutrition, 8, 767801.
  • Li, S., Zhang, Y., Gao, J., Li, T., Li, H., Mastroyannis, A., ... & Chang, K. (2022). Effect of fermentation time on physiochemical properties of Kombucha produced from different teas and fruits: Comparative study. Journal of Food Quality, 2022(1), 2342954.
  • Li, Z., Hu, W., Dong, J., Azi, F., Xu, X., Tu, C., et al. (2023). The use of bacterial cellulose from Kombucha to produce curcumin loaded Pickering emulsion with improved stability and antioxidant properties. Food Science and Human Wellness, 12, 669–679. https://doi. org/10.1016/j.fshw.2022.07.069
  • Liamkaew, R., Chattrawanit, J., & Danvirutai, P. (2016). Kombucha production by combinations of black tea and apple juice. Progress in Applied gScience and Technology, 6(2), 139-146.
  • Liao, T., Li, X. R., Fan, L., Zhang, B., Zheng, W. M., Hua, J. J., ... & Cheng, L. H. (2024). Nature of back slopping Kombucha fermentation process: insights from the microbial succession, metabolites composition changes and their correlations. Frontiers in Microbiology, 15, 1433127.
  • Malbaša, R., Lončar, E., Djurić, M., Klašnja, M., Kolarov, L. J., & Markov, S. (2006). Scale-up of black tea batch fermentation by Kombucha. Food and bioproducts processing, 84(3), 193-199.
  • Mirmohammadsadegh, N., Shakoori, M., Moghaddam, H. N., Farhadi, R., Shahverdi, A. R., & Amin, M. (2021). Wound healing and anti-inflammatory effects of bacterial cellulose coated with Pistacia atlantica fruit oil. DARU Journal of Pharmaceutical Sciences, 1-10.
  • Mishra, S., Singh, P. K. and Pattnaik, R., 2022, Biochemistry, synthesis, and applications of bacterial cellulose: a review Frontiers in Bioengineering and Biotechnology:1–12
  • Mishra, T., Machireddy, J., & Vuppu, S. (2024). Comprehensive Study on Hygiene and Quality Assessment Practices in the Production of Drinkable Dairy-Based and Plant-Based Fermented Products. Fermentation, 10(9), 489.
  • Muralidharan, V., Jebathomas, C. R. T., Sundaramoorthy, S., Madhan, B., & Palanivel, S. (2024). Preparation and evaluation of novel biodegradable Kombucha cellulose-based multi-layered composite tableware. Industrial Crops and Products, 215, 118629.
  • Neera, Ramana, K. V., & Batra, H. V. (2015). Occurrence of cellulose-producing Gluconacetobacter spp. in fruit samples and Kombucha tea, and production of the biopolymer. Applied biochemistry and biotechnology, 176, 1162-1173.
  • Nguyen, H. T., Saha, N., Ngwabebhoh, F. A., Zandraa, O., Saha, T., & Saha, P. (2021). Kombucha-derived bacterial cellulose from diverse wastes: a prudent leather alternative. Cellulose, 28, 9335-9353.
  • Nuryastuti, T., van der Mei, H. C., Busscher, H. J., Iravati, S., Aman, A. T., & Krom, B. P. (2009). Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Applied and Environmental Microbiology, 75(21), 6850-6855.
  • Nyhan, L. M., Lynch, K. M., Sahin, A. W., & Arendt, E. K. (2022). Advances in Kombucha tea fermentation: A review. Applied Microbiology, 2(1), 73-103.
  • Öz, Y. E. (2017). Farklı kültür teknikleri kullanılarak bakteriyel selüloz üretimi ve karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Enstitüsü'nde Biyomühendislik Anabilim Dalı Yüksek Lisans Tezi,Elazığ
  • Patil, S. V., Dulait, K., Shirkole, S. S., Thorat, B. N., & Deshmukh, S. P. (2024). Dewatering and drying of Kombucha Bacterial Cellulose for preparation of biodegradable film for food packaging. International Journal of Biological Macromolecules, 280, 136334.
  • Pino, A., De Angelis, M., Chieppa, M., Caggia, C., & Randazzo, C. (2020). Gut microbiota, probiotics and colorectal cancer: a tight relation. World Cancer Research Journal, 7, 1456.
  • Raiszadeh-Jahromi, Y., Rezazadeh-Bari, M., Almasi, H., & Amiri, S. (2020). Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. Journal of food science and technology, 57, 2524- 2533.
  • Raval, A. A., Raval, U. G., & Sayyed, R. Z. (2020). Utilization of industrial waste for the sustainable production of bacterial cellulose. Environmental Sustainability, 3(4), 427-435.
  • Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., & Shchankin, M. (2018). Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, 49(suppl 1), 151-159. Salas-Millán, J. Á., & Aguayo, E. (2024). Fermentation for Revalorisation of Fruit and Vegetable By-Products: A Sustainable Approach Towards Minimising Food Loss and Waste. Foods, 13(22), 3680.
  • Savary, O., Mounier, J., Thierry, A., Poirier, E., Jourdren, J., Maillard, M. B., ... & Coton, M. (2021). Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation. Food Research International, 147, 110549.
  • Sharma, C., Bhardwaj, N. K., & Pathak, P. (2021). Static intermittent fed-batch production of bacterial nanocellulose from black tea and its modification using chitosan to develop antibacterial green packaging material. Journal of Cleaner Production, 279, 123608.
  • Souza, E. F., Furtado, M. R., Carvalho, C. W., Freitas-Silva, O., & Gottschalk, L. M. (2020). Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. International Journal of Biological Macromolecules, 146, 285-289.
  • Tapias, Y. A. R., Di Monte, M. V., Peltzer, M. A., & Salvay, A. G. (2023). Kombucha fermentation in yerba mate Cellulose production, films formulation and its characterisation. Carbohydrate Polymer Technologies and Applications, 5, 100310.
  • Treviso, R. L., Sant’Anna, V., Fabricio, M. F., Ayub, M. A. Z., Brandelli, A., & Hickert, L. R. (2024). Time and temperature influence on physicochemical, microbiological, and sensory profiles of yerba mate Kombucha. Journal of Food Science and Technology, 61(9), 1733-1742.
  • Tsouko, E., Pilafidis, S., Kourmentza, K., Gomes, H. I., Sarris, G., Koralli, P., ... & Sarris, D. (2024). A sustainable bioprocess to produce bacterial cellulose (BC) using waste streams from wine distilleries and the biodiesel industry: evaluation of BC for adsorption of phenolic compounds, dyes and metals. Biotechnology for Biofuels and Bioproducts, 17(1), 40.
  • Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydrate polymers, 219, 63-76.
  • Yilmaz, M., & Goksungur, Y. (2024). Optimization of Bacterial Cellulose Production from Waste Figs by Komagataeibacter xylinus. Fermentation, 10(9), 466.
  • Ziemlewska, A., Nizioł-Łukaszewska, Z., Bujak, T., Zagórska-Dziok, M., Wójciak, M., & Sowa, I. (2021). Effect of fermentation time on the content of bioactive compounds with cosmetic and dermatological properties in Kombucha Yerba Mate extracts. Scientific Reports, 11(1), 18792.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Food Biotechnology
Journal Section Review
Authors

Yekta Göksungur 0000-0002-5166-6561

Büşra Çetinkaya 0009-0004-3739-0054

Submission Date May 23, 2025
Acceptance Date January 26, 2026
Publication Date February 2, 2026
Published in Issue Year 2026 Volume: 51 Issue: 1

Cite

APA Göksungur, Y., & Çetinkaya, B. (2026). SÜRDÜRÜLEBİLİR KOMBUCHA VE BAKTERİYEL SELÜLOZ ÜRETİMİ. Gıda, 51(1), 225-238. https://doi.org/10.15237//gida.GD25068
AMA 1.Göksungur Y, Çetinkaya B. SÜRDÜRÜLEBİLİR KOMBUCHA VE BAKTERİYEL SELÜLOZ ÜRETİMİ. The Journal of Food. 2026;51(1):225-238. doi:10.15237//gida.GD25068
Chicago Göksungur, Yekta, and Büşra Çetinkaya. 2026. “SÜRDÜRÜLEBİLİR KOMBUCHA VE BAKTERİYEL SELÜLOZ ÜRETİMİ”. Gıda 51 (1): 225-38. https://doi.org/10.15237//gida.GD25068.
EndNote Göksungur Y, Çetinkaya B (February 1, 2026) SÜRDÜRÜLEBİLİR KOMBUCHA VE BAKTERİYEL SELÜLOZ ÜRETİMİ. Gıda 51 1 225–238.
IEEE [1]Y. Göksungur and B. Çetinkaya, “SÜRDÜRÜLEBİLİR KOMBUCHA VE BAKTERİYEL SELÜLOZ ÜRETİMİ”, The Journal of Food, vol. 51, no. 1, pp. 225–238, Feb. 2026, doi: 10.15237//gida.GD25068.
ISNAD Göksungur, Yekta - Çetinkaya, Büşra. “SÜRDÜRÜLEBİLİR KOMBUCHA VE BAKTERİYEL SELÜLOZ ÜRETİMİ”. Gıda 51/1 (February 1, 2026): 225-238. https://doi.org/10.15237//gida.GD25068.
JAMA 1.Göksungur Y, Çetinkaya B. SÜRDÜRÜLEBİLİR KOMBUCHA VE BAKTERİYEL SELÜLOZ ÜRETİMİ. The Journal of Food. 2026;51:225–238.
MLA Göksungur, Yekta, and Büşra Çetinkaya. “SÜRDÜRÜLEBİLİR KOMBUCHA VE BAKTERİYEL SELÜLOZ ÜRETİMİ”. Gıda, vol. 51, no. 1, Feb. 2026, pp. 225-38, doi:10.15237//gida.GD25068.
Vancouver 1.Göksungur Y, Çetinkaya B. SÜRDÜRÜLEBİLİR KOMBUCHA VE BAKTERİYEL SELÜLOZ ÜRETİMİ. The Journal of Food [Internet]. 2026 Feb. 1;51(1):225-38. Available from: https://izlik.org/JA39GE46ZG

35997    GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).