Review
BibTex RIS Cite

THERAPEUTIC POTENTIAL OF BACTERIOPHAGE–PROBIOTIC COMBINATIONS IN MODULATING THE GUT MICROBIOTA

Year 2025, Volume: 50 Issue: 6, 1151 - 1167, 08.12.2025
https://doi.org/10.15237/gida.GD25092

Abstract

The intestinal microbiota is a dynamic ecosystem composed of bacteria, viruses, and other microorganisms located in the human digestive system. This structure may vary across individuals and over time. Factors such as diet, lifestyle, environmental influences, and medication use can affect the composition of the microbiota. Disruption of microbial balance (dysbiosis) has been associated with numerous diseases including obesity, diabetes, inflammatory bowel diseases, and neurological disorders. Probiotics, which are effective in regulating the microbiota, are live, non-pathogenic microorganisms that confer benefits to the host. Bacteriophages are selective viruses that replicate by infecting bacteria. Combinations of probiotics and phages can support homeostasis by modulating the microbiota in a targeted manner. The aim of this review is to evaluate the therapeutic potential of the combined use of probiotics and bacteriophages in microbiota modulation.

References

  • Abeltino, A., Hatem, D., Serantoni, C., Riente, A., De Giulio, M. M., De Spirito, M., De Maio, F., Maulucci, G. (2024). Unraveling the gut microbiota: Implications for precision nutrition and personalized medicine. Nutrients, 16(22): 3806, https://doi.org/10.3390/nu16223806.
  • Alghetaa, H., Mohammed, A., Zhou, J., Singh, N., Nagarkatti, M., Nagarkatti, P. (2021). Resveratrol-mediated attenuation of superantigen-driven acute respiratory distress syndrome is mediated by microbiota in the lungs and gut. Pharmacological Research, 167: 105548, https://doi.org/10.1016/ j.phrs.2021.105548.
  • Alhamoud, Y., Ijaz Ahmad, M., Abudumijiti, T., Wu, J., Zhao, M., Feng, F., Wang, J. (2023). 6-Gingerol, an active ingredient of ginger, reshapes gut microbiota and serum metabolites in HFD-induced obese mice. Journal of Functional Foods, 109: 105783, https://doi.org/10.1016/ j.jff.2023.105783.
  • Avellaneda-Franco, L., Dahlman, S., Barr, J. J. (2023). The gut virome and the relevance of temperate phages in human health. Frontiers in Cellular and Infection Microbiology, 13: 1241058, https://doi.org/10.3389/fcimb.2023.1241058.
  • Bamola, V. D., Dubey, D., Samanta, P., Kedia, S., Ahuja, V., Madempudi, R. S., Neelamraju, J., Chaudhry, R. (2022). Role of a probiotic strain in the modulation of gut microbiota and cytokines in inflammatory bowel disease. Anaerobe, 78: 102652. https://doi.org/10.1016/ j.anaerobe.2022.102652.
  • Barone, M., D’Amico, F., Rampelli, S., Brigidi, P., Turroni, S. (2022). Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mechanisms of Ageing and Development, 206: 111711, https://doi.org/10.1016/ j.mad.2022.111711.
  • Brauer-Nikonow, A., Zimmermann, M. (2022). How the gut microbiota helps keep us vitaminized. Cell Host & Microbe, 30(8): 1063-1066, https://doi.org/10.1016/ j.chom.2022.07.010.
  • Buttimer, C., Sutton, T., Colom, J., Murray, E., Bettio, P. H., Smith, L., Bolocan, A. S., Shkoporov, A., Oka, A., Liu, B., Herzog, J. W., Sartor, R. B., Draper, L. A., Ross, R. P., Hill, C. (2022). Impact of a phage cocktail targeting Escherichia coli and Enterococcus faecalis as members of a gut bacterial consortium in vitro and in vivo. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.936083.
  • Campbell, C., Kandalgaonkar, M. R., Golonka, R. M., Yeoh, B. S., Vijay-Kumar, M., Saha, P. (2023). Crosstalk between gut microbiota and host immunity: Impact on inflammation and immunotherapy. Biomedicines, 11(2): 294, https://doi.org/10.3390/biomedicines11020294.
  • Chaiyasut, C., Sivamaruthi, B. S., Lailerd, N., Sirilun, S., Khongtan, S., Fukngoen, P., Peerajan, S., Saelee, M., Chaiyasut, K., Kesika, P., Sittiprapaporn, P. (2022). Probiotics supplementation improves intestinal permeability, obesity index and metabolic biomarkers in elderly Thai subjects: A randomized controlled trial. Foods, 11(3): 268, https://doi.org/10.3390/foods11030268.
  • Chandrasekaran, P., Weiskirchen, S., Weiskirchen, R. (2024). Effects of probiotics on gut microbiota: An overview. International Journal of Molecular Sciences, 25(11): 6022, https://doi.org/10.3390/ijms25116022.
  • Chaudhary, N., Sharma, K., Kaur, H., Prajapati, S., Mohan, B., Taneja, N. (2025). CRISPR-Cas-assisted phage engineering for personalized antibacterial treatments. Indian Journal of Medical Microbiology, 53: 100771, https://doi.org/ 10.1016/j.ijmmb.2024.100771.
  • Chen, W. H., Woolston, J., Grant-Beurmann, S., Robinson, C. K., Bansal, G., Nkeze, J., Permala-Booth, J., Fraser, C. M., Tennant, S. M., Shriver, M. C., Pasetti, M. F., Liang, Y., Kotloff, K. L., Sulakvelidze, A., Schwartz, J. A. (2024). Safety and tolerability of ShigActiveTM, a Shigella spp. targeting bacteriophage preparation, in a phase 1 randomized, double-blind, controlled clinical trial. Antibiotics, 13(9): 858, https://doi.org/10.3390/ antibiotics13090858.
  • Cheng, H., Zhang, D., Wu, J., Liu, J., Zhou, Y., Tan, Y., Feng, W., Peng, C. (2023). Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. Phytomedicine, 119: 154979, https://doi.org/ 10.1016/j.phymed.2023.154979.
  • Choden, T., Cohen, N. A. (2022). The gut microbiome and the immune system. Exploration of Medicine, 3(3): 219–233, https://doi.org/ 10.37349/emed.2022.00087.
  • Cieplak, T., Soffer, N., Sulakvelidze, A., Nielsen, D. S. (2018). A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes, 9(5): 391-399, https://doi.org/ 10.1080/19490976.2018.1447291.
  • di Vito, R., Conte, C., Traina, G. (2022). A multi-strain probiotic formulation improves intestinal barrier function by the modulation of tight and adherent junction proteins. Cells, 11(16): 2617, https://doi.org/10.3390/cells11162617.
  • Duan, Y., Young, R., Schnabl, B. (2022). Bacteriophages and their potential for treatment of gastrointestinal diseases. Nature Reviews Gastroenterology & Hepatology, 19(2): 135-144, https://doi.org/10.1038/s41575-021-00536-z.
  • Džidić-Krivić, A., Kusturica ,Jasna, Sher ,Emina Karahmet, Selak ,Nejra, Osmančević ,Nejra, Karahmet Farhat ,Esma, and Sher, F. (2023). Effects of intestinal flora on pharmacokinetics and pharmacodynamics of drugs. Drug Metabolism Reviews, 55(1-2): 126-139, https://doi.org/ 10.1080/03602532.2023.2186313.
  • Eastwood, J., van Hemert, S., Poveda, C., Elmore, S., Williams, C., Lamport, D., Walton, G. (2023). The effect of probiotic bacteria on composition and metabolite production of faecal microbiota using in vitro batch cultures. Nutrients, 15(11): 2563, https://doi.org/10.3390/nu15112563.
  • El Haddad, L., Mendoza, J. F., Jobin, C. (2022). Bacteriophage-mediated manipulations of microbiota in gastrointestinal diseases. Frontiers in Microbiology, 13: 1055427, https://doi.org/ 10.3389/fmicb.2022.1055427.
  • Emencheta, S. C., Olovo, C. V., Eze, O. C., Kalu, C. F., Berebon, D. P., Onuigbo, E. B., Vila, M. M. D. C., Balcão, V. M., Attama, A. A. (2023). The role of bacteriophages in the gut microbiota: Implications for human health. Pharmaceutics, 15(10): 2416, https://doi.org/10.3390/ pharmaceutics15102416.
  • Febvre, H. P., Rao, S., Gindin, M., Goodwin, N. D. M., Finer, E., Vivanco, J. S., Lu, S., Manter, D. K., Wallace, T. C., Weir, T. L. (2019). PHAGE study: Effects of supplemental bacteriophage intake on inflammation and gut microbiota in healthy adults. Nutrients, 11(3): 666. https://doi.org/10.3390/nu11030666.
  • Federici, S., Kredo-Russo, S., Valdés-Mas, R., Kviatcovsky, D., Weinstock, E., Matiuhin, Y., Silberberg, Y., Atarashi, K., Furuichi, M., Oka, A., Liu, B., Fibelman, M., Weiner, I. N., Khabra, E., Cullin, N., Ben-Yishai, N., Inbar, D., Ben-David, H., Nicenboim, J., … Elinav, E. (2022). Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell, 185(16): 2879-2898.e24, https://doi.org/ 10.1016/j.cell.2022.07.003.
  • Fiore, W., Arioli, S., Guglielmetti, S. (2020). The neglected microbial components of commercial probiotic formulations. Microorganisms, 8(8): 1177, https://doi.org/10.3390/microorganisms8081177.
  • Fowoyo, P. T. (2024). Phage therapy: Clinical applications, efficacy, and implementation hurdles. The Open Microbiology Journal, 18(1): e18742858281566, https://doi.org/10.2174/ 0118742858281566231221045303. Fujisaka, S., Watanabe, Y., Tobe, K. (2023). The gut microbiome: A core regulator of metabolism. The Journal of endocrinology, 256(3): e220111, https://doi.org/10.1530/JOE-22-0111.
  • Ganesan, R., Suk, K. T. (2022). Therapeutic potential of human microbiome-based short-chain fatty acids and bile acids in liver disease. Livers, 2(3): 139-145, https://doi.org/ 10.3390/livers2030012.
  • Ghosh, T. S., Shanahan, F., O’Toole, P. W. (2022). The gut microbiome as a modulator of healthy ageing. Nature Reviews Gastroenterology & Hepatology, 19(9): 565-584, https://doi.org/10.1038/s41575-022-00605-x.
  • Grubb, D. S., Wrigley, S. D., Freedman, K. E., Wei, Y., Vazquez, A. R., Trotter, R. E., Wallace, T. C., Johnson, S. A., Weir, T. L. (2020). PHAGE-2 study: Supplemental bacteriophages extend Bifidobacterium animalis subsp. lactis BL04 benefits on gut health and microbiota in healthy adults. Nutrients, 12(8): 2474, https://doi.org/10.3390/nu12082474.
  • Hasain, Z., Raja Ali, R. A., Ahmad, H. F., Abdul Rauf, U. F., Oon, S. F., Mokhtar, N. M. (2022). The roles of probiotics in the gut microbiota composition and metabolic outcomes in asymptomatic post-gestational diabetes women: A randomized controlled trial. Nutrients, 14(18): 3878, https://doi.org/10.3390/nu14183878.
  • Hemarajata, P., Versalovic, J. (2013). Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1): 39-51, https://doi.org/ 10.1177/1756283X12459294.
  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., Sanders, M. E. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8): 506-514, https://doi.org/10.1038/nrgastro.2014.66.
  • Hitchcock, N. M., Devequi Gomes Nunes, D., Shiach, J., Valeria Saraiva Hodel, K., Dantas Viana Barbosa, J., Alencar Pereira Rodrigues, L., Coler, B. S., Botelho Pereira Soares, M., Badaró, R. (2023). Current clinical landscape and global potential of bacteriophage therapy. Viruses, 15(4): 1020, https://doi.org/10.3390/v15041020.
  • Howard, A., Carroll-Portillo, A., Alcock, J., Lin, H. C. (2024). Dietary effects on the gut phageome. International Journal of Molecular Sciences, 25(16): 8690, https://doi.org/10.3390/ ijms25168690.
  • Hu, C., Shen, H. (2024). Microbes in health and disease: Human gut microbiota. Applied Sciences, 14(23): 11354, https://doi.org/10.3390/ app142311354.
  • Hu, J., Chen, J., Xu, X., Hou, Q., Ren, J., Yan, X. (2023). Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling. Microbiome, 11(1): 102, https://doi.org/ 10.1186/s40168-023-01551-9.
  • Hul, M. V., Cani, P. D., Petitfils, C., Vos, W. M. D., Tilg, H., El-Omar, E. M. (2024). What defines a healthy gut microbiome?. Gut, 73(11): 1893–1908, https://doi.org/10.1136/gutjnl-2024-333378.
  • Ibrahim, R., Aranjani, J. M., Kalikot Valappil, V., Nair, G. (2025). Unveiling the potential bacteriophage therapy: A systematic review. Future Science OA, 11(1): 2468114, https://doi.org/10.1080/20565623.2025.2468114.
  • Ioannou, P., Baliou, S., Samonis, G. (2023). Bacteriophages in infectious diseases and beyond—A narrative review. Antibiotics, 12(6): 1012, https://doi.org/10.3390/ antibiotics12061012.
  • Jang, J. W., Capaldi, E., Smith, T., Verma, P., Varga, J., Ho, K. J. (2024). Trimethylamine N-oxide: A meta-organismal axis linking the gut and fibrosis. Molecular Medicine, 30(1): 128, https://doi.org/10.1186/s10020-024-00895-8.
  • Joos, R., Boucher, K., Lavelle, A., Arumugam, M., Blaser, M. J., Claesson, M. J., Clarke, G., Cotter, P. D., De Sordi, L., Dominguez-Bello, M. G., Dutilh, B. E., Ehrlich, S. D., Ghosh, T. S., Hill, C., Junot, C., Lahti, L., Lawley, T. D., Licht, T. R., Maguin, E., … Ross, R. P. (2025). Examining the healthy human microbiome concept. Nature Reviews Microbiology, 23(3): 192-205, https://doi.org/10.1038/s41579-024-01107-0.
  • Kaczmarczyk, M., Szulińska, M., Łoniewski, I., Kręgielska-Narożna, M., Skonieczna-Żydecka, K., Kosciolek, T., Bezshapkin, V., Bogdański, P. (2022). Treatment with multi-species probiotics changes the functions, not the composition of gut microbiota in postmenopausal women with obesity: A randomized, double-blind, placebo-controlled study. Frontiers in Cellular and Infection Microbiology, 12: 815798, https://doi.org/10.3389/fcimb.2022.815798.
  • Kawamoto, S., Hara, E. (2024). Crosstalk between gut microbiota and cellular senescence: A vicious cycle leading to aging gut. Trends in Cell Biology, 34(8): 626-635, https://doi.org/ 10.1016/j.tcb.2023.12.004.
  • Kim, G.-H., Shim, J.-O. (2022). Gut microbiota affects brain development and behavior. Clinical and Experimental Pediatrics, 66(7): 274-280, https://doi.org/10.3345/cep.2021.01550.
  • Kirk, D., Costeira, R., Visconti, A., Mirzaei, M. K., Deng, L., Valdes, A. M., Menni, C. (2024). Bacteriophages, gut bacteria, and microbial pathways interplay in cardiometabolic health. Cell Reports, 43(2): 113728, https://doi.org/ 10.1016/j.celrep.2024.113728.
  • Kuang, X., Shen, J., Zheng, L., Duan, Y., Ma, Y., Leung, E. L.-H., Dai, L. (2025). Applications of bacteriophages in precision engineering of the human gut microbiome. Engineering Microbiology, 5(1): 100189, https://doi.org/10.1016/ j.engmic.2025.100189.
  • Li, J., O’Toole, P. W. (2024). Disease-associated microbiome signature species in the gut. PNAS Nexus, 3(9): pgae352, https://doi.org/ 10.1093/pnasnexus/pgae352.
  • Li, Z., Xiong, W., Liang, Z., Wang, J., Zeng, Z., Kołat, D., Li, X., Zhou, D., Xu, X., Zhao, L. (2024). Critical role of the gut microbiota in immune responses and cancer immunotherapy. Journal of Hematology & Oncology, 17(1): 33, https://doi.org/10.1186/s13045-024-01541-w.
  • Li, Z., Yuan, H., Chu, H., Yang, L. (2023). The crosstalk between gut microbiota and bile acids promotes the development of non-alcoholic fatty liver disease. Microorganisms, 11(8): 2059, https://doi.org/10.3390/microorganisms11082059.
  • Liang, G., Bushman, F. D. (2021). The human virome: Assembly, composition and host interactions. Nature Reviews Microbiology, 19(8): 514-527, https://doi.org/10.1038/s41579-021-00536-5.
  • Liu, D., Zhang, Y., Liu, Y., Hou, L., Li, S., Tian, H., Zhao, T. (2018). Berberine modulates gut microbiota and reduces insulin resistance via the TLR4 signaling pathway. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association, 126(8): 513-520, https://doi.org/ 10.1055/s-0043-125066.
  • Liu, S., Quek, S. Y., Huang, K. (2024). Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Critical Reviews in Food Science and Nutrition, 64(33): 12574-12598, https://doi.org/10.1080/10408398.2023.2254837.
  • Loh, J. S., Mak, W. Q., Tan, L. K. S., Ng, C. X., Chan, H. H., Yeow, S. H., Foo, J. B., Ong, Y. S., How, C. W., Khaw, K. Y. (2024). Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduction and Targeted Therapy, 9(1): 1-53, https://doi.org/ 10.1038/s41392-024-01743-1.
  • Ma, Z. F., Lee, Y. Y. (2025). The role of the gut microbiota in health, diet, and disease with a focus on obesity. Foods, 14(3): 492, https://doi.org/ 10.3390/foods14030492.
  • Madhogaria, B., Bhowmik, P., Kundu, A. (2022). Correlation between human gut microbiome and diseases. Infectious Medicine, 1(3): 180-191, https://doi.org/10.1016/j.imj.2022.08.004.
  • Mann, E. R., Lam, Y. K., Uhlig, H. H. (2024). Short-chain fatty acids: Linking diet, the microbiome and immunity. Nature Reviews Immunology, 24(8): 577-595, https://doi.org/ 10.1038/s41577-024-01014-8.
  • Martino, C., Dilmore, A. H., Burcham, Z. M., Metcalf, J. L., Jeste, D., Knight, R. (2022). Microbiota succession throughout life from the cradle to the grave. Nature Reviews Microbiology, 20(12): 707-720, https://doi.org/10.1038/ s41579-022-00768-z.
  • Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E., Rotondo, J. C. (2023). Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells, 12(1): 184, https://doi.org/10.3390/cells12010184.
  • McMurdie, P. J., Stoeva, M. K., Justice, N., Nemchek, M., Sieber, C. M. K., Tyagi, S., Gines, J., Skennerton, C. T., Souza, M., Kolterman, O., Eid, J. (2022). Increased circulating butyrate and ursodeoxycholate during probiotic intervention in humans with type 2 diabetes. BMC Microbiology, 22(1): 19, https://doi.org/10.1186/s12866-021-02415-8.
  • Michel, C., Blottière, H. M. (2022). Neonatal programming of microbiota composition: A plausible idea that is not supported by the evidence. Frontiers in Microbiology, 13: 825942, https://doi.org/10.3389/fmicb.2022.825942.
  • Nabi-Afjadi, M., Teymouri, S., Monfared, F. N., Varnosfaderani, S. M. N., Halimi, H. (2023). The human gut phageome: Identification and roles in the diseases. Journal of Cellular Signaling, 4(3):128-141, https://doi.org/10.33696/Signaling.4.100.
  • Najmanová, L., Vídeňská, P., Cahová, M. (2022). Healthy microbiome – a mere idea or a sound concept? Physiological Research, 71(6): 719-738, https://doi.org/10.33549/physiolres.934967.
  • Okolie, M. C., Edo, G. I., Ainyanbhor, I. E., Jikah, A. N., Akpoghelie, P. O., Yousif, E., Zainulabdeen, K., Isoje, E. F., Igbuku, U. A., Orogu, J. O., Owheruo, J. O., Essaghah, A. E. A., Umar, H. (2025). Gut microbiota and immunity in health and diseases: A review. Proceedings of the Indian National Science Academy. 91: 397–414, https://doi.org/10.1007/s43538-024-00355-1.
  • Overby, H. B., Ferguson, J. F. (2021). Gut microbiota-derived short-chain fatty acids facilitate microbiota:Host cross talk and modulate obesity and hypertension. Current Hypertension Reports, 23(2): 8, https://doi.org/ 10.1007/s11906-020-01125-2.
  • Pant, A., Maiti, T. K., Mahajan, D., Das, B. (2023). Human gut microbiota and drug metabolism. Microbial Ecology, 86(1): 97-111, https://doi.org/ 10.1007/s00248-022-02081-x.
  • Pinto, G., Shetty, S. A., Zoetendal, E. G., Gonçalves, R. F. S., Pinheiro, A. C., Almeida, C., Azeredo, J., Smidt, H. (2022). An in vitro fermentation model to study the impact of bacteriophages targeting Shiga toxin-encoding Escherichia coli on the colonic microbiota. Npj Biofilms and Microbiomes, 8(1), 74. https://doi.org/10.1038/s41522-022-00334-8.
  • Porter, S. B., Johnston, B. D., Kisiela, D., Clabots, C., Sokurenko, E. V., Johnson, J. R. (2022). Bacteriophage cocktail and microcin-producing probiotic Escherichia coli protect mice against gut colonization with multidrug-resistant Escherichia coli sequence type 131. Frontiers in Microbiology, 13: 887799, https://doi.org/10.3389/fmicb.2022.887799.
  • EPCU (2019). Regulation (EU) 2019/ of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. https://eur-lex.europa.eu/legal-content/ EN/TXT/?uri=CELEX:32019R0006 (Erişim tarihi: 20.06.2025).
  • Russell, A. L., McAdams, Z. L., Donovan, E., Seilhamer, N., Siegrist, M., Franklin, C. L., Ericsson, A. C. (2023). The contribution of maternal oral, vaginal, and gut microbiota to the developing offspring gut. Scientific Reports, 13(1): 13660, https://doi.org/10.1038/s41598-023-40703-7.
  • Ryan, J. J., Patno, N. M. (2021). Short-term tolerability, safety, and gut microbial composition responses to a multi-strain probiotic supplement: An open-label study in healthy adults. Integrative Medicine (Encinitas, Calif.), 20(1): 24-34.
  • Salamat, S., Jahan-Mihan, A., Gharibvand, L., Reza Tabandeh, M., Mansoori, A. (2024). Multi-species synbiotic supplementation increased fecal short chain fatty acids and anti-inflammatory cytokine interleukin-10 in adult men with dyslipidemia; A randomized, double-blind, clinical trial. Cytokine, 179: 156608, https://doi.org/10.1016/j.cyto.2024.156608.
  • Sarker, S. A., Sultana, S., Reuteler, G., Moine, D., Descombes, P., Charton, F., Bourdin, G., McCallin, S., Ngom-Bru, C., Neville, T., Akter, M., Huq, S., Qadri, F., Talukdar, K., Kassam, M., Delley, M., Loiseau, C., Deng, Y., Aidy, S. E., … Brüssow, H. (2016). Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: A randomized trial in children from Bangladesh. eBioMedicine, 4: 124-137, https://doi.org/10.1016/j.ebiom.2015.12.023.
  • Schubert, C., Fischer, S., Dorsch, K., Teßmer, L., Hinrichs, J., Atamer, Z. (2022). Microencapsulation of bacteriophages for the delivery to and modulation of the human gut microbiota through milk and cereal products. Applied Sciences, 12(13): 6299, https://doi.org/ 10.3390/app12136299.
  • Shao, T., Hsu, R., Rafizadeh, D. L., Wang, L., Bowlus, C. L., Kumar, N., Mishra, J., Timilsina, S., Ridgway, W. M., Gershwin, M. E., Ansari, A. A., Shuai, Z., Leung, P. S. C. (2023). The gut ecosystem and immune tolerance. Journal of Autoimmunity, 141: 103114, https://doi.org/ 10.1016/j.jaut.2023.103114.
  • Sheraz, M., Shi, H., Banerjee, S. (2025). Human microbiome and bacteriophages: Impacts on health and disease. Current Clinical Microbiology Reports, 12(1): 7, https://doi.org/10.1007/ s40588-025-00243-2.
  • Shkoporov, A. N., Hill, C. (2019). Bacteriophages of the human gut: The “known unknown” of the microbiome. Cell Host & Microbe, 25(2): 195-209, https://doi.org/10.1016/j.chom.2019.01.017.
  • Tarracchini, C., Lugli, G. A., Mancabelli, L., van Sinderen, D., Turroni, F., Ventura, M., Milani, H. (2024). Exploring the vitamin biosynthesis landscape of the human gut microbiota. mSystems, 9(10): e00929-24, https://doi.org/10.1128/ msystems.00929-24.
  • Thoda, C., Touraki, M. (2023). Immunomodulatory properties of probiotics and their derived bioactive compounds. Applied Sciences, 13(8): 4726, https://doi.org/10.3390/ app13084726.
  • Ullah, H., Arbab, S., Tian, Y., Liu, C., Chen, Y., Qijie, L., Khan, M. I. U., Hassan, I. U., Li, K. (2023). The gut microbiota–brain axis in neurological disorder. Frontiers in Neuroscience, 17: 1225875, https://doi.org/10.3389/ fnins.2023.1225875.
  • Vernocchi, P., Del Chierico, F., Putignani, L. (2020). Gut microbiota metabolism and interaction with food components. International Journal of Molecular Sciences, 21(10): 3688, https://doi.org/10.3390/ijms21103688.
  • Visekruna, A., Luu, M. (2021). The role of short-chain fatty acids and bile acids in intestinal and liver function, inflammation, and carcinogenesis. Frontiers in Cell and Developmental Biology, 9: 703218, https://doi.org/10.3389/fcell.2021.703218.
  • Vivek, K., Mishra, S., Pradhan, R. C., Nagarajan, M., Kumar, P. K., Singh, S. S., Manvi, D., Gowda, N. N. (2023). A comprehensive review on microencapsulation of probiotics: Technology, carriers and current trends. Applied Food Research, 3(1), 100248. https://doi.org/10.1016/ j.afres.2022.100248.
  • Wang, P., Wang, J., Li, D., Ke, W., Chen, F., Hu, X. (2020). Targeting the gut microbiota with resveratrol: A demonstration of novel evidence for the management of hepatic steatosis. The Journal of Nutritional Biochemistry, 81: 108363. https://doi.org/10.1016/j.jnutbio.2020.108363.
  • Weir, T. (2024). PHAGE 3: Determination of phage and probiotic synergistic effects on gastrointestinal health. https://clinicaltrials.gov/ study/NCT05750433 (Erişim tarihi: 09.09.2025).
  • Wiertsema, S. P., van Bergenhenegouwen, J., Garssen, J., Knippels, L. M. J. (2021). The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients, 13(3): 886, https://doi.org/10.3390/nu13030886.
  • Wu, M., Yang, S., Wang, S., Cao, Y., Zhao, R., Li, X., Xing, Y., Liu, L. (2020). Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE−/− mice. Frontiers in Pharmacology, 11: 223, https://doi.org/10.3389/fphar.2020.00223.
  • Xu, J., Chen, H.-B., Li, S.-L. (2017). Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota. Medicinal Research Reviews, 37(5): 1140-1185, https://doi.org/10.1002/med.21431.
  • Yadav, M. K., Kumari, I., Singh, B., Sharma, K. K., Tiwari, S. K. (2022). Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Applied Microbiology and Biotechnology, 106(2): 505-521, https://doi.org/10.1007/s00253-021-11646-8.
  • Yang, S., Liu, H., Liu, Y. (2025). Advances in intestinal epithelium and gut microbiota interaction. Frontiers in Microbiology, 16: 1499202, https://doi.org/10.3389/fmicb.2025.1499202.
  • Yeşilyurt, N., Yılmaz, B., Ağagündüz, D., Capasso, R. (2021). Involvement of probiotics and postbiotics in the immune system modulation. Biologics, 1(2): 89-110, https://doi.org/10.3390/biologics1020006.
  • Yu, X., Cheng, L., Yi, X., Li, B., Li, X., Liu, X., Liu, Z., Kong, X. (2024). Gut phageome: Challenges in research and impact on human microbiota. Frontiers in Microbiology, 15: 1379382, https://doi.org/10.3389/fmicb.2024.1379382.
  • Yue, M., Tao, Y., Fang, Y., Lian, X., Zhang, Q., Xia, Y., Wei, Z., Dai, Y. (2019). The gut microbiota modulator berberine ameliorates collagen-induced arthritis in rats by facilitating the generation of butyrate and adjusting the intestinal hypoxia and nitrate supply. The FASEB Journal, 33(11): 12311-12323, https://doi.org/10.1096/ fj.201900425RR.
  • Zhai, L., Wu, J., Lam, Y. Y., Kwan, H. Y., Bian, Z.-X., Wong, H. L. X. (2021). Gut-microbial metabolites, probiotics and their roles in type 2 diabetes. International Journal of Molecular Sciences, 22(23): 12846, https://doi.org/10.3390/ ijms222312846.
  • Zhang, Q., Bai, Y., Wang, W., Li, J., Zhang, L., Tang, Y., Yue, S. (2023). Role of herbal medicine and gut microbiota in the prevention and treatment of obesity. Journal of Ethnopharmacology, 305: 116127, https://doi.org/ 10.1016/j.jep.2022.116127.
  • Zhang, Q., Xu, Y., Bukvicki, D., Peng, Y., Li, F., Zhang, Q., Yan, J., Lin, S., Liu, S., Qin, W. (2024). Phenolic compounds in dietary target the regulation of gut microbiota: Role in health and disease. Food Bioscience, 62: 105107, https://doi.org/10.1016/j.fbio.2024.105107.
  • Zhao, Q., Chen, Y., Huang, W., Zhou, H., Zhang, W. (2023). Drug-microbiota interactions: An emerging priority for precision medicine. Signal Transduction and Targeted Therapy, 8(1): 1-27, https://doi.org/10.1038/s41392-023-01619-w.
  • Zheng, Y., Zhang, Z., Tang, P., Wu, Y., Zhang, A., Li, D., Wang, C.-Z., Wan, J.-Y., Yao, H., Yuan, C.-S. (2023). Probiotics fortify intestinal barrier function: A systematic review and meta-analysis of randomized trials. Frontiers in Immunology, 14: 1143548, https://doi.org/10.3389/ fimmu.2023.1143548.
  • Zhu, L., Yang, X. (2025). Gut microecological prescription: A novel approach to regulating intestinal micro-ecological balance. International Journal of General Medicine, 18: 603-626, https://doi.org/10.2147/IJGM.S504616.
  • Zuppi, M., Hendrickson, H. L., O’Sullivan, J. M., Vatanen, T. (2022). Phages in the gut ecosystem. Frontiers in Cellular and Infection Microbiology, 11: 822562, https://doi.org/10.3389/ fcimb.2021.822562.
  • Zuppi, M., Vatanen, T., Wilson, B. C., Golovina, E., Portlock, T., Cutfield, W. S., Vickers, M. H., O’Sullivan, J. M. (2024). Fecal microbiota transplantation alters gut phage communities in a clinical trial for obesity. Microbiome, 12(1): 122, https://doi.org/10.1186/s40168-024-01833-w.

BAKTERİYOFAJ-PROBİYOTİK KOMBİNASYONLARININ BAĞIRSAK MİKROBİYOTASINI MODÜLE ETMEDE TERAPÖTİK POTANSİYELİ

Year 2025, Volume: 50 Issue: 6, 1151 - 1167, 08.12.2025
https://doi.org/10.15237/gida.GD25092

Abstract

Bağırsak mikrobiyotası, insan sindirim sisteminde yer alan bakteri, virüs ve diğer mikroorganizmalardan oluşan dinamik bir ekosistemdir. Bu yapı, bireyler arasında ve zaman içinde değişiklik gösterebilir. Diyet, yaşam tarzı, çevresel etmenler ve ilaç kullanımı gibi faktörler mikrobiyotanın bileşimini etkileyebilir. Mikrobiyal dengenin bozulması (disbiyozis); obezite, diyabet, inflamatuar bağırsak hastalıkları ve nörolojik bozukluklar gibi pek çok hastalıkla ilişkilendirilmiştir. Mikrobiyotayı düzenlemede etkili olan probiyotikler; konağa fayda sağlayan, canlı, patojenik olmayan mikroorganizmalardır. Bakteriyofajlar ise bakterileri enfekte ederek çoğalan, seçici etki gösteren virüslerdir. Probiyotik ve faj kombinasyonları, mikrobiyotayı hedefe yönelik biçimde modüle ederek homeostazı destekleyebilir. Bu derlemenin amacı, probiyotik ve bakteriyofajların birlikte kullanımının mikrobiyota modülasyonundaki terapötik potansiyelini değerlendirmektir.

References

  • Abeltino, A., Hatem, D., Serantoni, C., Riente, A., De Giulio, M. M., De Spirito, M., De Maio, F., Maulucci, G. (2024). Unraveling the gut microbiota: Implications for precision nutrition and personalized medicine. Nutrients, 16(22): 3806, https://doi.org/10.3390/nu16223806.
  • Alghetaa, H., Mohammed, A., Zhou, J., Singh, N., Nagarkatti, M., Nagarkatti, P. (2021). Resveratrol-mediated attenuation of superantigen-driven acute respiratory distress syndrome is mediated by microbiota in the lungs and gut. Pharmacological Research, 167: 105548, https://doi.org/10.1016/ j.phrs.2021.105548.
  • Alhamoud, Y., Ijaz Ahmad, M., Abudumijiti, T., Wu, J., Zhao, M., Feng, F., Wang, J. (2023). 6-Gingerol, an active ingredient of ginger, reshapes gut microbiota and serum metabolites in HFD-induced obese mice. Journal of Functional Foods, 109: 105783, https://doi.org/10.1016/ j.jff.2023.105783.
  • Avellaneda-Franco, L., Dahlman, S., Barr, J. J. (2023). The gut virome and the relevance of temperate phages in human health. Frontiers in Cellular and Infection Microbiology, 13: 1241058, https://doi.org/10.3389/fcimb.2023.1241058.
  • Bamola, V. D., Dubey, D., Samanta, P., Kedia, S., Ahuja, V., Madempudi, R. S., Neelamraju, J., Chaudhry, R. (2022). Role of a probiotic strain in the modulation of gut microbiota and cytokines in inflammatory bowel disease. Anaerobe, 78: 102652. https://doi.org/10.1016/ j.anaerobe.2022.102652.
  • Barone, M., D’Amico, F., Rampelli, S., Brigidi, P., Turroni, S. (2022). Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mechanisms of Ageing and Development, 206: 111711, https://doi.org/10.1016/ j.mad.2022.111711.
  • Brauer-Nikonow, A., Zimmermann, M. (2022). How the gut microbiota helps keep us vitaminized. Cell Host & Microbe, 30(8): 1063-1066, https://doi.org/10.1016/ j.chom.2022.07.010.
  • Buttimer, C., Sutton, T., Colom, J., Murray, E., Bettio, P. H., Smith, L., Bolocan, A. S., Shkoporov, A., Oka, A., Liu, B., Herzog, J. W., Sartor, R. B., Draper, L. A., Ross, R. P., Hill, C. (2022). Impact of a phage cocktail targeting Escherichia coli and Enterococcus faecalis as members of a gut bacterial consortium in vitro and in vivo. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.936083.
  • Campbell, C., Kandalgaonkar, M. R., Golonka, R. M., Yeoh, B. S., Vijay-Kumar, M., Saha, P. (2023). Crosstalk between gut microbiota and host immunity: Impact on inflammation and immunotherapy. Biomedicines, 11(2): 294, https://doi.org/10.3390/biomedicines11020294.
  • Chaiyasut, C., Sivamaruthi, B. S., Lailerd, N., Sirilun, S., Khongtan, S., Fukngoen, P., Peerajan, S., Saelee, M., Chaiyasut, K., Kesika, P., Sittiprapaporn, P. (2022). Probiotics supplementation improves intestinal permeability, obesity index and metabolic biomarkers in elderly Thai subjects: A randomized controlled trial. Foods, 11(3): 268, https://doi.org/10.3390/foods11030268.
  • Chandrasekaran, P., Weiskirchen, S., Weiskirchen, R. (2024). Effects of probiotics on gut microbiota: An overview. International Journal of Molecular Sciences, 25(11): 6022, https://doi.org/10.3390/ijms25116022.
  • Chaudhary, N., Sharma, K., Kaur, H., Prajapati, S., Mohan, B., Taneja, N. (2025). CRISPR-Cas-assisted phage engineering for personalized antibacterial treatments. Indian Journal of Medical Microbiology, 53: 100771, https://doi.org/ 10.1016/j.ijmmb.2024.100771.
  • Chen, W. H., Woolston, J., Grant-Beurmann, S., Robinson, C. K., Bansal, G., Nkeze, J., Permala-Booth, J., Fraser, C. M., Tennant, S. M., Shriver, M. C., Pasetti, M. F., Liang, Y., Kotloff, K. L., Sulakvelidze, A., Schwartz, J. A. (2024). Safety and tolerability of ShigActiveTM, a Shigella spp. targeting bacteriophage preparation, in a phase 1 randomized, double-blind, controlled clinical trial. Antibiotics, 13(9): 858, https://doi.org/10.3390/ antibiotics13090858.
  • Cheng, H., Zhang, D., Wu, J., Liu, J., Zhou, Y., Tan, Y., Feng, W., Peng, C. (2023). Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. Phytomedicine, 119: 154979, https://doi.org/ 10.1016/j.phymed.2023.154979.
  • Choden, T., Cohen, N. A. (2022). The gut microbiome and the immune system. Exploration of Medicine, 3(3): 219–233, https://doi.org/ 10.37349/emed.2022.00087.
  • Cieplak, T., Soffer, N., Sulakvelidze, A., Nielsen, D. S. (2018). A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes, 9(5): 391-399, https://doi.org/ 10.1080/19490976.2018.1447291.
  • di Vito, R., Conte, C., Traina, G. (2022). A multi-strain probiotic formulation improves intestinal barrier function by the modulation of tight and adherent junction proteins. Cells, 11(16): 2617, https://doi.org/10.3390/cells11162617.
  • Duan, Y., Young, R., Schnabl, B. (2022). Bacteriophages and their potential for treatment of gastrointestinal diseases. Nature Reviews Gastroenterology & Hepatology, 19(2): 135-144, https://doi.org/10.1038/s41575-021-00536-z.
  • Džidić-Krivić, A., Kusturica ,Jasna, Sher ,Emina Karahmet, Selak ,Nejra, Osmančević ,Nejra, Karahmet Farhat ,Esma, and Sher, F. (2023). Effects of intestinal flora on pharmacokinetics and pharmacodynamics of drugs. Drug Metabolism Reviews, 55(1-2): 126-139, https://doi.org/ 10.1080/03602532.2023.2186313.
  • Eastwood, J., van Hemert, S., Poveda, C., Elmore, S., Williams, C., Lamport, D., Walton, G. (2023). The effect of probiotic bacteria on composition and metabolite production of faecal microbiota using in vitro batch cultures. Nutrients, 15(11): 2563, https://doi.org/10.3390/nu15112563.
  • El Haddad, L., Mendoza, J. F., Jobin, C. (2022). Bacteriophage-mediated manipulations of microbiota in gastrointestinal diseases. Frontiers in Microbiology, 13: 1055427, https://doi.org/ 10.3389/fmicb.2022.1055427.
  • Emencheta, S. C., Olovo, C. V., Eze, O. C., Kalu, C. F., Berebon, D. P., Onuigbo, E. B., Vila, M. M. D. C., Balcão, V. M., Attama, A. A. (2023). The role of bacteriophages in the gut microbiota: Implications for human health. Pharmaceutics, 15(10): 2416, https://doi.org/10.3390/ pharmaceutics15102416.
  • Febvre, H. P., Rao, S., Gindin, M., Goodwin, N. D. M., Finer, E., Vivanco, J. S., Lu, S., Manter, D. K., Wallace, T. C., Weir, T. L. (2019). PHAGE study: Effects of supplemental bacteriophage intake on inflammation and gut microbiota in healthy adults. Nutrients, 11(3): 666. https://doi.org/10.3390/nu11030666.
  • Federici, S., Kredo-Russo, S., Valdés-Mas, R., Kviatcovsky, D., Weinstock, E., Matiuhin, Y., Silberberg, Y., Atarashi, K., Furuichi, M., Oka, A., Liu, B., Fibelman, M., Weiner, I. N., Khabra, E., Cullin, N., Ben-Yishai, N., Inbar, D., Ben-David, H., Nicenboim, J., … Elinav, E. (2022). Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell, 185(16): 2879-2898.e24, https://doi.org/ 10.1016/j.cell.2022.07.003.
  • Fiore, W., Arioli, S., Guglielmetti, S. (2020). The neglected microbial components of commercial probiotic formulations. Microorganisms, 8(8): 1177, https://doi.org/10.3390/microorganisms8081177.
  • Fowoyo, P. T. (2024). Phage therapy: Clinical applications, efficacy, and implementation hurdles. The Open Microbiology Journal, 18(1): e18742858281566, https://doi.org/10.2174/ 0118742858281566231221045303. Fujisaka, S., Watanabe, Y., Tobe, K. (2023). The gut microbiome: A core regulator of metabolism. The Journal of endocrinology, 256(3): e220111, https://doi.org/10.1530/JOE-22-0111.
  • Ganesan, R., Suk, K. T. (2022). Therapeutic potential of human microbiome-based short-chain fatty acids and bile acids in liver disease. Livers, 2(3): 139-145, https://doi.org/ 10.3390/livers2030012.
  • Ghosh, T. S., Shanahan, F., O’Toole, P. W. (2022). The gut microbiome as a modulator of healthy ageing. Nature Reviews Gastroenterology & Hepatology, 19(9): 565-584, https://doi.org/10.1038/s41575-022-00605-x.
  • Grubb, D. S., Wrigley, S. D., Freedman, K. E., Wei, Y., Vazquez, A. R., Trotter, R. E., Wallace, T. C., Johnson, S. A., Weir, T. L. (2020). PHAGE-2 study: Supplemental bacteriophages extend Bifidobacterium animalis subsp. lactis BL04 benefits on gut health and microbiota in healthy adults. Nutrients, 12(8): 2474, https://doi.org/10.3390/nu12082474.
  • Hasain, Z., Raja Ali, R. A., Ahmad, H. F., Abdul Rauf, U. F., Oon, S. F., Mokhtar, N. M. (2022). The roles of probiotics in the gut microbiota composition and metabolic outcomes in asymptomatic post-gestational diabetes women: A randomized controlled trial. Nutrients, 14(18): 3878, https://doi.org/10.3390/nu14183878.
  • Hemarajata, P., Versalovic, J. (2013). Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1): 39-51, https://doi.org/ 10.1177/1756283X12459294.
  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., Sanders, M. E. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8): 506-514, https://doi.org/10.1038/nrgastro.2014.66.
  • Hitchcock, N. M., Devequi Gomes Nunes, D., Shiach, J., Valeria Saraiva Hodel, K., Dantas Viana Barbosa, J., Alencar Pereira Rodrigues, L., Coler, B. S., Botelho Pereira Soares, M., Badaró, R. (2023). Current clinical landscape and global potential of bacteriophage therapy. Viruses, 15(4): 1020, https://doi.org/10.3390/v15041020.
  • Howard, A., Carroll-Portillo, A., Alcock, J., Lin, H. C. (2024). Dietary effects on the gut phageome. International Journal of Molecular Sciences, 25(16): 8690, https://doi.org/10.3390/ ijms25168690.
  • Hu, C., Shen, H. (2024). Microbes in health and disease: Human gut microbiota. Applied Sciences, 14(23): 11354, https://doi.org/10.3390/ app142311354.
  • Hu, J., Chen, J., Xu, X., Hou, Q., Ren, J., Yan, X. (2023). Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling. Microbiome, 11(1): 102, https://doi.org/ 10.1186/s40168-023-01551-9.
  • Hul, M. V., Cani, P. D., Petitfils, C., Vos, W. M. D., Tilg, H., El-Omar, E. M. (2024). What defines a healthy gut microbiome?. Gut, 73(11): 1893–1908, https://doi.org/10.1136/gutjnl-2024-333378.
  • Ibrahim, R., Aranjani, J. M., Kalikot Valappil, V., Nair, G. (2025). Unveiling the potential bacteriophage therapy: A systematic review. Future Science OA, 11(1): 2468114, https://doi.org/10.1080/20565623.2025.2468114.
  • Ioannou, P., Baliou, S., Samonis, G. (2023). Bacteriophages in infectious diseases and beyond—A narrative review. Antibiotics, 12(6): 1012, https://doi.org/10.3390/ antibiotics12061012.
  • Jang, J. W., Capaldi, E., Smith, T., Verma, P., Varga, J., Ho, K. J. (2024). Trimethylamine N-oxide: A meta-organismal axis linking the gut and fibrosis. Molecular Medicine, 30(1): 128, https://doi.org/10.1186/s10020-024-00895-8.
  • Joos, R., Boucher, K., Lavelle, A., Arumugam, M., Blaser, M. J., Claesson, M. J., Clarke, G., Cotter, P. D., De Sordi, L., Dominguez-Bello, M. G., Dutilh, B. E., Ehrlich, S. D., Ghosh, T. S., Hill, C., Junot, C., Lahti, L., Lawley, T. D., Licht, T. R., Maguin, E., … Ross, R. P. (2025). Examining the healthy human microbiome concept. Nature Reviews Microbiology, 23(3): 192-205, https://doi.org/10.1038/s41579-024-01107-0.
  • Kaczmarczyk, M., Szulińska, M., Łoniewski, I., Kręgielska-Narożna, M., Skonieczna-Żydecka, K., Kosciolek, T., Bezshapkin, V., Bogdański, P. (2022). Treatment with multi-species probiotics changes the functions, not the composition of gut microbiota in postmenopausal women with obesity: A randomized, double-blind, placebo-controlled study. Frontiers in Cellular and Infection Microbiology, 12: 815798, https://doi.org/10.3389/fcimb.2022.815798.
  • Kawamoto, S., Hara, E. (2024). Crosstalk between gut microbiota and cellular senescence: A vicious cycle leading to aging gut. Trends in Cell Biology, 34(8): 626-635, https://doi.org/ 10.1016/j.tcb.2023.12.004.
  • Kim, G.-H., Shim, J.-O. (2022). Gut microbiota affects brain development and behavior. Clinical and Experimental Pediatrics, 66(7): 274-280, https://doi.org/10.3345/cep.2021.01550.
  • Kirk, D., Costeira, R., Visconti, A., Mirzaei, M. K., Deng, L., Valdes, A. M., Menni, C. (2024). Bacteriophages, gut bacteria, and microbial pathways interplay in cardiometabolic health. Cell Reports, 43(2): 113728, https://doi.org/ 10.1016/j.celrep.2024.113728.
  • Kuang, X., Shen, J., Zheng, L., Duan, Y., Ma, Y., Leung, E. L.-H., Dai, L. (2025). Applications of bacteriophages in precision engineering of the human gut microbiome. Engineering Microbiology, 5(1): 100189, https://doi.org/10.1016/ j.engmic.2025.100189.
  • Li, J., O’Toole, P. W. (2024). Disease-associated microbiome signature species in the gut. PNAS Nexus, 3(9): pgae352, https://doi.org/ 10.1093/pnasnexus/pgae352.
  • Li, Z., Xiong, W., Liang, Z., Wang, J., Zeng, Z., Kołat, D., Li, X., Zhou, D., Xu, X., Zhao, L. (2024). Critical role of the gut microbiota in immune responses and cancer immunotherapy. Journal of Hematology & Oncology, 17(1): 33, https://doi.org/10.1186/s13045-024-01541-w.
  • Li, Z., Yuan, H., Chu, H., Yang, L. (2023). The crosstalk between gut microbiota and bile acids promotes the development of non-alcoholic fatty liver disease. Microorganisms, 11(8): 2059, https://doi.org/10.3390/microorganisms11082059.
  • Liang, G., Bushman, F. D. (2021). The human virome: Assembly, composition and host interactions. Nature Reviews Microbiology, 19(8): 514-527, https://doi.org/10.1038/s41579-021-00536-5.
  • Liu, D., Zhang, Y., Liu, Y., Hou, L., Li, S., Tian, H., Zhao, T. (2018). Berberine modulates gut microbiota and reduces insulin resistance via the TLR4 signaling pathway. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association, 126(8): 513-520, https://doi.org/ 10.1055/s-0043-125066.
  • Liu, S., Quek, S. Y., Huang, K. (2024). Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Critical Reviews in Food Science and Nutrition, 64(33): 12574-12598, https://doi.org/10.1080/10408398.2023.2254837.
  • Loh, J. S., Mak, W. Q., Tan, L. K. S., Ng, C. X., Chan, H. H., Yeow, S. H., Foo, J. B., Ong, Y. S., How, C. W., Khaw, K. Y. (2024). Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduction and Targeted Therapy, 9(1): 1-53, https://doi.org/ 10.1038/s41392-024-01743-1.
  • Ma, Z. F., Lee, Y. Y. (2025). The role of the gut microbiota in health, diet, and disease with a focus on obesity. Foods, 14(3): 492, https://doi.org/ 10.3390/foods14030492.
  • Madhogaria, B., Bhowmik, P., Kundu, A. (2022). Correlation between human gut microbiome and diseases. Infectious Medicine, 1(3): 180-191, https://doi.org/10.1016/j.imj.2022.08.004.
  • Mann, E. R., Lam, Y. K., Uhlig, H. H. (2024). Short-chain fatty acids: Linking diet, the microbiome and immunity. Nature Reviews Immunology, 24(8): 577-595, https://doi.org/ 10.1038/s41577-024-01014-8.
  • Martino, C., Dilmore, A. H., Burcham, Z. M., Metcalf, J. L., Jeste, D., Knight, R. (2022). Microbiota succession throughout life from the cradle to the grave. Nature Reviews Microbiology, 20(12): 707-720, https://doi.org/10.1038/ s41579-022-00768-z.
  • Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E., Rotondo, J. C. (2023). Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells, 12(1): 184, https://doi.org/10.3390/cells12010184.
  • McMurdie, P. J., Stoeva, M. K., Justice, N., Nemchek, M., Sieber, C. M. K., Tyagi, S., Gines, J., Skennerton, C. T., Souza, M., Kolterman, O., Eid, J. (2022). Increased circulating butyrate and ursodeoxycholate during probiotic intervention in humans with type 2 diabetes. BMC Microbiology, 22(1): 19, https://doi.org/10.1186/s12866-021-02415-8.
  • Michel, C., Blottière, H. M. (2022). Neonatal programming of microbiota composition: A plausible idea that is not supported by the evidence. Frontiers in Microbiology, 13: 825942, https://doi.org/10.3389/fmicb.2022.825942.
  • Nabi-Afjadi, M., Teymouri, S., Monfared, F. N., Varnosfaderani, S. M. N., Halimi, H. (2023). The human gut phageome: Identification and roles in the diseases. Journal of Cellular Signaling, 4(3):128-141, https://doi.org/10.33696/Signaling.4.100.
  • Najmanová, L., Vídeňská, P., Cahová, M. (2022). Healthy microbiome – a mere idea or a sound concept? Physiological Research, 71(6): 719-738, https://doi.org/10.33549/physiolres.934967.
  • Okolie, M. C., Edo, G. I., Ainyanbhor, I. E., Jikah, A. N., Akpoghelie, P. O., Yousif, E., Zainulabdeen, K., Isoje, E. F., Igbuku, U. A., Orogu, J. O., Owheruo, J. O., Essaghah, A. E. A., Umar, H. (2025). Gut microbiota and immunity in health and diseases: A review. Proceedings of the Indian National Science Academy. 91: 397–414, https://doi.org/10.1007/s43538-024-00355-1.
  • Overby, H. B., Ferguson, J. F. (2021). Gut microbiota-derived short-chain fatty acids facilitate microbiota:Host cross talk and modulate obesity and hypertension. Current Hypertension Reports, 23(2): 8, https://doi.org/ 10.1007/s11906-020-01125-2.
  • Pant, A., Maiti, T. K., Mahajan, D., Das, B. (2023). Human gut microbiota and drug metabolism. Microbial Ecology, 86(1): 97-111, https://doi.org/ 10.1007/s00248-022-02081-x.
  • Pinto, G., Shetty, S. A., Zoetendal, E. G., Gonçalves, R. F. S., Pinheiro, A. C., Almeida, C., Azeredo, J., Smidt, H. (2022). An in vitro fermentation model to study the impact of bacteriophages targeting Shiga toxin-encoding Escherichia coli on the colonic microbiota. Npj Biofilms and Microbiomes, 8(1), 74. https://doi.org/10.1038/s41522-022-00334-8.
  • Porter, S. B., Johnston, B. D., Kisiela, D., Clabots, C., Sokurenko, E. V., Johnson, J. R. (2022). Bacteriophage cocktail and microcin-producing probiotic Escherichia coli protect mice against gut colonization with multidrug-resistant Escherichia coli sequence type 131. Frontiers in Microbiology, 13: 887799, https://doi.org/10.3389/fmicb.2022.887799.
  • EPCU (2019). Regulation (EU) 2019/ of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. https://eur-lex.europa.eu/legal-content/ EN/TXT/?uri=CELEX:32019R0006 (Erişim tarihi: 20.06.2025).
  • Russell, A. L., McAdams, Z. L., Donovan, E., Seilhamer, N., Siegrist, M., Franklin, C. L., Ericsson, A. C. (2023). The contribution of maternal oral, vaginal, and gut microbiota to the developing offspring gut. Scientific Reports, 13(1): 13660, https://doi.org/10.1038/s41598-023-40703-7.
  • Ryan, J. J., Patno, N. M. (2021). Short-term tolerability, safety, and gut microbial composition responses to a multi-strain probiotic supplement: An open-label study in healthy adults. Integrative Medicine (Encinitas, Calif.), 20(1): 24-34.
  • Salamat, S., Jahan-Mihan, A., Gharibvand, L., Reza Tabandeh, M., Mansoori, A. (2024). Multi-species synbiotic supplementation increased fecal short chain fatty acids and anti-inflammatory cytokine interleukin-10 in adult men with dyslipidemia; A randomized, double-blind, clinical trial. Cytokine, 179: 156608, https://doi.org/10.1016/j.cyto.2024.156608.
  • Sarker, S. A., Sultana, S., Reuteler, G., Moine, D., Descombes, P., Charton, F., Bourdin, G., McCallin, S., Ngom-Bru, C., Neville, T., Akter, M., Huq, S., Qadri, F., Talukdar, K., Kassam, M., Delley, M., Loiseau, C., Deng, Y., Aidy, S. E., … Brüssow, H. (2016). Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: A randomized trial in children from Bangladesh. eBioMedicine, 4: 124-137, https://doi.org/10.1016/j.ebiom.2015.12.023.
  • Schubert, C., Fischer, S., Dorsch, K., Teßmer, L., Hinrichs, J., Atamer, Z. (2022). Microencapsulation of bacteriophages for the delivery to and modulation of the human gut microbiota through milk and cereal products. Applied Sciences, 12(13): 6299, https://doi.org/ 10.3390/app12136299.
  • Shao, T., Hsu, R., Rafizadeh, D. L., Wang, L., Bowlus, C. L., Kumar, N., Mishra, J., Timilsina, S., Ridgway, W. M., Gershwin, M. E., Ansari, A. A., Shuai, Z., Leung, P. S. C. (2023). The gut ecosystem and immune tolerance. Journal of Autoimmunity, 141: 103114, https://doi.org/ 10.1016/j.jaut.2023.103114.
  • Sheraz, M., Shi, H., Banerjee, S. (2025). Human microbiome and bacteriophages: Impacts on health and disease. Current Clinical Microbiology Reports, 12(1): 7, https://doi.org/10.1007/ s40588-025-00243-2.
  • Shkoporov, A. N., Hill, C. (2019). Bacteriophages of the human gut: The “known unknown” of the microbiome. Cell Host & Microbe, 25(2): 195-209, https://doi.org/10.1016/j.chom.2019.01.017.
  • Tarracchini, C., Lugli, G. A., Mancabelli, L., van Sinderen, D., Turroni, F., Ventura, M., Milani, H. (2024). Exploring the vitamin biosynthesis landscape of the human gut microbiota. mSystems, 9(10): e00929-24, https://doi.org/10.1128/ msystems.00929-24.
  • Thoda, C., Touraki, M. (2023). Immunomodulatory properties of probiotics and their derived bioactive compounds. Applied Sciences, 13(8): 4726, https://doi.org/10.3390/ app13084726.
  • Ullah, H., Arbab, S., Tian, Y., Liu, C., Chen, Y., Qijie, L., Khan, M. I. U., Hassan, I. U., Li, K. (2023). The gut microbiota–brain axis in neurological disorder. Frontiers in Neuroscience, 17: 1225875, https://doi.org/10.3389/ fnins.2023.1225875.
  • Vernocchi, P., Del Chierico, F., Putignani, L. (2020). Gut microbiota metabolism and interaction with food components. International Journal of Molecular Sciences, 21(10): 3688, https://doi.org/10.3390/ijms21103688.
  • Visekruna, A., Luu, M. (2021). The role of short-chain fatty acids and bile acids in intestinal and liver function, inflammation, and carcinogenesis. Frontiers in Cell and Developmental Biology, 9: 703218, https://doi.org/10.3389/fcell.2021.703218.
  • Vivek, K., Mishra, S., Pradhan, R. C., Nagarajan, M., Kumar, P. K., Singh, S. S., Manvi, D., Gowda, N. N. (2023). A comprehensive review on microencapsulation of probiotics: Technology, carriers and current trends. Applied Food Research, 3(1), 100248. https://doi.org/10.1016/ j.afres.2022.100248.
  • Wang, P., Wang, J., Li, D., Ke, W., Chen, F., Hu, X. (2020). Targeting the gut microbiota with resveratrol: A demonstration of novel evidence for the management of hepatic steatosis. The Journal of Nutritional Biochemistry, 81: 108363. https://doi.org/10.1016/j.jnutbio.2020.108363.
  • Weir, T. (2024). PHAGE 3: Determination of phage and probiotic synergistic effects on gastrointestinal health. https://clinicaltrials.gov/ study/NCT05750433 (Erişim tarihi: 09.09.2025).
  • Wiertsema, S. P., van Bergenhenegouwen, J., Garssen, J., Knippels, L. M. J. (2021). The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients, 13(3): 886, https://doi.org/10.3390/nu13030886.
  • Wu, M., Yang, S., Wang, S., Cao, Y., Zhao, R., Li, X., Xing, Y., Liu, L. (2020). Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE−/− mice. Frontiers in Pharmacology, 11: 223, https://doi.org/10.3389/fphar.2020.00223.
  • Xu, J., Chen, H.-B., Li, S.-L. (2017). Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota. Medicinal Research Reviews, 37(5): 1140-1185, https://doi.org/10.1002/med.21431.
  • Yadav, M. K., Kumari, I., Singh, B., Sharma, K. K., Tiwari, S. K. (2022). Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Applied Microbiology and Biotechnology, 106(2): 505-521, https://doi.org/10.1007/s00253-021-11646-8.
  • Yang, S., Liu, H., Liu, Y. (2025). Advances in intestinal epithelium and gut microbiota interaction. Frontiers in Microbiology, 16: 1499202, https://doi.org/10.3389/fmicb.2025.1499202.
  • Yeşilyurt, N., Yılmaz, B., Ağagündüz, D., Capasso, R. (2021). Involvement of probiotics and postbiotics in the immune system modulation. Biologics, 1(2): 89-110, https://doi.org/10.3390/biologics1020006.
  • Yu, X., Cheng, L., Yi, X., Li, B., Li, X., Liu, X., Liu, Z., Kong, X. (2024). Gut phageome: Challenges in research and impact on human microbiota. Frontiers in Microbiology, 15: 1379382, https://doi.org/10.3389/fmicb.2024.1379382.
  • Yue, M., Tao, Y., Fang, Y., Lian, X., Zhang, Q., Xia, Y., Wei, Z., Dai, Y. (2019). The gut microbiota modulator berberine ameliorates collagen-induced arthritis in rats by facilitating the generation of butyrate and adjusting the intestinal hypoxia and nitrate supply. The FASEB Journal, 33(11): 12311-12323, https://doi.org/10.1096/ fj.201900425RR.
  • Zhai, L., Wu, J., Lam, Y. Y., Kwan, H. Y., Bian, Z.-X., Wong, H. L. X. (2021). Gut-microbial metabolites, probiotics and their roles in type 2 diabetes. International Journal of Molecular Sciences, 22(23): 12846, https://doi.org/10.3390/ ijms222312846.
  • Zhang, Q., Bai, Y., Wang, W., Li, J., Zhang, L., Tang, Y., Yue, S. (2023). Role of herbal medicine and gut microbiota in the prevention and treatment of obesity. Journal of Ethnopharmacology, 305: 116127, https://doi.org/ 10.1016/j.jep.2022.116127.
  • Zhang, Q., Xu, Y., Bukvicki, D., Peng, Y., Li, F., Zhang, Q., Yan, J., Lin, S., Liu, S., Qin, W. (2024). Phenolic compounds in dietary target the regulation of gut microbiota: Role in health and disease. Food Bioscience, 62: 105107, https://doi.org/10.1016/j.fbio.2024.105107.
  • Zhao, Q., Chen, Y., Huang, W., Zhou, H., Zhang, W. (2023). Drug-microbiota interactions: An emerging priority for precision medicine. Signal Transduction and Targeted Therapy, 8(1): 1-27, https://doi.org/10.1038/s41392-023-01619-w.
  • Zheng, Y., Zhang, Z., Tang, P., Wu, Y., Zhang, A., Li, D., Wang, C.-Z., Wan, J.-Y., Yao, H., Yuan, C.-S. (2023). Probiotics fortify intestinal barrier function: A systematic review and meta-analysis of randomized trials. Frontiers in Immunology, 14: 1143548, https://doi.org/10.3389/ fimmu.2023.1143548.
  • Zhu, L., Yang, X. (2025). Gut microecological prescription: A novel approach to regulating intestinal micro-ecological balance. International Journal of General Medicine, 18: 603-626, https://doi.org/10.2147/IJGM.S504616.
  • Zuppi, M., Hendrickson, H. L., O’Sullivan, J. M., Vatanen, T. (2022). Phages in the gut ecosystem. Frontiers in Cellular and Infection Microbiology, 11: 822562, https://doi.org/10.3389/ fcimb.2021.822562.
  • Zuppi, M., Vatanen, T., Wilson, B. C., Golovina, E., Portlock, T., Cutfield, W. S., Vickers, M. H., O’Sullivan, J. M. (2024). Fecal microbiota transplantation alters gut phage communities in a clinical trial for obesity. Microbiome, 12(1): 122, https://doi.org/10.1186/s40168-024-01833-w.
There are 100 citations in total.

Details

Primary Language Turkish
Subjects Food Properties, Veterinary Food Hygiene and Technology
Journal Section Review
Authors

Gülbahar Göncü 0000-0001-6982-1809

Nurhan Ertaş Onmaz 0000-0002-4679-6548

Submission Date July 17, 2025
Acceptance Date November 7, 2025
Publication Date December 8, 2025
Published in Issue Year 2025 Volume: 50 Issue: 6

Cite

APA Göncü, G., & Ertaş Onmaz, N. (2025). BAKTERİYOFAJ-PROBİYOTİK KOMBİNASYONLARININ BAĞIRSAK MİKROBİYOTASINI MODÜLE ETMEDE TERAPÖTİK POTANSİYELİ. Gıda, 50(6), 1151-1167. https://doi.org/10.15237/gida.GD25092
AMA Göncü G, Ertaş Onmaz N. BAKTERİYOFAJ-PROBİYOTİK KOMBİNASYONLARININ BAĞIRSAK MİKROBİYOTASINI MODÜLE ETMEDE TERAPÖTİK POTANSİYELİ. The Journal of Food. December 2025;50(6):1151-1167. doi:10.15237/gida.GD25092
Chicago Göncü, Gülbahar, and Nurhan Ertaş Onmaz. “BAKTERİYOFAJ-PROBİYOTİK KOMBİNASYONLARININ BAĞIRSAK MİKROBİYOTASINI MODÜLE ETMEDE TERAPÖTİK POTANSİYELİ”. Gıda 50, no. 6 (December 2025): 1151-67. https://doi.org/10.15237/gida.GD25092.
EndNote Göncü G, Ertaş Onmaz N (December 1, 2025) BAKTERİYOFAJ-PROBİYOTİK KOMBİNASYONLARININ BAĞIRSAK MİKROBİYOTASINI MODÜLE ETMEDE TERAPÖTİK POTANSİYELİ. Gıda 50 6 1151–1167.
IEEE G. Göncü and N. Ertaş Onmaz, “BAKTERİYOFAJ-PROBİYOTİK KOMBİNASYONLARININ BAĞIRSAK MİKROBİYOTASINI MODÜLE ETMEDE TERAPÖTİK POTANSİYELİ”, The Journal of Food, vol. 50, no. 6, pp. 1151–1167, 2025, doi: 10.15237/gida.GD25092.
ISNAD Göncü, Gülbahar - Ertaş Onmaz, Nurhan. “BAKTERİYOFAJ-PROBİYOTİK KOMBİNASYONLARININ BAĞIRSAK MİKROBİYOTASINI MODÜLE ETMEDE TERAPÖTİK POTANSİYELİ”. Gıda 50/6 (December2025), 1151-1167. https://doi.org/10.15237/gida.GD25092.
JAMA Göncü G, Ertaş Onmaz N. BAKTERİYOFAJ-PROBİYOTİK KOMBİNASYONLARININ BAĞIRSAK MİKROBİYOTASINI MODÜLE ETMEDE TERAPÖTİK POTANSİYELİ. The Journal of Food. 2025;50:1151–1167.
MLA Göncü, Gülbahar and Nurhan Ertaş Onmaz. “BAKTERİYOFAJ-PROBİYOTİK KOMBİNASYONLARININ BAĞIRSAK MİKROBİYOTASINI MODÜLE ETMEDE TERAPÖTİK POTANSİYELİ”. Gıda, vol. 50, no. 6, 2025, pp. 1151-67, doi:10.15237/gida.GD25092.
Vancouver Göncü G, Ertaş Onmaz N. BAKTERİYOFAJ-PROBİYOTİK KOMBİNASYONLARININ BAĞIRSAK MİKROBİYOTASINI MODÜLE ETMEDE TERAPÖTİK POTANSİYELİ. The Journal of Food. 2025;50(6):1151-67.