Research Article
BibTex RIS Cite

PRODUCTION OF FERMENTED MILK USING HUMAN ORIGIN BIFIDOBACTERIUM LONGUM BH28: A FUNCTIONAL AND TECHNOLOGICAL ASSESSMENT

Year 2025, Volume: 50 Issue: 6, 1168 - 1185, 08.12.2025
https://doi.org/10.15237/gida.GD25095

Abstract

In the present study, fermented milk was produced using the local Bifidobacterium longum BH28 strain, which was previously isolated from newborn feces and determined to be safe for use in foods. The Streptococcus thermophilus 212S strain was used both alone and in combination with B. longum BH28 or Lacticaseibacillus paracasei Shirota strains. The number of B. longum BH28 decreased to approximately 5 log cfu/mL on the 7th day and lost its suitability for the probiotic definition. Principal Component Analysis results showed that the samples were classified into three distinct groups based on culture type and storage time. However, it was determined that the different culture combinations applied did not create a statistically significant difference in total phenolic content, antioxidant capacity, water-holding capacity, and sensory characteristics. It was concluded that further research and process optimization are needed to maintain the live cell count of B. longum BH28 above 6 log cfu/mL.

Ethical Statement

The Atatürk University Faculty of Agriculture's Ethics Committee gave its ethical approval for the sensory evaluation (Protocol No. 2025/1).

Thanks

The author would like to thank Atatürk University for its support with equipment.

References

  • Adhikari, K., Grün, I.U., Mustapha, A., Fernando, L.N. (2002). Changes in the profile of organic acids in plain set and stirred yogurts during manufacture and refrigerated storage. Journal of Food Quality, 25(5): 435-451, doi: 10.1111/j.1745-4557.2002.tb01038.x.
  • Akgün, A., Yazıcı, F., Güleç, H.A. (2018). The combined effect of probiotic cultures and incubation final pH on the quality of buffalo milk yogurt during cold storage. Food Science & Nutrition, 6(2): 492-502, doi: 10.1002/fsn3.580.
  • Aktaş, H., Çetin, B. (2024a). Multidimensional evaluation of techno-functional properties of yoghurt bacteria. International Dairy Journal, 148: 105795. doi: 10.1016/j.idairyj.2023.105795.
  • Aktaş, H., Çetin, B. (2024b). Effects of novel autochthonous starter cultures on quality characteristics of yoghurt. International Journal of Food Engineering, 20(11-12): 799-808. doi: 10.1515/ijfe-2024-0103.
  • Anonymous (2008). Microbiology of food and animal feeding stuffs-horizontal method for the enumeration of yeasts and moulds-Part 1: Colony count technique in products with water activity greater than 0.95. International Standardization Organization. ISO 21527-1.
  • Anonymous (2010). Microbiology of food and animal feeding stuffs –horizontal method for the detection and enumeration of coliforms –most probable number technique. International Standardization Organization ISO 4831.
  • Arab, M., Yousefi, M., Khanniri, E., Azari, M., Ghasemzadeh-Mohammadi, V., Mollakhalili-Meybodi, N. (2023). A comprehensive review on yogurt syneresis: Effect of processing conditions and added additives. Journal of Food Science and Technology, 60(6): 1656-1665. doi: 10.1007/s13197-022-05403-6.
  • Atalar, İ. (2019). Functional kefir production from high pressure homogenized hazelnut milk. LWT - Food Science and Technology, 107: 256-263, doi: 10.1016/j.lwt.2019.03.013.
  • AOAC (2005). Official Methods of Analysis of AOAC INTERNATIONAL. 18th Edition, Gaithersburg, MD, the USA. Barat, A., Özcan, T. (2018). Growth of probiotic bacteria and characteristics of fermented milk containing fruit matrices. International Journal of Dairy Technology, 71: 120-129. doi: 10.1111/1471-0307.12391.
  • Bensmira, M., Jiang, B. (2012). Effect of some operating variables on the microstructure and physical properties of a novel kefir formulation. Journal of Food Engineering, 108: 579-584, doi: 10.1016/j.jfoodeng.2011.07.025.
  • Casarotti, S.N., Monteiro, D.A., Moretti, M.M., Penna, A.L.B. (2014). Influence of the combination of probiotic cultures during fermentation and storage of fermented milk. Food Research International, 59: 67-75, doi: 10.1016/j.foodres.2014.01.068.
  • Codex Alimentarius (2003). Standard for fermented milks. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%3A%2F%2Fworkspace.fao.org%2Fsites%2Fcodex%2FStandards%2FCXS%2B243-2003%2FCXS_243e.pdf (Erişim tarihi: 01.06.2025).
  • Damin, M.R., Minowa, E., Alcantara, M.R., Oliveira, M.N. (2008). Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yogurt and probiotic bacteria. Journal of Texture Studies, 39(1): 40-55, doi: 10.1111/j.1745-4603.2007.00129.x.
  • Donkor, O.N., Henriksson, A., Vasiljevic, T., Shah, N.P. (2006). Effect of acidification on the activity of probiotics in yoghurt during cold storage. International Dairy Journal, 16(10): 1181-1189.
  • El-Fattah, A.A., Sakr, S., El-Dieb, S., Eikashef, H. (2018). Developing functional yogurt rich in bioactive peptides and gamma-aminobutyric acid related to cardiovascular health. LWT - Food Science and Technology, 98: 390-397, doi: 10.1016/j.lwt.2018.09.022.
  • FAO/WHO (2002). Guidelines for the Evaluation of Probiotics in Food. FAO/WHO Working Group. https://www.fao.org/3/ a0512e/a0512e.pdf (Erişim tarihi: 30.06.2025).
  • Farvin, K.S., Baron, C.P., Nielsen, N.S., Jacobsen, C. (2010). Antioxidant activity of yoghurt peptides: Part 1 - in vitro assays and evaluation in ω-3 enriched milk. Food Chemistry, 123(4): 1081-1089. doi: 10.1016/j.foodchem.2010.05.067.
  • Galli, V., Venturi, M., Mari, E., Guerrini, S., Granchi, L. (2022). Gamma-aminobutyric acid (GABA) production in fermented milk by lactic acid bacteria isolated from spontaneous raw milk fermentation. International Dairy Journal, 127: 105284, doi: 10.1016/j.idairyj.2021.105284.
  • Gavzy, S.J., Kensiski, A., Lee, Z.L., Mongodin, E.F., Ma, B., Bromberg, J.S. (2023). Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes, 15(2): 2291164. doi: 10.1080/19490976.2023.2291164.
  • Güler, M.A., Çetin, B., Albayrak, B., Meral-Aktaş, H., Tekgündüz, K.Ş., Kara, M., Işlek, A. (2024). Isolation, identification, and in vitro probiotic characterization of forty novel Bifidobacterium strains from neonatal feces in Erzurum province, Türkiye. Journal of the Science of Food and Agriculture, 104(7): 4165-4175, doi: 10.1002/jsfa.13298.
  • Hanum, Z., Yurliasni, Y., Seutia, F.H. (2022, March). Antioxidant Activity of Fermented Goat’s Milk with the Use of Bifidobacterium longum. International Conference on Improving Tropical Animal Production for Food Security (ITAPS 2021), s. 374-380. Atlantis Press.
  • Irigoyen, A., Arana, I., Castiella, M., Torre, P., Ibanez, F.C. (2005). Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chemistry, 90(4): 613-620. doi: 10.1016/j.foodchem.2004.04.021.
  • Işık, S., Dağdemir, E., Tekin, A., Hayaloğlu, A.A. (2023). Metabolite profiling of fermented milks as affected by adjunct cultures during long-term storage. Food Bioscience, 56: 103344. doi: 10.1016/j.fbio.2023.103344.
  • Jena, R., Choudhury, P.K. (2025). Bifidobacteria in fermented dairy foods: a health beneficial outlook. Probiotics and Antimicrobial Proteins, 17(3): 1-22. doi: 10.1007/s12602-023-10189-w.
  • Leahy, S.C., Higgins, D.G., Fitzgerald, G.F., Van Sinderen, D. (2005). Getting better with bifidobacteria. Journal of Applied Microbiology, 98(6): 1303-1315. doi: 10.1111/j.1365-2672.2005.02600.x.
  • Li, J., Wang, J., Wang, M., Zheng, L., Cen, Q., Wang, F., ... Zhang, A. (2023). Bifidobacterium: a probiotic for the prevention and treatment of depression. Frontiers in Microbiology, 14: 1174800. doi: 10.3389/fmicb.2023.1174800.
  • Li, S., Tang, S., He, Q., Gong, J., Hu, J. (2020). Physicochemical, textural and volatile characteristics of fermented milk co-cultured with Streptococcus thermophilus, Bifidobacterium animalis or Lactobacillus plantarum. International Journal of Food Science and Technology, 55(2): 461-474, doi: 10.1111/ijfs.14279.
  • Li, S.N., Tang, S.H., Ren, R., Gong, J.X., Chen, Y.M. (2021). Metabolomic profile of milk fermented with Streptococcus thermophilus cocultured with Bifidobacterium animalis ssp. lactis, Lactiplantibacillus plantarum, or both during storage. Journal of Dairy Science, 104(8): 8493-8505, doi: 10.3168/jds.2021-20270.
  • Ma, P., Li, Y., Hao, J., Lu, H., He, Y., Wei, L., ... Wang, S. (2025). Co-culture of Lactobacillus bulgaricus with Streptococcus thermophilus and Bifidobacterium impact the metabolism and flavor of fermented milk. Food Science & Nutrition, 13(5): e70182. doi: 10.1002/fsn3.70182.
  • Maleki, N., Khodaiyan, F., Mousavi, S.M. (2015). Antioxidant activity of fermented hazelnut milk. Food Science and Biotechnology, 24(1): 107–115, doi: 10.1007/s10068-015-0016-0.
  • Meral-Aktaş, H., Bazu-Çırpıcı, B., Aktaş, H., Kadiroğlu, H., Çetin, B. (2025). Comparative quality assessment of plant-based kefir as a vegan alternative to traditional kefir. Food Bioscience, 107062. doi: 10.1016/j.fbio.2025.107062.
  • Meilgaard, M.C., Carr, B.T., Civille, G.V. (1999). Sensory Evaluation Techniques. 3rd edn. CRC Press, Boca Raton, FL, USA.
  • Ndhlala, A.R., Kavaz Yüksel, A., Yüksel, M. (2022). Nutritional supplementation of yogurt with Jerusalem artichoke tubers: Organic acid profiles and quality parameters. Plants, 11(22): 3086. doi: 10.3390/plants11223086.
  • Nguyen, H.T., Ong, L., Kentish, S.E., Gras, S.L. (2014). The effect of fermentation temperature on the microstructure, physicochemical and rheological properties of probiotic buffalo yoghurt. Food and Bioprocess Technology, 7(9): 2538-2548. doi: 10.1007/s11947-014-1278-x.
  • Özcan, T., Şahin, S., Akpınar-Bayizit, A., Yılmaz-Ersan, L. (2019). Assessment of antioxidant capacity by method comparison and amino acid characterisation in buffalo milk kefir. International Journal of Dairy Technology, 72(1): 65–73. doi: 10.1111/1471-0307.12560.
  • Parisa, A., Roya, G., Mahdi, R., Shabnam, R., Maryam, E., Malihe, T. (2020). Anti-cancer effects of Bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis. PloS One, 15(5): e0232930. doi: 10.1371/journal.pone.0232930.
  • Rasinkangas, P., Forssten, S.D., Marttinen, M., Ibarra, A., Bothe, G., Junnila, J., ... Ouwehand, A.C. (2022). Bifidobacterium animalis subsp. lactis Bi-07 supports lactose digestion in vitro and in randomized, placebo- and lactase-controlled clinical trials. The American Journal of Clinical Nutrition, 116(6): 1580-1594. doi: 10.1093/ajcn/nqac264.
  • Shori, A.B. (2021). Application of Bifidobacterium spp in beverages and dairy food products: An overview of survival during refrigerated storage. Food Science and Technology, 42: e41520. doi: 10.1590/fst.41520.
  • Son, J.K., Jo, Y.J., Jung, Y.J., Lee, Y.R., Lee, J., Jeong, H.S. (2023). Fermentation and quality characteristics of yogurt treated with Bifidobacterium longum. Nutrients, 15(15): 3490. doi: 10.3390/nu15153490.
  • Souza, T.C., Zacarías, M.F., Silva, A.M., Binetti, A., Reinheimer, J., Nicoli, J.R., Vinderola, G. (2012). Cell viability and immunostimulating and protective capacities of Bifidobacterium longum 51A are differentially affected by technological variables in fermented milks. Journal of Applied Microbiology, 112(6): 1184-1192. doi: 10.1111/j.1365-2672.2012.05280.x.
  • Sumalapao, D.E.P., Mesina, J.A.R.T., Cabrera, E.C., Gloriani, N.G. (2017). Viability kinetics of Lactobacillus casei Shirota strain in a commercial fermented milk drink during refrigerated storage. National Journal of Physiology, Pharmacy and Pharmacology, 7(11): 1242-1246. doi: 10.5455/njppp.2017.7.0621521072017.
  • Sun, Y., Guo, S., Wu, T., Yang, Y., Shen, T., Ma, X., Zhang, H. (2023). Bifidobacterium adolescentis B8589- and Lacticaseibacillus paracasei PC-01-co-fermented milk has more γ-aminobutyric acid and short-chain fatty acids than L. paracasei PC-01-fermented milk. LWT, 179: 114645. doi: 10.1016/j.lwt.2023.114645
  • Suzuki, R., Katayama, T., Kim, B.J., Wakagi, T., Shoun, H., Ashida, H., Fushinobu, S. (2010). Crystal structures of phosphoketolase: thiamine diphosphate-dependent dehydration mechanism. Journal of Biological Chemistry, 285(44): 34279-34287. doi: 10.1074/jbc.M110.156281.
  • Tian, R., Yu, Z., Yu, L., Tian, F., Zhao, J., Zhang, H., Zhai, Q. (2022). Effects of Bifidobacterium longum CCFM5871 as an adjunct starter culture on the production of fermented milk. Food Bioscience, 50: 102167. doi: 10.1016/j.fbio.2022.102167.
  • Xie, Z., Kim, C., Miller, M.J., Jin, Y.S. (2024). Effects of 2′‐fucosyllactose on the viability of starter cultures and Bifidobacterium strains of human origin in yogurt during refrigerated storage. Journal of Food Science, 89(5): 2546-2556. doi: 10.1111/1750-3841.16996.
  • Wei, Z., Xu, Y., Xu, Q., Cao, W., Huang, H., Liu, H. (2021). Microbial biosynthesis of L-malic acid and related metabolic engineering strategies: advances and prospects. Frontiers in Bioengineering and Biotechnology, 9: 765685. doi: 10.3389/fbioe.2021.765685
  • Wang, L., Chai, M., Wang, J., Yu, Q., Wang, G., Zhang, H., Chen, W. (2022). Bifidobacterium longum relieves constipation by regulating the intestinal barrier of mice. Food & Function, 13(9): 5037-5049. doi: 10.1039/D1FO04151G.
  • Yang, X., He, X., Xu, S., Zhang, Y., Mo, C., Lai, Y., Xiao, Q. (2023a). Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson's disease. Food & Function, 14(15): 6828-6839. doi:10.1039/D3FO00728F.
  • Yang, Y., Zhang, R., Zhang, F., Wang, B., Liu, Y. (2023b). Storage stability of texture, organoleptic, and biological properties of goat milk yogurt fermented with probiotic bacteria. Frontiers in Nutrition, 9: 1093654. doi: 10.3389/ fnut.2022.1093654.

İNSAN ORİJİNLİ BIFIDOBACTERIUM LONGUM BH28 KULLANILARAK FERMENTE SÜT ÜRETİMİ: FONKSİYONEL VE TEKNOLOJİK DEĞERLENDİRME

Year 2025, Volume: 50 Issue: 6, 1168 - 1185, 08.12.2025
https://doi.org/10.15237/gida.GD25095

Abstract

Sunulan çalışmada, daha önce yenidoğan feçesinden izole edilen ve gıdalarda kullanımının güvenli olduğu belirlenen yerel Bifidobacterium longum BH28 suşu ile fermente süt üretimi gerçekleştirilmiştir. Bu amaçla, Streptococcus thermophilus 212S suşu hem tek başına hem de B. longum BH28 veya Lacticaseibacillus paracasei Shirota suşları ile birlikte kullanılmıştır. B. longum BH28 sayısı 7. günde yaklaşık 5 log kob/mL seviyesine düşerek probiyotik tanımına uygunluk kriterini kaybetmiştir. Temel Bileşen Analizi sonuçları, örneklerin kültür tipine ve depolama süresine göre üç belirgin grupta sınıflandığını göstermiştir. Bununla birlikte, uygulanan farklı kültür kombinasyonlarının toplam fenolik madde içeriği, antioksidan kapasite, su tutma kapasitesi ve duyusal özellikler üzerinde istatistiksel olarak anlamlı bir farklılık oluşturmadığı tespit edilmiştir. B. longum BH28’in canlı hücre sayısının 6 log kob/mL’nin üzerinde tutulabilmesi amacıyla, daha ileri düzeyde araştırmalara ve süreç optimizasyonuna ihtiyaç duyulduğu sonucuna varılmıştır.

References

  • Adhikari, K., Grün, I.U., Mustapha, A., Fernando, L.N. (2002). Changes in the profile of organic acids in plain set and stirred yogurts during manufacture and refrigerated storage. Journal of Food Quality, 25(5): 435-451, doi: 10.1111/j.1745-4557.2002.tb01038.x.
  • Akgün, A., Yazıcı, F., Güleç, H.A. (2018). The combined effect of probiotic cultures and incubation final pH on the quality of buffalo milk yogurt during cold storage. Food Science & Nutrition, 6(2): 492-502, doi: 10.1002/fsn3.580.
  • Aktaş, H., Çetin, B. (2024a). Multidimensional evaluation of techno-functional properties of yoghurt bacteria. International Dairy Journal, 148: 105795. doi: 10.1016/j.idairyj.2023.105795.
  • Aktaş, H., Çetin, B. (2024b). Effects of novel autochthonous starter cultures on quality characteristics of yoghurt. International Journal of Food Engineering, 20(11-12): 799-808. doi: 10.1515/ijfe-2024-0103.
  • Anonymous (2008). Microbiology of food and animal feeding stuffs-horizontal method for the enumeration of yeasts and moulds-Part 1: Colony count technique in products with water activity greater than 0.95. International Standardization Organization. ISO 21527-1.
  • Anonymous (2010). Microbiology of food and animal feeding stuffs –horizontal method for the detection and enumeration of coliforms –most probable number technique. International Standardization Organization ISO 4831.
  • Arab, M., Yousefi, M., Khanniri, E., Azari, M., Ghasemzadeh-Mohammadi, V., Mollakhalili-Meybodi, N. (2023). A comprehensive review on yogurt syneresis: Effect of processing conditions and added additives. Journal of Food Science and Technology, 60(6): 1656-1665. doi: 10.1007/s13197-022-05403-6.
  • Atalar, İ. (2019). Functional kefir production from high pressure homogenized hazelnut milk. LWT - Food Science and Technology, 107: 256-263, doi: 10.1016/j.lwt.2019.03.013.
  • AOAC (2005). Official Methods of Analysis of AOAC INTERNATIONAL. 18th Edition, Gaithersburg, MD, the USA. Barat, A., Özcan, T. (2018). Growth of probiotic bacteria and characteristics of fermented milk containing fruit matrices. International Journal of Dairy Technology, 71: 120-129. doi: 10.1111/1471-0307.12391.
  • Bensmira, M., Jiang, B. (2012). Effect of some operating variables on the microstructure and physical properties of a novel kefir formulation. Journal of Food Engineering, 108: 579-584, doi: 10.1016/j.jfoodeng.2011.07.025.
  • Casarotti, S.N., Monteiro, D.A., Moretti, M.M., Penna, A.L.B. (2014). Influence of the combination of probiotic cultures during fermentation and storage of fermented milk. Food Research International, 59: 67-75, doi: 10.1016/j.foodres.2014.01.068.
  • Codex Alimentarius (2003). Standard for fermented milks. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%3A%2F%2Fworkspace.fao.org%2Fsites%2Fcodex%2FStandards%2FCXS%2B243-2003%2FCXS_243e.pdf (Erişim tarihi: 01.06.2025).
  • Damin, M.R., Minowa, E., Alcantara, M.R., Oliveira, M.N. (2008). Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yogurt and probiotic bacteria. Journal of Texture Studies, 39(1): 40-55, doi: 10.1111/j.1745-4603.2007.00129.x.
  • Donkor, O.N., Henriksson, A., Vasiljevic, T., Shah, N.P. (2006). Effect of acidification on the activity of probiotics in yoghurt during cold storage. International Dairy Journal, 16(10): 1181-1189.
  • El-Fattah, A.A., Sakr, S., El-Dieb, S., Eikashef, H. (2018). Developing functional yogurt rich in bioactive peptides and gamma-aminobutyric acid related to cardiovascular health. LWT - Food Science and Technology, 98: 390-397, doi: 10.1016/j.lwt.2018.09.022.
  • FAO/WHO (2002). Guidelines for the Evaluation of Probiotics in Food. FAO/WHO Working Group. https://www.fao.org/3/ a0512e/a0512e.pdf (Erişim tarihi: 30.06.2025).
  • Farvin, K.S., Baron, C.P., Nielsen, N.S., Jacobsen, C. (2010). Antioxidant activity of yoghurt peptides: Part 1 - in vitro assays and evaluation in ω-3 enriched milk. Food Chemistry, 123(4): 1081-1089. doi: 10.1016/j.foodchem.2010.05.067.
  • Galli, V., Venturi, M., Mari, E., Guerrini, S., Granchi, L. (2022). Gamma-aminobutyric acid (GABA) production in fermented milk by lactic acid bacteria isolated from spontaneous raw milk fermentation. International Dairy Journal, 127: 105284, doi: 10.1016/j.idairyj.2021.105284.
  • Gavzy, S.J., Kensiski, A., Lee, Z.L., Mongodin, E.F., Ma, B., Bromberg, J.S. (2023). Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes, 15(2): 2291164. doi: 10.1080/19490976.2023.2291164.
  • Güler, M.A., Çetin, B., Albayrak, B., Meral-Aktaş, H., Tekgündüz, K.Ş., Kara, M., Işlek, A. (2024). Isolation, identification, and in vitro probiotic characterization of forty novel Bifidobacterium strains from neonatal feces in Erzurum province, Türkiye. Journal of the Science of Food and Agriculture, 104(7): 4165-4175, doi: 10.1002/jsfa.13298.
  • Hanum, Z., Yurliasni, Y., Seutia, F.H. (2022, March). Antioxidant Activity of Fermented Goat’s Milk with the Use of Bifidobacterium longum. International Conference on Improving Tropical Animal Production for Food Security (ITAPS 2021), s. 374-380. Atlantis Press.
  • Irigoyen, A., Arana, I., Castiella, M., Torre, P., Ibanez, F.C. (2005). Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chemistry, 90(4): 613-620. doi: 10.1016/j.foodchem.2004.04.021.
  • Işık, S., Dağdemir, E., Tekin, A., Hayaloğlu, A.A. (2023). Metabolite profiling of fermented milks as affected by adjunct cultures during long-term storage. Food Bioscience, 56: 103344. doi: 10.1016/j.fbio.2023.103344.
  • Jena, R., Choudhury, P.K. (2025). Bifidobacteria in fermented dairy foods: a health beneficial outlook. Probiotics and Antimicrobial Proteins, 17(3): 1-22. doi: 10.1007/s12602-023-10189-w.
  • Leahy, S.C., Higgins, D.G., Fitzgerald, G.F., Van Sinderen, D. (2005). Getting better with bifidobacteria. Journal of Applied Microbiology, 98(6): 1303-1315. doi: 10.1111/j.1365-2672.2005.02600.x.
  • Li, J., Wang, J., Wang, M., Zheng, L., Cen, Q., Wang, F., ... Zhang, A. (2023). Bifidobacterium: a probiotic for the prevention and treatment of depression. Frontiers in Microbiology, 14: 1174800. doi: 10.3389/fmicb.2023.1174800.
  • Li, S., Tang, S., He, Q., Gong, J., Hu, J. (2020). Physicochemical, textural and volatile characteristics of fermented milk co-cultured with Streptococcus thermophilus, Bifidobacterium animalis or Lactobacillus plantarum. International Journal of Food Science and Technology, 55(2): 461-474, doi: 10.1111/ijfs.14279.
  • Li, S.N., Tang, S.H., Ren, R., Gong, J.X., Chen, Y.M. (2021). Metabolomic profile of milk fermented with Streptococcus thermophilus cocultured with Bifidobacterium animalis ssp. lactis, Lactiplantibacillus plantarum, or both during storage. Journal of Dairy Science, 104(8): 8493-8505, doi: 10.3168/jds.2021-20270.
  • Ma, P., Li, Y., Hao, J., Lu, H., He, Y., Wei, L., ... Wang, S. (2025). Co-culture of Lactobacillus bulgaricus with Streptococcus thermophilus and Bifidobacterium impact the metabolism and flavor of fermented milk. Food Science & Nutrition, 13(5): e70182. doi: 10.1002/fsn3.70182.
  • Maleki, N., Khodaiyan, F., Mousavi, S.M. (2015). Antioxidant activity of fermented hazelnut milk. Food Science and Biotechnology, 24(1): 107–115, doi: 10.1007/s10068-015-0016-0.
  • Meral-Aktaş, H., Bazu-Çırpıcı, B., Aktaş, H., Kadiroğlu, H., Çetin, B. (2025). Comparative quality assessment of plant-based kefir as a vegan alternative to traditional kefir. Food Bioscience, 107062. doi: 10.1016/j.fbio.2025.107062.
  • Meilgaard, M.C., Carr, B.T., Civille, G.V. (1999). Sensory Evaluation Techniques. 3rd edn. CRC Press, Boca Raton, FL, USA.
  • Ndhlala, A.R., Kavaz Yüksel, A., Yüksel, M. (2022). Nutritional supplementation of yogurt with Jerusalem artichoke tubers: Organic acid profiles and quality parameters. Plants, 11(22): 3086. doi: 10.3390/plants11223086.
  • Nguyen, H.T., Ong, L., Kentish, S.E., Gras, S.L. (2014). The effect of fermentation temperature on the microstructure, physicochemical and rheological properties of probiotic buffalo yoghurt. Food and Bioprocess Technology, 7(9): 2538-2548. doi: 10.1007/s11947-014-1278-x.
  • Özcan, T., Şahin, S., Akpınar-Bayizit, A., Yılmaz-Ersan, L. (2019). Assessment of antioxidant capacity by method comparison and amino acid characterisation in buffalo milk kefir. International Journal of Dairy Technology, 72(1): 65–73. doi: 10.1111/1471-0307.12560.
  • Parisa, A., Roya, G., Mahdi, R., Shabnam, R., Maryam, E., Malihe, T. (2020). Anti-cancer effects of Bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis. PloS One, 15(5): e0232930. doi: 10.1371/journal.pone.0232930.
  • Rasinkangas, P., Forssten, S.D., Marttinen, M., Ibarra, A., Bothe, G., Junnila, J., ... Ouwehand, A.C. (2022). Bifidobacterium animalis subsp. lactis Bi-07 supports lactose digestion in vitro and in randomized, placebo- and lactase-controlled clinical trials. The American Journal of Clinical Nutrition, 116(6): 1580-1594. doi: 10.1093/ajcn/nqac264.
  • Shori, A.B. (2021). Application of Bifidobacterium spp in beverages and dairy food products: An overview of survival during refrigerated storage. Food Science and Technology, 42: e41520. doi: 10.1590/fst.41520.
  • Son, J.K., Jo, Y.J., Jung, Y.J., Lee, Y.R., Lee, J., Jeong, H.S. (2023). Fermentation and quality characteristics of yogurt treated with Bifidobacterium longum. Nutrients, 15(15): 3490. doi: 10.3390/nu15153490.
  • Souza, T.C., Zacarías, M.F., Silva, A.M., Binetti, A., Reinheimer, J., Nicoli, J.R., Vinderola, G. (2012). Cell viability and immunostimulating and protective capacities of Bifidobacterium longum 51A are differentially affected by technological variables in fermented milks. Journal of Applied Microbiology, 112(6): 1184-1192. doi: 10.1111/j.1365-2672.2012.05280.x.
  • Sumalapao, D.E.P., Mesina, J.A.R.T., Cabrera, E.C., Gloriani, N.G. (2017). Viability kinetics of Lactobacillus casei Shirota strain in a commercial fermented milk drink during refrigerated storage. National Journal of Physiology, Pharmacy and Pharmacology, 7(11): 1242-1246. doi: 10.5455/njppp.2017.7.0621521072017.
  • Sun, Y., Guo, S., Wu, T., Yang, Y., Shen, T., Ma, X., Zhang, H. (2023). Bifidobacterium adolescentis B8589- and Lacticaseibacillus paracasei PC-01-co-fermented milk has more γ-aminobutyric acid and short-chain fatty acids than L. paracasei PC-01-fermented milk. LWT, 179: 114645. doi: 10.1016/j.lwt.2023.114645
  • Suzuki, R., Katayama, T., Kim, B.J., Wakagi, T., Shoun, H., Ashida, H., Fushinobu, S. (2010). Crystal structures of phosphoketolase: thiamine diphosphate-dependent dehydration mechanism. Journal of Biological Chemistry, 285(44): 34279-34287. doi: 10.1074/jbc.M110.156281.
  • Tian, R., Yu, Z., Yu, L., Tian, F., Zhao, J., Zhang, H., Zhai, Q. (2022). Effects of Bifidobacterium longum CCFM5871 as an adjunct starter culture on the production of fermented milk. Food Bioscience, 50: 102167. doi: 10.1016/j.fbio.2022.102167.
  • Xie, Z., Kim, C., Miller, M.J., Jin, Y.S. (2024). Effects of 2′‐fucosyllactose on the viability of starter cultures and Bifidobacterium strains of human origin in yogurt during refrigerated storage. Journal of Food Science, 89(5): 2546-2556. doi: 10.1111/1750-3841.16996.
  • Wei, Z., Xu, Y., Xu, Q., Cao, W., Huang, H., Liu, H. (2021). Microbial biosynthesis of L-malic acid and related metabolic engineering strategies: advances and prospects. Frontiers in Bioengineering and Biotechnology, 9: 765685. doi: 10.3389/fbioe.2021.765685
  • Wang, L., Chai, M., Wang, J., Yu, Q., Wang, G., Zhang, H., Chen, W. (2022). Bifidobacterium longum relieves constipation by regulating the intestinal barrier of mice. Food & Function, 13(9): 5037-5049. doi: 10.1039/D1FO04151G.
  • Yang, X., He, X., Xu, S., Zhang, Y., Mo, C., Lai, Y., Xiao, Q. (2023a). Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson's disease. Food & Function, 14(15): 6828-6839. doi:10.1039/D3FO00728F.
  • Yang, Y., Zhang, R., Zhang, F., Wang, B., Liu, Y. (2023b). Storage stability of texture, organoleptic, and biological properties of goat milk yogurt fermented with probiotic bacteria. Frontiers in Nutrition, 9: 1093654. doi: 10.3389/ fnut.2022.1093654.
There are 49 citations in total.

Details

Primary Language English
Subjects Food Microbiology, Dairy Technology
Journal Section Research Article
Authors

Hacer Meral-aktaş 0000-0001-5025-8702

Submission Date July 26, 2025
Acceptance Date November 12, 2025
Publication Date December 8, 2025
Published in Issue Year 2025 Volume: 50 Issue: 6

Cite

APA Meral-aktaş, H. (2025). PRODUCTION OF FERMENTED MILK USING HUMAN ORIGIN BIFIDOBACTERIUM LONGUM BH28: A FUNCTIONAL AND TECHNOLOGICAL ASSESSMENT. Gıda, 50(6), 1168-1185. https://doi.org/10.15237/gida.GD25095
AMA Meral-aktaş H. PRODUCTION OF FERMENTED MILK USING HUMAN ORIGIN BIFIDOBACTERIUM LONGUM BH28: A FUNCTIONAL AND TECHNOLOGICAL ASSESSMENT. The Journal of Food. December 2025;50(6):1168-1185. doi:10.15237/gida.GD25095
Chicago Meral-aktaş, Hacer. “PRODUCTION OF FERMENTED MILK USING HUMAN ORIGIN BIFIDOBACTERIUM LONGUM BH28: A FUNCTIONAL AND TECHNOLOGICAL ASSESSMENT”. Gıda 50, no. 6 (December 2025): 1168-85. https://doi.org/10.15237/gida.GD25095.
EndNote Meral-aktaş H (December 1, 2025) PRODUCTION OF FERMENTED MILK USING HUMAN ORIGIN BIFIDOBACTERIUM LONGUM BH28: A FUNCTIONAL AND TECHNOLOGICAL ASSESSMENT. Gıda 50 6 1168–1185.
IEEE H. Meral-aktaş, “PRODUCTION OF FERMENTED MILK USING HUMAN ORIGIN BIFIDOBACTERIUM LONGUM BH28: A FUNCTIONAL AND TECHNOLOGICAL ASSESSMENT”, The Journal of Food, vol. 50, no. 6, pp. 1168–1185, 2025, doi: 10.15237/gida.GD25095.
ISNAD Meral-aktaş, Hacer. “PRODUCTION OF FERMENTED MILK USING HUMAN ORIGIN BIFIDOBACTERIUM LONGUM BH28: A FUNCTIONAL AND TECHNOLOGICAL ASSESSMENT”. Gıda 50/6 (December2025), 1168-1185. https://doi.org/10.15237/gida.GD25095.
JAMA Meral-aktaş H. PRODUCTION OF FERMENTED MILK USING HUMAN ORIGIN BIFIDOBACTERIUM LONGUM BH28: A FUNCTIONAL AND TECHNOLOGICAL ASSESSMENT. The Journal of Food. 2025;50:1168–1185.
MLA Meral-aktaş, Hacer. “PRODUCTION OF FERMENTED MILK USING HUMAN ORIGIN BIFIDOBACTERIUM LONGUM BH28: A FUNCTIONAL AND TECHNOLOGICAL ASSESSMENT”. Gıda, vol. 50, no. 6, 2025, pp. 1168-85, doi:10.15237/gida.GD25095.
Vancouver Meral-aktaş H. PRODUCTION OF FERMENTED MILK USING HUMAN ORIGIN BIFIDOBACTERIUM LONGUM BH28: A FUNCTIONAL AND TECHNOLOGICAL ASSESSMENT. The Journal of Food. 2025;50(6):1168-85.