Review
BibTex RIS Cite

SAĞLIĞIN GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİR BESLENME İÇİN ALTERNATİF BİR KAYNAK: YENİLEBİLİR BÖCEKLER

Year 2020, , 1009 - 1018, 19.08.2020
https://doi.org/10.15237/gida.GD20071

Abstract

Dünya genelinde nüfusun artması beslenme sorunlarını da beraberinde getirmektedir. Yaklaşık olarak her 9 kişiden 1’i açlık çekmektedir. Yenilebilir böcekler yüksek biyokütle ve çeşitliliğe sahiptir. Yüksek kalitede protein, doymamış yağlar, vitaminler, mineraller ve biyoaktif maddeler açısından zengindir. Yetiştirilmeleri için diğer hayvansal kaynaklara göre daha az yem, su ve alan gerekmektedir. İnsan ve hayvanların oluşturduğu biyolojik atıklar da böcek yetiştirmek için kullanılabilmektedir. Böceklerden elde edilen biyoaktif maddeler sağlığın geliştirilmesi ve hastalıkların önlenmesinde kullanılabilmektedir. Bu nedenle birçok firma tarafından böcek ürünleri üretilmekte ve 55 milyon dolarlık bir pazar bulunmaktadır. Yenilebilir böcekler faydaları yanında mikrobiyolojik, parazitolojik ve alerjik riskler de taşımaktadır. Bu nedenle üretimleri sırasında belli kurallara dikkat edilmesi gerekmektedir. Bu standartların belirlenmesi için bilimsel çalışmaların arttırılması, mevzuatların geliştirilmesi ve uluslararası politikaların oluşturulması gerekmektedir.

References

  • Alasalvar, C., Salvadó, J. S., and Ros, E. (2020). Bioactives and health benefits of nuts and dried fruits. Food Chemistry, 126192.
  • Almasia, N. I., Molinari, M. P., Maroniche, G. A., Nahirñak, V., Barón, M. P. B., Taboga, O. A., et al. (2017). Successful production of the potato antimicrobial peptide Snakin-1 in baculovirus-infected insect cells and development of specific antibodies. BMC Biotechnology, 17(1), 75.
  • Ayuso, R. (2011). Update on the diagnosis and treatment of shellfish allergy. Current Allergy and Asthma Reports, 11(4), 309–316.
  • Barbi, S., Macavei, L. I., Fuso, A., Luparelli, A. V., Caligiani, A., Ferrari, A. M., ... and Montorsi, M. (2020). Valorization of seasonal agri-food leftovers through insects. Science of The Total Environment, 709, 136209.
  • Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., and Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: A Critical Review. Comp. Rev. Food Sci. Food Safety. 12, 296–313. doi: 10.1111/1541-4337.12014
  • Belluco, S., Halloran, A., and Ricci, A. (2017). New protein sources and food legislation: The case of edible insects and EU law. Food Security, 1–12.
  • Cito, A., Botta, M., Francardi, V., and Dreassi, E. (2017). Insects as source of angiotensin converting enzyme inhibitory peptides. Journal of Insects as Food and Feed, 3(4), 231-240.
  • Cox, S., Payne, C., Badolo, A., Attenborough, R., & Milbank, C. (2020). The nutritional role of insects as food: A case study of ‘chitoumou’(Cirina butyrospermi), an edible caterpillar in rural Burkina Faso. Journal of Insects as Food and Feed, 6(1), 69-80.
  • De Castro, R. J. S., Ohara, A., dos Santos Aguilar, J. G., and Domingues, M. A. F. (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in food science & technology, 76, 82-89.
  • Dennis, G. A. B., and Oonincx, I. J. M. B. (2012). Environmental impact of the production of mealworms as a protein source for humans – a life cycle assessment. department of plant sciences, wageningen university, wageningen, the netherlands, 2 animal department of animal sciences, Wageningen University, Wageningen, The Netherlands. PLoS ONE 7:e51145. doi: 10.1371/journal.pone.0051145
  • Di Mattia, C., Battista, N., Sacchetti, G., and Serafini, M. (2019). Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects. Frontiers in nutrition, 6, 106.
  • EFSA Scientific Committee. (2015). Risk profile related to production and consumption of insects as food and feed. EFSA journal, 13(10), 4257.
  • Ekpo, K. E., Onigbinde, A. O., and Asia, I. O. (2009). Pharmaceutical potentials of the oils of some popular insects consumed in southern Nigeria. African Journal of Pharmacy and Pharmacology, 3, 51–57.
  • Evans, J., Alemu, M. H., Flore, R., Frøst, M. B., Halloran, A., Jensen, A. B., ... and Payne, C. (2015). ‘Entomophagy’: an evolving terminology in need of review. Journal of Insects as Food and Feed, 1(4), 293-305.
  • FAO, IFAD, UNICEF, WFP and WHO (2018). The State of Food Security and Nutrition in the World 2018. Building climate resilience for food security and nutrition, Rome. Available online at: http://www.fao.org/3/i9553en/i9553en.pdf (accessed May 3 2020).
  • FAO/INFOODS (2017). Food Composition Database for Biodiversity Version 4.0 – BioFoodComp4.0, Rome. Available online at: http://www.fao.org/3/a-i7364e.pdf (accessed May 3 2020).
  • FAO/WUR (2012). “Expert consultation meeting: assessing the potential of insects as food and feed in assuring food security,” in Summary Report, 23–25 January 2012, eds P. Vantomme, E. Mertens, A. van Huis and H. Klunder, Rome. Available online at: http://www.fao.org/docrep/015/an233e/an233e00.pdf (accessed May 3 2020).
  • FDA (2016). Guidance for industry: Frequently asked questions about generally recognized as safe - GRAS. (2016). Available online at: https://www.fda.gov/media/101042/download (accessed May 3 2020).
  • Finke, M. D. (2007). Estimate of chitin in raw whole insects. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association, 26(2), 105-115.
  • Finke, M. D., and Oonincx, D. D. (2014). Insects as food for insectivores. In J. Morales- Ramos, G. Rojas, & D. I. Shapiro-Ilan (Eds.). Mass production of beneficial organisms: Invertebrates and entomopathogens (pp. 583–616), New York, Elsevier.
  • Gahukar, R. T. (2020). Edible insects collected from forests for family livelihood and wellness of rural communities: A review. Global Food Security, 100348.
  • Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., et al. (2013). Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities. Rome:FAO. Available online at: http://www.fao.org/3/a-i3437e.pdf (accessed May 3 2020).
  • Ghaly, A. E., and Alkoaik, F. N. (2009). The yellow mealworm as a novel source of protein. American Journal of Agricultural and Biological Sciences, 4(4), 319-331.
  • Halloran, A., Roos, N., Eilenberg, J., Cerutti, A., and Bruun, S. (2016). Life cycle assessment of edible insects for food protein: a review. Agronomy for Sustainable Development, 36(4), 57.
  • Hinder, J. (2016). Overcoming the “Yuck Factor:” The Potential of Entomophagy to Provide a More Environmentally Sustainable Protein Source. Chestertown, MD: Washington College Department of Environmental Science and Studies Department of Anthropology. doi: 10.13140/RG.2.1.4020.3125
  • Jongema, Y. (2012). List of Edible Insect Species of the World. Wageningen, Laboratory of Entomology, Wageningen University. Available online at: http://www.ent.wur.nl/UK/Edible+insects/~Worldwide+species+list/ (accessed May 3 2020).
  • Kinyuru, J. N., Kenji, G. M., Njoroge, S. M., and Ayieko, M. (2010). Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food and Bioprocess Technology, 3(5), 778–782.
  • Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., and Nout, M. J. R. (2012). Microbiological aspects of processing and storage of edible insects. Food Control, 26(2), 628–631.
  • Koko, M. Y. F., and Mariod, A. A. (2020). Sensory Quality of Edible Insects. In African Edible Insects As Alternative Source of Food, Oil, Protein and Bioactive Components (pp. 115-122). Springer, Cham.
  • Kourimská, L., and Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22–26.
  • Latunde-Dada, G. O., Yang, W., and Aviles, M. V. (2016). In vitro iron availability from insects and sirloin beef. Journal of Agricultural and Food Chemistry, 64, 8420–8424.
  • Le, L. T., Nyengaard, J. R., Golas, M. M., & Sander, B. (2018). Vectors for expression of signal peptide-dependent proteins in baculovirus/insect cell systems and their application to expression and purification of the high-affinity immunoglobulin gamma Fc receptor I in complex with its gamma chain. Molecular Biotechnology, 1–10.
  • Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J., Zhu, F., et al. (2012). Antioxidant activity and phenolic compounds of Holotrichia parallela motschulsky extracts. Food Chemistry, 134(4), 1885–1891.
  • Liu, Y. J., Wu, S. L., Love, K. R., & Hancock, W. S. (2017). Characterization of Site-Specific glycosylation in Influenza A Virus Hemagglutinin produced by Spodoptera frugiperda insect cell line. Analytical Chemistry, 89(20), 11036–11043.
  • Liu, Y. Y., Liu, J., Zou, Y. X., Liao, S. T., Shen, W., and Lin, G. (2015). Process optimization for preparation of active peptides from male silkworm moth proteins using dual enzymatic hydrolysis. Science of Sericulture, 41, 716–723.
  • Liu, Y., Wan, S., Liu, J., Zou, Y., and Liao, S. (2016). Antioxidant activity and stability study of peptides from enzymatically hydrolyzed male silkmoth. Journal of Food Processing and Preservation, 41(1), 13081.
  • Malan, M., Serem, J. C., Bester, M. J., Neitz, A. W., and Gaspar, A. R. (2016). Anti-inflammatory and anti-endotoxin properties of peptides derived from the carboxyterminal region of a defensin from the tick Ornithodoros savignyi. Journal of Peptide Science, 22(1), 43–51.
  • Mlcek, J., Borkovcova, M., Rop, O., and Bednarova, M. (2014). Biologically active substances of edible insects and their use in agriculture, veterinary and human medicine - a review. Journal of Central European Agriculture, 15(4), 225–237.
  • Mulia, R. N. (2019). Global simulation of insect meat production under climate change. Frontiers in Sustainable Food Systems, 3, 91.
  • Nowak, V., Persijn, D., Rittenschober, D., and Charrondiere, R. (2015). Review of food composition data for edible insects. Food Chem. 193, 39–46. doi: 10.1016/j.foodchem.2014.10.114
  • Paul, A., Frederich, M., Megido, R. C., Alabi, T., Malik, P., Uyttenbroeck, R., ... & Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337-340.
  • Payne, C. L. R., Scarborough, P., Rayner, M., and Nonaka, K. (2016). Are edible insects more or less ‘healthy’than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over-and undernutrition. European journal of clinical nutrition, 70(3), 285-291.
  • Pereira, K. S., Schmidt, F. L., Barbosa, R. L., Guaraldo, A. M., Franco, R. M., Dias, V. L., et al. (2010). Transmission of chagas disease (american trypanosomiasis) by food. Advances in Food and Nutrition Research, 59, 63–85.
  • Poma, G., Cuykx, M., Amato, E., Calaprice, C., Focant, J. F., and Covaci, A. (2017). Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food and Chemical Toxicology, 100, 70–79.
  • Poortvliet, P. M., Van der Pas, L., Mulder, B. C., & Fogliano, V. (2019). Healthy, but Disgusting: An Investigation Into Consumers’ Willingness to Try Insect Meat. Journal of economic entomology, 112(3), 1005-1010.
  • Rahnamaeian, M., Cytryńska, M., Zdybicka-Barabas, A., Dobslaff, K., Wiesner, J., Twyman, R. M., et al. (2015). Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proceedings of the Royal Society B, 282(1806), 2–10.
  • Rumpold, B. A., and Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802–823.
  • Sachs, J. (2010). Rethinking macroeconomics: knitting together global society. Broker 10, 1–3. doi: 10.2202/1932-0213.1065
  • Sanchez-Muros, M. J., and Manzano-Agugliaro, F. (2014). Insect meal as a renewable source of food for animal feeding: a review. J. Cleaner Prod. 65, 16–27. doi: 10.1016/j.jclepro.2013.11.068
  • Schlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R. F., Quasigroch, W., et al. (2017). Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition and Food Research, 61(6).
  • Spiegel, M. (2013). van der, Noordam, MY, Fels-Klerx, HJ van der (2013), Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production. Comprehensive Reviews in Food Science and Food Safety, 12, 662-678.
  • Stull, V., and Patz, J. (2020). Research and policy priorities for edible insects. Sustainability Science, 15(2), 633-645.
  • Sonnabend, A., Spahn, V., Stech, M., Zemella, A., Stein, C., & Kubick, S. (2017). Production of G protein-coupled receptors in an insect-based cell-free system. Biotechnology and Bioengineering, 114(10), 2328–2338.
  • Sun-Waterhouse, D., Waterhouse, G. I. N., You, L., Zhang, J., Liu, Y., Ma, L., et al. (2016). Transforming insect biomass into consumer wellness foods: A review. Food Research International, 89, 129–151.
  • Tzompa-Sosa, D. A., Yi, L., Van Valenberg, H. J. F., and Lakemond, C. M. M. (2019). Four insect oils as food ingredient: physical and chemical characterisation of insect oils obtained by an aqueous oil extraction. Journal of Insects as Food and Feed, 5(4), 279-292.
  • Tzompa-Sosa, D. A., Yi, L. Y., Van Valenberg, H. J. F., Van Boekel, M. A. J. S., and Lakemond, C. M. M. (2014). Insect lipid profile: Aqueous versus organic solventbased extraction methods. Food Research International, 62, 1087–1094.
  • Van Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: a review. Journal of Insects as Food and Feed, 6(1), 27-44.
  • Van Huis, A., and Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 43.
  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., et al. (2013). Edible Insects: Future Prospects For Food and Feed Security, Rome: FAO. Available online at: http://www.fao.org/3/i3253e/i3253e.pdf (accessed May 3 2020).
  • Verhoeckx, K. C., Vissers, Y. M., Baumert, J. L., Faludi, R., Feys, M., Flanagan, S., et al. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223–240.
  • Wendt, S., and Czaczkes, T. J. (2020). Labeling effect in insects: Cue associations influence perceived food value in ants (Lasius niger). Journal of Comparative Psychology.
  • WHO (2020). Chagas disease (American trypanosomiasis). Available online at: https://www.who.int/health-topics/chagas-disease#tab=tab_1 (accessed May 3 2020).
  • Yi, H. Y., Chowdhury, M., Huang, Y. D., & Yu, X. Q. (2014). Insect antimicrobial peptides and their applications. Applied Microbiology and Biotechnology, 98(13), 5807–5822.
  • Yi, L., Lakemond, C. M., Sagis, L. M., Eisner-Schadler, V., Van Huis, A., and Van Boekel, M. A. J. S. (2013). Extraction and characterization of protein fractions from five insect species. Food Chemistry, 141(4), 3341–3348.
  • Zhang, D. D., Lıu, L., Tang, Y., Peı, Z. H., Kong, L. C., Lıu, S. M., & Ma, H. X. (2017). Progress on Mechanism and Application of Antifungal Peptides from Insects. Progress in Veterinary Medicine, (7), 17.
  • Zielińska, E., Karaś, M., and Jakubczyk, A. (2016). Antioxidant activity of predigested protein obtained from a range of farmed edible insects. International Journal of Food Science and Technology, 52(2), 306–312.

AN ALTERNATIVE SOURCE FOR IMPROVEMENT OF HEALTH AND SUSTAINABLE NUTRITION: EDIBLE INSECTS

Year 2020, , 1009 - 1018, 19.08.2020
https://doi.org/10.15237/gida.GD20071

Abstract

The increase in the population throughout the world brings along nutritional problems. Approximately 1 in 9 people are starving. Edible insects have high biomass and variety. It is rich in high quality protein, unsaturated fats, vitamins, minerals and bioactive substances. Less feed, water and area is required for their cultivation compared to other animal sources. Biological waste generated by humans and animals can also be used to grow insects. Bioactive substances obtained from insects can be used in health promotion and disease prevention. For this reason, insect products are produced by many companies and there is a 55 million dollar market. Edible insects carry microbiological, parasitological and allergic risks in addition to their benefits. Therefore, certain rules must be observed during their production. Scientific studies should be increased, legislation should be developed and international policies should be established to determine these standards.

References

  • Alasalvar, C., Salvadó, J. S., and Ros, E. (2020). Bioactives and health benefits of nuts and dried fruits. Food Chemistry, 126192.
  • Almasia, N. I., Molinari, M. P., Maroniche, G. A., Nahirñak, V., Barón, M. P. B., Taboga, O. A., et al. (2017). Successful production of the potato antimicrobial peptide Snakin-1 in baculovirus-infected insect cells and development of specific antibodies. BMC Biotechnology, 17(1), 75.
  • Ayuso, R. (2011). Update on the diagnosis and treatment of shellfish allergy. Current Allergy and Asthma Reports, 11(4), 309–316.
  • Barbi, S., Macavei, L. I., Fuso, A., Luparelli, A. V., Caligiani, A., Ferrari, A. M., ... and Montorsi, M. (2020). Valorization of seasonal agri-food leftovers through insects. Science of The Total Environment, 709, 136209.
  • Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., and Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: A Critical Review. Comp. Rev. Food Sci. Food Safety. 12, 296–313. doi: 10.1111/1541-4337.12014
  • Belluco, S., Halloran, A., and Ricci, A. (2017). New protein sources and food legislation: The case of edible insects and EU law. Food Security, 1–12.
  • Cito, A., Botta, M., Francardi, V., and Dreassi, E. (2017). Insects as source of angiotensin converting enzyme inhibitory peptides. Journal of Insects as Food and Feed, 3(4), 231-240.
  • Cox, S., Payne, C., Badolo, A., Attenborough, R., & Milbank, C. (2020). The nutritional role of insects as food: A case study of ‘chitoumou’(Cirina butyrospermi), an edible caterpillar in rural Burkina Faso. Journal of Insects as Food and Feed, 6(1), 69-80.
  • De Castro, R. J. S., Ohara, A., dos Santos Aguilar, J. G., and Domingues, M. A. F. (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in food science & technology, 76, 82-89.
  • Dennis, G. A. B., and Oonincx, I. J. M. B. (2012). Environmental impact of the production of mealworms as a protein source for humans – a life cycle assessment. department of plant sciences, wageningen university, wageningen, the netherlands, 2 animal department of animal sciences, Wageningen University, Wageningen, The Netherlands. PLoS ONE 7:e51145. doi: 10.1371/journal.pone.0051145
  • Di Mattia, C., Battista, N., Sacchetti, G., and Serafini, M. (2019). Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects. Frontiers in nutrition, 6, 106.
  • EFSA Scientific Committee. (2015). Risk profile related to production and consumption of insects as food and feed. EFSA journal, 13(10), 4257.
  • Ekpo, K. E., Onigbinde, A. O., and Asia, I. O. (2009). Pharmaceutical potentials of the oils of some popular insects consumed in southern Nigeria. African Journal of Pharmacy and Pharmacology, 3, 51–57.
  • Evans, J., Alemu, M. H., Flore, R., Frøst, M. B., Halloran, A., Jensen, A. B., ... and Payne, C. (2015). ‘Entomophagy’: an evolving terminology in need of review. Journal of Insects as Food and Feed, 1(4), 293-305.
  • FAO, IFAD, UNICEF, WFP and WHO (2018). The State of Food Security and Nutrition in the World 2018. Building climate resilience for food security and nutrition, Rome. Available online at: http://www.fao.org/3/i9553en/i9553en.pdf (accessed May 3 2020).
  • FAO/INFOODS (2017). Food Composition Database for Biodiversity Version 4.0 – BioFoodComp4.0, Rome. Available online at: http://www.fao.org/3/a-i7364e.pdf (accessed May 3 2020).
  • FAO/WUR (2012). “Expert consultation meeting: assessing the potential of insects as food and feed in assuring food security,” in Summary Report, 23–25 January 2012, eds P. Vantomme, E. Mertens, A. van Huis and H. Klunder, Rome. Available online at: http://www.fao.org/docrep/015/an233e/an233e00.pdf (accessed May 3 2020).
  • FDA (2016). Guidance for industry: Frequently asked questions about generally recognized as safe - GRAS. (2016). Available online at: https://www.fda.gov/media/101042/download (accessed May 3 2020).
  • Finke, M. D. (2007). Estimate of chitin in raw whole insects. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association, 26(2), 105-115.
  • Finke, M. D., and Oonincx, D. D. (2014). Insects as food for insectivores. In J. Morales- Ramos, G. Rojas, & D. I. Shapiro-Ilan (Eds.). Mass production of beneficial organisms: Invertebrates and entomopathogens (pp. 583–616), New York, Elsevier.
  • Gahukar, R. T. (2020). Edible insects collected from forests for family livelihood and wellness of rural communities: A review. Global Food Security, 100348.
  • Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., et al. (2013). Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities. Rome:FAO. Available online at: http://www.fao.org/3/a-i3437e.pdf (accessed May 3 2020).
  • Ghaly, A. E., and Alkoaik, F. N. (2009). The yellow mealworm as a novel source of protein. American Journal of Agricultural and Biological Sciences, 4(4), 319-331.
  • Halloran, A., Roos, N., Eilenberg, J., Cerutti, A., and Bruun, S. (2016). Life cycle assessment of edible insects for food protein: a review. Agronomy for Sustainable Development, 36(4), 57.
  • Hinder, J. (2016). Overcoming the “Yuck Factor:” The Potential of Entomophagy to Provide a More Environmentally Sustainable Protein Source. Chestertown, MD: Washington College Department of Environmental Science and Studies Department of Anthropology. doi: 10.13140/RG.2.1.4020.3125
  • Jongema, Y. (2012). List of Edible Insect Species of the World. Wageningen, Laboratory of Entomology, Wageningen University. Available online at: http://www.ent.wur.nl/UK/Edible+insects/~Worldwide+species+list/ (accessed May 3 2020).
  • Kinyuru, J. N., Kenji, G. M., Njoroge, S. M., and Ayieko, M. (2010). Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food and Bioprocess Technology, 3(5), 778–782.
  • Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., and Nout, M. J. R. (2012). Microbiological aspects of processing and storage of edible insects. Food Control, 26(2), 628–631.
  • Koko, M. Y. F., and Mariod, A. A. (2020). Sensory Quality of Edible Insects. In African Edible Insects As Alternative Source of Food, Oil, Protein and Bioactive Components (pp. 115-122). Springer, Cham.
  • Kourimská, L., and Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22–26.
  • Latunde-Dada, G. O., Yang, W., and Aviles, M. V. (2016). In vitro iron availability from insects and sirloin beef. Journal of Agricultural and Food Chemistry, 64, 8420–8424.
  • Le, L. T., Nyengaard, J. R., Golas, M. M., & Sander, B. (2018). Vectors for expression of signal peptide-dependent proteins in baculovirus/insect cell systems and their application to expression and purification of the high-affinity immunoglobulin gamma Fc receptor I in complex with its gamma chain. Molecular Biotechnology, 1–10.
  • Liu, S., Sun, J., Yu, L., Zhang, C., Bi, J., Zhu, F., et al. (2012). Antioxidant activity and phenolic compounds of Holotrichia parallela motschulsky extracts. Food Chemistry, 134(4), 1885–1891.
  • Liu, Y. J., Wu, S. L., Love, K. R., & Hancock, W. S. (2017). Characterization of Site-Specific glycosylation in Influenza A Virus Hemagglutinin produced by Spodoptera frugiperda insect cell line. Analytical Chemistry, 89(20), 11036–11043.
  • Liu, Y. Y., Liu, J., Zou, Y. X., Liao, S. T., Shen, W., and Lin, G. (2015). Process optimization for preparation of active peptides from male silkworm moth proteins using dual enzymatic hydrolysis. Science of Sericulture, 41, 716–723.
  • Liu, Y., Wan, S., Liu, J., Zou, Y., and Liao, S. (2016). Antioxidant activity and stability study of peptides from enzymatically hydrolyzed male silkmoth. Journal of Food Processing and Preservation, 41(1), 13081.
  • Malan, M., Serem, J. C., Bester, M. J., Neitz, A. W., and Gaspar, A. R. (2016). Anti-inflammatory and anti-endotoxin properties of peptides derived from the carboxyterminal region of a defensin from the tick Ornithodoros savignyi. Journal of Peptide Science, 22(1), 43–51.
  • Mlcek, J., Borkovcova, M., Rop, O., and Bednarova, M. (2014). Biologically active substances of edible insects and their use in agriculture, veterinary and human medicine - a review. Journal of Central European Agriculture, 15(4), 225–237.
  • Mulia, R. N. (2019). Global simulation of insect meat production under climate change. Frontiers in Sustainable Food Systems, 3, 91.
  • Nowak, V., Persijn, D., Rittenschober, D., and Charrondiere, R. (2015). Review of food composition data for edible insects. Food Chem. 193, 39–46. doi: 10.1016/j.foodchem.2014.10.114
  • Paul, A., Frederich, M., Megido, R. C., Alabi, T., Malik, P., Uyttenbroeck, R., ... & Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), 337-340.
  • Payne, C. L. R., Scarborough, P., Rayner, M., and Nonaka, K. (2016). Are edible insects more or less ‘healthy’than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over-and undernutrition. European journal of clinical nutrition, 70(3), 285-291.
  • Pereira, K. S., Schmidt, F. L., Barbosa, R. L., Guaraldo, A. M., Franco, R. M., Dias, V. L., et al. (2010). Transmission of chagas disease (american trypanosomiasis) by food. Advances in Food and Nutrition Research, 59, 63–85.
  • Poma, G., Cuykx, M., Amato, E., Calaprice, C., Focant, J. F., and Covaci, A. (2017). Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food and Chemical Toxicology, 100, 70–79.
  • Poortvliet, P. M., Van der Pas, L., Mulder, B. C., & Fogliano, V. (2019). Healthy, but Disgusting: An Investigation Into Consumers’ Willingness to Try Insect Meat. Journal of economic entomology, 112(3), 1005-1010.
  • Rahnamaeian, M., Cytryńska, M., Zdybicka-Barabas, A., Dobslaff, K., Wiesner, J., Twyman, R. M., et al. (2015). Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proceedings of the Royal Society B, 282(1806), 2–10.
  • Rumpold, B. A., and Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802–823.
  • Sachs, J. (2010). Rethinking macroeconomics: knitting together global society. Broker 10, 1–3. doi: 10.2202/1932-0213.1065
  • Sanchez-Muros, M. J., and Manzano-Agugliaro, F. (2014). Insect meal as a renewable source of food for animal feeding: a review. J. Cleaner Prod. 65, 16–27. doi: 10.1016/j.jclepro.2013.11.068
  • Schlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R. F., Quasigroch, W., et al. (2017). Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition and Food Research, 61(6).
  • Spiegel, M. (2013). van der, Noordam, MY, Fels-Klerx, HJ van der (2013), Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production. Comprehensive Reviews in Food Science and Food Safety, 12, 662-678.
  • Stull, V., and Patz, J. (2020). Research and policy priorities for edible insects. Sustainability Science, 15(2), 633-645.
  • Sonnabend, A., Spahn, V., Stech, M., Zemella, A., Stein, C., & Kubick, S. (2017). Production of G protein-coupled receptors in an insect-based cell-free system. Biotechnology and Bioengineering, 114(10), 2328–2338.
  • Sun-Waterhouse, D., Waterhouse, G. I. N., You, L., Zhang, J., Liu, Y., Ma, L., et al. (2016). Transforming insect biomass into consumer wellness foods: A review. Food Research International, 89, 129–151.
  • Tzompa-Sosa, D. A., Yi, L., Van Valenberg, H. J. F., and Lakemond, C. M. M. (2019). Four insect oils as food ingredient: physical and chemical characterisation of insect oils obtained by an aqueous oil extraction. Journal of Insects as Food and Feed, 5(4), 279-292.
  • Tzompa-Sosa, D. A., Yi, L. Y., Van Valenberg, H. J. F., Van Boekel, M. A. J. S., and Lakemond, C. M. M. (2014). Insect lipid profile: Aqueous versus organic solventbased extraction methods. Food Research International, 62, 1087–1094.
  • Van Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: a review. Journal of Insects as Food and Feed, 6(1), 27-44.
  • Van Huis, A., and Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 43.
  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., et al. (2013). Edible Insects: Future Prospects For Food and Feed Security, Rome: FAO. Available online at: http://www.fao.org/3/i3253e/i3253e.pdf (accessed May 3 2020).
  • Verhoeckx, K. C., Vissers, Y. M., Baumert, J. L., Faludi, R., Feys, M., Flanagan, S., et al. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223–240.
  • Wendt, S., and Czaczkes, T. J. (2020). Labeling effect in insects: Cue associations influence perceived food value in ants (Lasius niger). Journal of Comparative Psychology.
  • WHO (2020). Chagas disease (American trypanosomiasis). Available online at: https://www.who.int/health-topics/chagas-disease#tab=tab_1 (accessed May 3 2020).
  • Yi, H. Y., Chowdhury, M., Huang, Y. D., & Yu, X. Q. (2014). Insect antimicrobial peptides and their applications. Applied Microbiology and Biotechnology, 98(13), 5807–5822.
  • Yi, L., Lakemond, C. M., Sagis, L. M., Eisner-Schadler, V., Van Huis, A., and Van Boekel, M. A. J. S. (2013). Extraction and characterization of protein fractions from five insect species. Food Chemistry, 141(4), 3341–3348.
  • Zhang, D. D., Lıu, L., Tang, Y., Peı, Z. H., Kong, L. C., Lıu, S. M., & Ma, H. X. (2017). Progress on Mechanism and Application of Antifungal Peptides from Insects. Progress in Veterinary Medicine, (7), 17.
  • Zielińska, E., Karaś, M., and Jakubczyk, A. (2016). Antioxidant activity of predigested protein obtained from a range of farmed edible insects. International Journal of Food Science and Technology, 52(2), 306–312.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Mücahit Muslu 0000-0002-8761-5061

Publication Date August 19, 2020
Published in Issue Year 2020

Cite

APA Muslu, M. (2020). SAĞLIĞIN GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİR BESLENME İÇİN ALTERNATİF BİR KAYNAK: YENİLEBİLİR BÖCEKLER. Gıda, 45(5), 1009-1018. https://doi.org/10.15237/gida.GD20071
AMA Muslu M. SAĞLIĞIN GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİR BESLENME İÇİN ALTERNATİF BİR KAYNAK: YENİLEBİLİR BÖCEKLER. GIDA. August 2020;45(5):1009-1018. doi:10.15237/gida.GD20071
Chicago Muslu, Mücahit. “SAĞLIĞIN GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİR BESLENME İÇİN ALTERNATİF BİR KAYNAK: YENİLEBİLİR BÖCEKLER”. Gıda 45, no. 5 (August 2020): 1009-18. https://doi.org/10.15237/gida.GD20071.
EndNote Muslu M (August 1, 2020) SAĞLIĞIN GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİR BESLENME İÇİN ALTERNATİF BİR KAYNAK: YENİLEBİLİR BÖCEKLER. Gıda 45 5 1009–1018.
IEEE M. Muslu, “SAĞLIĞIN GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİR BESLENME İÇİN ALTERNATİF BİR KAYNAK: YENİLEBİLİR BÖCEKLER”, GIDA, vol. 45, no. 5, pp. 1009–1018, 2020, doi: 10.15237/gida.GD20071.
ISNAD Muslu, Mücahit. “SAĞLIĞIN GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİR BESLENME İÇİN ALTERNATİF BİR KAYNAK: YENİLEBİLİR BÖCEKLER”. Gıda 45/5 (August 2020), 1009-1018. https://doi.org/10.15237/gida.GD20071.
JAMA Muslu M. SAĞLIĞIN GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİR BESLENME İÇİN ALTERNATİF BİR KAYNAK: YENİLEBİLİR BÖCEKLER. GIDA. 2020;45:1009–1018.
MLA Muslu, Mücahit. “SAĞLIĞIN GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİR BESLENME İÇİN ALTERNATİF BİR KAYNAK: YENİLEBİLİR BÖCEKLER”. Gıda, vol. 45, no. 5, 2020, pp. 1009-18, doi:10.15237/gida.GD20071.
Vancouver Muslu M. SAĞLIĞIN GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİR BESLENME İÇİN ALTERNATİF BİR KAYNAK: YENİLEBİLİR BÖCEKLER. GIDA. 2020;45(5):1009-18.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/