Research Article
BibTex RIS Cite

HAMSİ'NİN LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ (Engraulis encrasicolus)

Year 2017, Volume: 42 Issue: 6, 654 - 665, 15.11.2017

Abstract



Bu çalışmanın temel amacı, Hamsinin (Engraulis encrasicolus) LTHV kurutma özelliklerini deneysel olarak
araştırmaktır. Bu amaçla, 100 g Hamsi örnekleri bağıl nemin % 38 ± 5 olduğu, 4,
10, 15 ve 20 °C sıcaklıklarda kurutuldu. Deneyler sırasında kütle kaybı,
sıcaklık, kuruma hızı ve bağıl nemi değerleri belirlenmiştir. Hamsi
filetolarının ağırlığı, 4° C'de 25 saatte, 100 g dan 47,6 g 'a, 10°C
23 saatte 46,7g’a,  15°C 20
saatte 45,3 g’a,  20°C’de 13
saatte  44,67 g a düşmüştür. Bu bağlamda, gözlemlenen kurutma deney
verileri üzerine yirmi üç ortak matematiksel model uygulanmıştır. Sonuç olarak,
Hamsinin her LTHV kurutma sıcaklığı için en uygun matematiksel modeller belirlenmiştir.
Bu bağlamda, Logaritmik (Asimptotik), Midilli-Küçük, Demir ve diğerleri, Balbay
ve Şahin, her LTHV kurutma sıcaklığı için 4, 10, 15 ve 20oC'de en
uygun matematiksel modeller olduğu belirlenmiştir. Sonuç olarak, hamsinin ince
tabaka LTHV kurutma karakteristiğini en iyi temsil edecek en uygun modeller
ortaya konmuştur.

References

  • Abid, M., Gibert R., Laguerie, C. (1990). An experimental and theoretical analysis of the mechanisms of heat and mass transfer during the drying of corn grains in a fluidized bed. International Chemical Engineering, 30 ( 4) 632-642. AOAC. Official methods of analysis of AOAC International (16th ed), V II, Arlington, VA, USA: 1995; 938–940. Chairi, H. and Rebordinos, L. (2014). A Rapid Method for Differentiating Four Species of the Engraulidae (Anchovy) Family. J. Agric. Food Chem., 62, 2803−2808. Chin, S.K.; Law, C.L., Supramaniam, C.V.S.; Cheng, P.G. (2008). Mujumdar, A.S. Convective drying of Ganoderma tsugae Murrill and effect of temperature on basidiospores. Drying Technology, 26(12), 1524–1533. Copley, M.T., and Van Arsdel, W.B. (1964). Food dehydration, Vol II-Products and technology. AVI Publications Company, West-port. Cruess, W.V. (1958).Commercial fruit and vegetable products. McGraw-Hill, New York. Dincer I, (1996). Sun drying of sultana grapes, Drying Technology, 14:1827-1838. Dincer I. (1998). Moisture loss from wood products during drying-Part I: Moisture diffusivities and moisture transfer coefficients, Energy Sources. 20:67-75. Dongbang, W. and Matthujak, A. 2013. Anchovy Drying Using Infrared Radiation. American Journal of Applied Sciences, 10 (4): 353-360. Erturk, M.A , Oktay, Z.B , Coskun, C.B , Kilic, G.A.C , Dasdemir, A.D, A. (2015). New approach to calculation of energy demand and amount of emission according to different indoor temperature. International Journal of Global Warming, 7(3), 395-408. Hall, C.W. (1980). Drying and storage of agricultural crops. AVI Publiching Company, Inc., Westport. KEEY, R.B. (1992). Drying of loose and particulate materials. Hemisphere Publishing Corporation, USA. Kilic A., Kucuk H., Midilli A. (2014). Environmental Friendly Food Smoking Technologies, in Progress in Sustainable Energy Technologies Vol II. edted by Dincer et al. (Springer press). ISBN 978-3-319-07976-9. Kilic, A. (2017). Mathematical Modeling of Low Temperature High Velocity (LTHV) Drying in Foods. Journal of Food Process Engineering. In Press. DOI:10.1111/jfpe.12378. Kilic, A. 2009. LowTemperature and High Velocity (LTHV) application in drying: characteristics and effects on the fish quality, Journal of Food Engineering, 91, 173–182. Kilic, A., Midilli, A. and Dincer, I. (2010). A strategicprogram to reduce greenhouse gases emissions produced from food industry, Chapter: 10, pp. 197-210 in Global Warming: Engineering Solutions. Green Energy and Technology Series;Edited by Dincer, et al. (Springer press). Kilic, A., Midilli, A. and I. Dincer, A. (2010). A novel fish-drying technique for better environment, quality and sustainability. Internatıonal Journal of Global Warmıng. 2, 3, pp: 262-278. Kilic, A., Oztan, A. (2013). Effect of Ascorbic Acid Utilization on Cold Smoked Fish Quality (Oncorhynchus mykiss) during Process and Storage. Food Science and Technology Research, 19, 5, pp 823-831. Kosuke, N., Li, Y., Jin, Z., Fukumuro, M., and O, Y., Akaishi A. (2006). Low-temperature desiccant-based food drying system with airflow and temperature control. Journal of Food Engineering, 75, 71–77. Kucuk, H., Midilli, A., Kilic, A. and Dincer, I. (2014). A Review on Thin-Layer Drying-Curve Equations. Drying Technology, 32 (7), 757-773. Midilli, A. (2001). Determination of pistachio drying behavior and conditions in a solar drying system. International J Energy Research, 25, 715-725. Midilli, A., and Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion & Management, 44, 1111-1122. Midilli, A., Kucuk, H. and Yapar, Z., A (2002). New model for single-layer drying. Drying Technology, 20 (7), 1503-1513. Midilli, A., Olgun, H. and Ayhan, T. (1999). Experimental studies on mushroom and pollen drying. nternational Journal of Energy Research, 23 (13), 1143-1152. Midilli, A., Olgun, H. and Rzayev, P. (2000). Drying and conservation conditions of pollen. Journal of the Science of Food and Agriculture, 80 (13), 1973-1980. Moraes, K. De and Pinto, L. A. De A. (2013). Drying Kinetics, Biochemical and Functional Properties of Products in Convective Drying of Anchovy (Engraulis anchoita) Fillets. International Journal of Food Engineering, 9(4): 341–351. Olgun H and Kose S. (1999).Solar drying of rainbow trout, Int J Energy Research, 23:941-948. Van Loey, A.M., Smout, C., Indrawati, Hendrick, M.E. (2005). Kinetic data for biochemical and microbiological processes during thermal processing. In M.A. Rao, S.S.H. Rizvi, and A.K. Datta, (Eds.), Engineering Properties of Foods, CRC Taylor & Francis, 3rd ed., chap 13, pp. 611–643,

LTHV (LOW TEMPERATURE AND HIGH VELOCITY) DRYING CHARACTERISTICS AND MATHEMATICAL MODELING OF ANCHOVY (Engraulis encrasicolus)

Year 2017, Volume: 42 Issue: 6, 654 - 665, 15.11.2017

Abstract

The main target of this study is
experimentally investigating the characteristics of LTHV drying of anchovy (Engraulis encrasicolus). For these
purposes, 100 g of anchovy samples were dried at different temperatures of 4, 10,
15 and 20oC in ranges of 38±5 percent of relative humidity. During
the experiments, mass loss, temperature, drying air velocity and relative
humidity were investigated. The weight of raw Anchovy fillets were decrease
from 100 g to 
47,6 g at 4°C for 25 h,
46,7g at 10°C for 23
h, 
45,3 g at 15°C for 20 h and 44,67 g at 20°C for 13
h.  In this context, Twenty-three common
mathematical models were applied on the observed experimental data of drying. As
result, the most suitable mathematical models were determined for the each LTHV
drying temperature of Anchovy. In this regard, Logarithmic (Asymptotic), Midilli-Kucuk, Demir
et al., Balbay and Şahin
were determined the most suitable mathematical
models for each LTHV drying temperature at 4, 10, 15 and 20oC. Consequently,
the best single layer drying curve equations were selected as the most suitable
models for thin layer LTHV drying of anchovy.

References

  • Abid, M., Gibert R., Laguerie, C. (1990). An experimental and theoretical analysis of the mechanisms of heat and mass transfer during the drying of corn grains in a fluidized bed. International Chemical Engineering, 30 ( 4) 632-642. AOAC. Official methods of analysis of AOAC International (16th ed), V II, Arlington, VA, USA: 1995; 938–940. Chairi, H. and Rebordinos, L. (2014). A Rapid Method for Differentiating Four Species of the Engraulidae (Anchovy) Family. J. Agric. Food Chem., 62, 2803−2808. Chin, S.K.; Law, C.L., Supramaniam, C.V.S.; Cheng, P.G. (2008). Mujumdar, A.S. Convective drying of Ganoderma tsugae Murrill and effect of temperature on basidiospores. Drying Technology, 26(12), 1524–1533. Copley, M.T., and Van Arsdel, W.B. (1964). Food dehydration, Vol II-Products and technology. AVI Publications Company, West-port. Cruess, W.V. (1958).Commercial fruit and vegetable products. McGraw-Hill, New York. Dincer I, (1996). Sun drying of sultana grapes, Drying Technology, 14:1827-1838. Dincer I. (1998). Moisture loss from wood products during drying-Part I: Moisture diffusivities and moisture transfer coefficients, Energy Sources. 20:67-75. Dongbang, W. and Matthujak, A. 2013. Anchovy Drying Using Infrared Radiation. American Journal of Applied Sciences, 10 (4): 353-360. Erturk, M.A , Oktay, Z.B , Coskun, C.B , Kilic, G.A.C , Dasdemir, A.D, A. (2015). New approach to calculation of energy demand and amount of emission according to different indoor temperature. International Journal of Global Warming, 7(3), 395-408. Hall, C.W. (1980). Drying and storage of agricultural crops. AVI Publiching Company, Inc., Westport. KEEY, R.B. (1992). Drying of loose and particulate materials. Hemisphere Publishing Corporation, USA. Kilic A., Kucuk H., Midilli A. (2014). Environmental Friendly Food Smoking Technologies, in Progress in Sustainable Energy Technologies Vol II. edted by Dincer et al. (Springer press). ISBN 978-3-319-07976-9. Kilic, A. (2017). Mathematical Modeling of Low Temperature High Velocity (LTHV) Drying in Foods. Journal of Food Process Engineering. In Press. DOI:10.1111/jfpe.12378. Kilic, A. 2009. LowTemperature and High Velocity (LTHV) application in drying: characteristics and effects on the fish quality, Journal of Food Engineering, 91, 173–182. Kilic, A., Midilli, A. and Dincer, I. (2010). A strategicprogram to reduce greenhouse gases emissions produced from food industry, Chapter: 10, pp. 197-210 in Global Warming: Engineering Solutions. Green Energy and Technology Series;Edited by Dincer, et al. (Springer press). Kilic, A., Midilli, A. and I. Dincer, A. (2010). A novel fish-drying technique for better environment, quality and sustainability. Internatıonal Journal of Global Warmıng. 2, 3, pp: 262-278. Kilic, A., Oztan, A. (2013). Effect of Ascorbic Acid Utilization on Cold Smoked Fish Quality (Oncorhynchus mykiss) during Process and Storage. Food Science and Technology Research, 19, 5, pp 823-831. Kosuke, N., Li, Y., Jin, Z., Fukumuro, M., and O, Y., Akaishi A. (2006). Low-temperature desiccant-based food drying system with airflow and temperature control. Journal of Food Engineering, 75, 71–77. Kucuk, H., Midilli, A., Kilic, A. and Dincer, I. (2014). A Review on Thin-Layer Drying-Curve Equations. Drying Technology, 32 (7), 757-773. Midilli, A. (2001). Determination of pistachio drying behavior and conditions in a solar drying system. International J Energy Research, 25, 715-725. Midilli, A., and Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion & Management, 44, 1111-1122. Midilli, A., Kucuk, H. and Yapar, Z., A (2002). New model for single-layer drying. Drying Technology, 20 (7), 1503-1513. Midilli, A., Olgun, H. and Ayhan, T. (1999). Experimental studies on mushroom and pollen drying. nternational Journal of Energy Research, 23 (13), 1143-1152. Midilli, A., Olgun, H. and Rzayev, P. (2000). Drying and conservation conditions of pollen. Journal of the Science of Food and Agriculture, 80 (13), 1973-1980. Moraes, K. De and Pinto, L. A. De A. (2013). Drying Kinetics, Biochemical and Functional Properties of Products in Convective Drying of Anchovy (Engraulis anchoita) Fillets. International Journal of Food Engineering, 9(4): 341–351. Olgun H and Kose S. (1999).Solar drying of rainbow trout, Int J Energy Research, 23:941-948. Van Loey, A.M., Smout, C., Indrawati, Hendrick, M.E. (2005). Kinetic data for biochemical and microbiological processes during thermal processing. In M.A. Rao, S.S.H. Rizvi, and A.K. Datta, (Eds.), Engineering Properties of Foods, CRC Taylor & Francis, 3rd ed., chap 13, pp. 611–643,
There are 1 citations in total.

Details

Other ID GD17043
Journal Section Articles
Authors

Aydin Kılıc 0000-0002-8952-9909

Publication Date November 15, 2017
Published in Issue Year 2017 Volume: 42 Issue: 6

Cite

APA Kılıc, A. (2017). HAMSİ’NİN LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ (Engraulis encrasicolus). Gıda, 42(6), 654-665.
AMA Kılıc A. HAMSİ’NİN LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ (Engraulis encrasicolus). The Journal of Food. December 2017;42(6):654-665.
Chicago Kılıc, Aydin. “HAMSİ’NİN LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ (Engraulis Encrasicolus)”. Gıda 42, no. 6 (December 2017): 654-65.
EndNote Kılıc A (December 1, 2017) HAMSİ’NİN LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ (Engraulis encrasicolus). Gıda 42 6 654–665.
IEEE A. Kılıc, “HAMSİ’NİN LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ (Engraulis encrasicolus)”, The Journal of Food, vol. 42, no. 6, pp. 654–665, 2017.
ISNAD Kılıc, Aydin. “HAMSİ’NİN LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ (Engraulis Encrasicolus)”. Gıda 42/6 (December 2017), 654-665.
JAMA Kılıc A. HAMSİ’NİN LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ (Engraulis encrasicolus). The Journal of Food. 2017;42:654–665.
MLA Kılıc, Aydin. “HAMSİ’NİN LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ (Engraulis Encrasicolus)”. Gıda, vol. 42, no. 6, 2017, pp. 654-65.
Vancouver Kılıc A. HAMSİ’NİN LTHV (DÜŞÜK SICAKLIK VE YÜKSEK HIZ) KURUTMA KARAKTERİSTİKLERİ VE MATEMATİKSEL MODELLENMESİ (Engraulis encrasicolus). The Journal of Food. 2017;42(6):654-65.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/