BibTex RIS Cite

TARIMA DAYALI SANAYİ ATIKLARININ KATI KÜLTÜR FERMANTASYONU İLE DEĞERLENDİRİLMESİ: SÜRECE ETKİ EDEN FAKTÖRLERE GENEL BAKIŞ

Year 2015, Volume: 40 Issue: 2, 117 - 124, 01.04.2015

Abstract

-

References

  • Bhargav S, Panda BP, Ali M, Javed S. 2008. Solid-state fermentation: an overview. Chem Biochem Eng Q22, 49-70.
  • Couto SR, Sanroman MA. 2006. Application of solid-state fermentation to food industry. J Food Eng76, 291-302.
  • Dhillon GS, Brar SK, Verma M, Tyagi RD. 2011. Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem Eng J54, 83-92.
  • Ucuncu C, Tari C, Demir H, Büyükkileci AO, Ozen B. 2013. Dilute-acid hydrolysis of apple, orange, apricot and peach pomaces as potential candidates for bioethanol production. J Biobased Mater Bioenergy7, 376-389.
  • Camilios-Neto D, Bugay C, Santana-Filho AP, Joslin T, de Souza LM, Sassaki GL, Mitchell DA, Krieger N. 2011. Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Appl Microbiol Biotechnol 89, 1395-1403.
  • Demir H. 2012. Production of pectinase from Aspergillus sojaeby solid-state fermentation. Ph.D. Dissertation, Izmir Institute of Technology, Department of Food Engineering, Izmir, Turkey, 206 p.
  • Brijwani K, Vadlani PV. 2011. Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enz Res doi:10.4061/ 2011/860134.
  • Singhania RR, Soccol CR, Pandey A. 2008. Application of tropical agro-industrial residues as substrate for solid-state fermentation processes. In: Current developments in solid-state fermentation, Pandey A, Larroche C, Soccol CR (eds). Springer, Delhi, pp 412-442.
  • Antoine AA, Jacqueline D, Thonart P. 2010. Xylanase production by Penicillium canescens on soya oil cake in solid-state fermentation. Appl Biochem Biotechnol 160, 50-62.
  • Chaari F, Kamoun A, Bhiri F, Blibech M, Ellouze- Ghorbel R, Ellouz-Chaabouni S. 2012. Statistical optimization for the production of lichenase by a newly isolated Bacillus licheniformis UEB CF in solid state fermentation using pea pomace as a novel solid support. Ind Crops Prod 40, 192-198. 11. Gassara F, Brar SK, Tyagi RD, Verma M, Surampalli RY. 2010. Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem Eng J 49, 388-394.
  • Madeira Jr JV, Macedo JA, Macedo GA. 2011. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. Bioresour Technol 102, 7343-7348.
  • Mazaheri D, Shojaosadati SA, Mousavi SM, Hejazi P, Saharkhiz S. 2012. Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis. Appl Energy 99, 372-378.
  • Rani R, Ghosh S. 2011. Production of phytase under solid-state fermentation using Rhizopus oryzae: novel strain improvement approach and studies on purification and characterization. Bioresour Technol 102, 10641-10649.
  • Sugumaran KR, Gowthami E, Swathi B, Elakki- ya S, Srivastava SN, Ravikumar R, Gowdhaman D, Ponnusami V. 2013. Production of pullulan by Aureobasidium pullulansfrom asian palm kernel: a novel substrate. Carbohydr Polym 92, 697-703. 16. Freitas P, Martin N, Silva D, Silva R, Gomes E. 2006. Production and partial characterization of polygalacturonases produced by thermophilic Monascussp. N8 and by thermotolerant Aspergillus sp. N12 on solid-state fermentation. Braz J Microbiol37, 302-306.
  • Balkan B, Ertan F. 2010. The production of a new fungal alpha-amylase degraded the raw starch by means of solid-state fermentation. Prep Biochem Biotechnol40, 213-228.
  • Liu CQ, Chen QH, Tang B, Ruan H, He GQ. 2007. Response surface methodology for optimizing the fermentation medium of alpha-galactosidase in solid-state fermentation. Lett Appl Microbiol 45, 206-212.
  • Banos JG, Tomasini A, Szakács G, Barrios- González J. 2009. High lovastatin production by Aspergillus terreusin solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng108(2), 105-110.
  • Gamarra NN, Villena GK, Gutiérrez-Correa M. 2010. Cellulase Production by Aspergillus niger in biofilm, solid-state, and submerged fermentations. Appl Microbiol Biotechnol87, 545-551.
  • Hongzhang C, Hui W, Aijun Z, Zuohu L. 2006. Alkaline protease production by solid state fermentation on polyurethane foam. Chem Biochem Eng Q20(1), 93-97.
  • Javed S, Asgher M, Sheikh MA, Nawaz H, Jamil A. 2011. Enhanced citric acid production by Aspergillus nigerEB-3 mutant using an inert solid support in molasses medium. Afr J Biotechnol 10(55), 11784-11791.
  • Penha MP, Leao MHMR, Leite SGF. 2012. Sugarcane bagasse as support for the production of coconut aroma by solid state fermentation (SSF). Bioresour 7(2), 2366-2375.
  • Renovato J, Gutiérrez-Sánchez G, Rodr guez- Durán LV, Bergman C, Rodr guez R, Aguilar CN. 2011. Differential properties of Aspergillus niger tannase produced under solid-state and submerged fermentations. Appl Biochem Biotechnol 165, 382-395.
  • Xu X, Yu Y, Shi Y. 2011. Evaluation of inert and organic carriers for Verticillium lecanii spore production in solid-state fermentation. Biotechnol Lett33, 763-768.
  • Kumar YS, Varakumar S, Reddy OVS. 2010. Production and optimization of polygalacturonase from mango (Mangifera indica L.) peel using Fusarium moniliformein solid state fermentation. World J Microbiol Biotechnol26, 1973-1980.
  • Pal A, Khanum F. 2010. Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state fermentation. Bioresour Technol 101, 7563-7569.
  • Rodriguez-Leon JA, Soccol CR, Pandey A, Roddguez DE. 2008. Factors affecting solid-state fermentation. In: Current developments in solid- state fermentation, Pandey A, Larroche C, Soccol CR (eds). Springer, Delhi, pp 230-252.
  • Raghavarao K, Ranganathan T, Karanth N. 2003. Some engineering aspects of solid-state fermentation. Biochem Eng J 13, 127-135.
  • Bellon-Maurel V, Orlaiac O, Christen P. 2003. Sensors and measurements in solid state fermentation: a review. Process Biochem 38, 881-896.
  • Patil S, Dayanand A. 2006. Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. Bioresour Technol 97, 2340-2344.
  • Alcantara SR, Almeida FAC, Silva FLH. 2010. Pectinases production by solid state fermentation with cashew apple bagasse: water activity and influence of nitrogen source. Second International Congress on Industrial Biotechnology, 11-14 April, Padua, Italy, http://www.aidic.it/ibic2010/webpapers/ 21Alcantara.pdf (accessed 17 June 2014).
  • Pandey A, Soccol CR, Mitchell D. 2000. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35, 1153-1169.
  • Roses RP, Guerra NP. 2009. Optimization of amylase production by Aspergillus niger in solid-state fermentation using sugarcane bagasse as solid support material. World J Microbiol Biotechnol 25, 1929-1939.
  • Krishna C. 2005. Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25, 1-30. 36. Lee CK, Darah I, Ibrahim CO. 2011. Production and optimization of cellulase enzyme using As- pergillus nigerUSM AI 1 and comparison with Trichoderma reeseivia solid state fermentation system. Biotechnol Res Int doi: 10.4061/2011/ 658493.
  • Gasiorek E. 2008. Effect of operating conditions on biomass growth during citric acid production by solid-state fermentation. Chem Papers 62, 141-146. 38. Mitchell DA, Berovic M, Krieger N. 2006. Introduction to solid-state fermentation bioreactors. In: Solid-state fermentation bioreactors: fundamentals of design and operation, Mitchell DA, Krieger N, Berovi_ M (eds). Springer-Verlag, Berlin, Heidelberg, pp 33-45.
  • Ramachandran S, Larocche C, Pandey A. 2008. Production of spores, In: Current developments in solid-state fermentation, Pandey A, Larroche C, Soccol CR (eds). Springer, Delhi, p 232.
  • Chutmanop J, Chuichulcherm S, Chisti Y, Srinophakun P. 2008. Protease production by Aspergillus oryzaein solid-state fermentation using agroindustrial substrates. J Chem Technol Biotechnol83, 1012-1018.
  • Costa JAV, Colla E, Magagnin G, Santos LO, Vendruscolo M, Bertolin TE. 2007. Simultaneous amyloglucosidase and exo-polygalacturonase production by Aspergillus niger using solid-state fermentation. Braz Arch Biol Technol 50, 759-766.

UTILIZATION OF AGRO-INDUSTRIAL RESIDUES BY SOLID-STATE FERMENTATION: OVERVIEW OF IMPORTANT PROCESSING FACTORS

Year 2015, Volume: 40 Issue: 2, 117 - 124, 01.04.2015

Abstract

Solid-state fermentation (SSF) is a very ancient technology employed by the eastern countries, hasattracted the attention of western countries in recent decades. Due to the engineering and environmentalaspects, solid-state fermentation has shown much promise in the development of several products andbioprocesses; however it is still in competence with the submerged fermentation (SmF) technique. Thisreview covers the definition and brief history of the SSF technique, advantages and limitations of theuse of agro-industrial residues followed by the list of recently used inert supports. A significant part ofthis review concerns some of the important factors affecting the SSF processes such as; inoculum size,incubation time and temperature, moisture content and water activity, initial pH, particle size, agitationand inoculum type. The effect of each factor on SSF processes is not only detailed theoretically but alsodiscussed via specific studies from the literature. This article will enlighten potential researchers dealingwith applied SSF processes as well as the manufacturers concerning in adding value to the agro-industrialresidues

References

  • Bhargav S, Panda BP, Ali M, Javed S. 2008. Solid-state fermentation: an overview. Chem Biochem Eng Q22, 49-70.
  • Couto SR, Sanroman MA. 2006. Application of solid-state fermentation to food industry. J Food Eng76, 291-302.
  • Dhillon GS, Brar SK, Verma M, Tyagi RD. 2011. Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem Eng J54, 83-92.
  • Ucuncu C, Tari C, Demir H, Büyükkileci AO, Ozen B. 2013. Dilute-acid hydrolysis of apple, orange, apricot and peach pomaces as potential candidates for bioethanol production. J Biobased Mater Bioenergy7, 376-389.
  • Camilios-Neto D, Bugay C, Santana-Filho AP, Joslin T, de Souza LM, Sassaki GL, Mitchell DA, Krieger N. 2011. Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Appl Microbiol Biotechnol 89, 1395-1403.
  • Demir H. 2012. Production of pectinase from Aspergillus sojaeby solid-state fermentation. Ph.D. Dissertation, Izmir Institute of Technology, Department of Food Engineering, Izmir, Turkey, 206 p.
  • Brijwani K, Vadlani PV. 2011. Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enz Res doi:10.4061/ 2011/860134.
  • Singhania RR, Soccol CR, Pandey A. 2008. Application of tropical agro-industrial residues as substrate for solid-state fermentation processes. In: Current developments in solid-state fermentation, Pandey A, Larroche C, Soccol CR (eds). Springer, Delhi, pp 412-442.
  • Antoine AA, Jacqueline D, Thonart P. 2010. Xylanase production by Penicillium canescens on soya oil cake in solid-state fermentation. Appl Biochem Biotechnol 160, 50-62.
  • Chaari F, Kamoun A, Bhiri F, Blibech M, Ellouze- Ghorbel R, Ellouz-Chaabouni S. 2012. Statistical optimization for the production of lichenase by a newly isolated Bacillus licheniformis UEB CF in solid state fermentation using pea pomace as a novel solid support. Ind Crops Prod 40, 192-198. 11. Gassara F, Brar SK, Tyagi RD, Verma M, Surampalli RY. 2010. Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem Eng J 49, 388-394.
  • Madeira Jr JV, Macedo JA, Macedo GA. 2011. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. Bioresour Technol 102, 7343-7348.
  • Mazaheri D, Shojaosadati SA, Mousavi SM, Hejazi P, Saharkhiz S. 2012. Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis. Appl Energy 99, 372-378.
  • Rani R, Ghosh S. 2011. Production of phytase under solid-state fermentation using Rhizopus oryzae: novel strain improvement approach and studies on purification and characterization. Bioresour Technol 102, 10641-10649.
  • Sugumaran KR, Gowthami E, Swathi B, Elakki- ya S, Srivastava SN, Ravikumar R, Gowdhaman D, Ponnusami V. 2013. Production of pullulan by Aureobasidium pullulansfrom asian palm kernel: a novel substrate. Carbohydr Polym 92, 697-703. 16. Freitas P, Martin N, Silva D, Silva R, Gomes E. 2006. Production and partial characterization of polygalacturonases produced by thermophilic Monascussp. N8 and by thermotolerant Aspergillus sp. N12 on solid-state fermentation. Braz J Microbiol37, 302-306.
  • Balkan B, Ertan F. 2010. The production of a new fungal alpha-amylase degraded the raw starch by means of solid-state fermentation. Prep Biochem Biotechnol40, 213-228.
  • Liu CQ, Chen QH, Tang B, Ruan H, He GQ. 2007. Response surface methodology for optimizing the fermentation medium of alpha-galactosidase in solid-state fermentation. Lett Appl Microbiol 45, 206-212.
  • Banos JG, Tomasini A, Szakács G, Barrios- González J. 2009. High lovastatin production by Aspergillus terreusin solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng108(2), 105-110.
  • Gamarra NN, Villena GK, Gutiérrez-Correa M. 2010. Cellulase Production by Aspergillus niger in biofilm, solid-state, and submerged fermentations. Appl Microbiol Biotechnol87, 545-551.
  • Hongzhang C, Hui W, Aijun Z, Zuohu L. 2006. Alkaline protease production by solid state fermentation on polyurethane foam. Chem Biochem Eng Q20(1), 93-97.
  • Javed S, Asgher M, Sheikh MA, Nawaz H, Jamil A. 2011. Enhanced citric acid production by Aspergillus nigerEB-3 mutant using an inert solid support in molasses medium. Afr J Biotechnol 10(55), 11784-11791.
  • Penha MP, Leao MHMR, Leite SGF. 2012. Sugarcane bagasse as support for the production of coconut aroma by solid state fermentation (SSF). Bioresour 7(2), 2366-2375.
  • Renovato J, Gutiérrez-Sánchez G, Rodr guez- Durán LV, Bergman C, Rodr guez R, Aguilar CN. 2011. Differential properties of Aspergillus niger tannase produced under solid-state and submerged fermentations. Appl Biochem Biotechnol 165, 382-395.
  • Xu X, Yu Y, Shi Y. 2011. Evaluation of inert and organic carriers for Verticillium lecanii spore production in solid-state fermentation. Biotechnol Lett33, 763-768.
  • Kumar YS, Varakumar S, Reddy OVS. 2010. Production and optimization of polygalacturonase from mango (Mangifera indica L.) peel using Fusarium moniliformein solid state fermentation. World J Microbiol Biotechnol26, 1973-1980.
  • Pal A, Khanum F. 2010. Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state fermentation. Bioresour Technol 101, 7563-7569.
  • Rodriguez-Leon JA, Soccol CR, Pandey A, Roddguez DE. 2008. Factors affecting solid-state fermentation. In: Current developments in solid- state fermentation, Pandey A, Larroche C, Soccol CR (eds). Springer, Delhi, pp 230-252.
  • Raghavarao K, Ranganathan T, Karanth N. 2003. Some engineering aspects of solid-state fermentation. Biochem Eng J 13, 127-135.
  • Bellon-Maurel V, Orlaiac O, Christen P. 2003. Sensors and measurements in solid state fermentation: a review. Process Biochem 38, 881-896.
  • Patil S, Dayanand A. 2006. Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. Bioresour Technol 97, 2340-2344.
  • Alcantara SR, Almeida FAC, Silva FLH. 2010. Pectinases production by solid state fermentation with cashew apple bagasse: water activity and influence of nitrogen source. Second International Congress on Industrial Biotechnology, 11-14 April, Padua, Italy, http://www.aidic.it/ibic2010/webpapers/ 21Alcantara.pdf (accessed 17 June 2014).
  • Pandey A, Soccol CR, Mitchell D. 2000. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35, 1153-1169.
  • Roses RP, Guerra NP. 2009. Optimization of amylase production by Aspergillus niger in solid-state fermentation using sugarcane bagasse as solid support material. World J Microbiol Biotechnol 25, 1929-1939.
  • Krishna C. 2005. Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25, 1-30. 36. Lee CK, Darah I, Ibrahim CO. 2011. Production and optimization of cellulase enzyme using As- pergillus nigerUSM AI 1 and comparison with Trichoderma reeseivia solid state fermentation system. Biotechnol Res Int doi: 10.4061/2011/ 658493.
  • Gasiorek E. 2008. Effect of operating conditions on biomass growth during citric acid production by solid-state fermentation. Chem Papers 62, 141-146. 38. Mitchell DA, Berovic M, Krieger N. 2006. Introduction to solid-state fermentation bioreactors. In: Solid-state fermentation bioreactors: fundamentals of design and operation, Mitchell DA, Krieger N, Berovi_ M (eds). Springer-Verlag, Berlin, Heidelberg, pp 33-45.
  • Ramachandran S, Larocche C, Pandey A. 2008. Production of spores, In: Current developments in solid-state fermentation, Pandey A, Larroche C, Soccol CR (eds). Springer, Delhi, p 232.
  • Chutmanop J, Chuichulcherm S, Chisti Y, Srinophakun P. 2008. Protease production by Aspergillus oryzaein solid-state fermentation using agroindustrial substrates. J Chem Technol Biotechnol83, 1012-1018.
  • Costa JAV, Colla E, Magagnin G, Santos LO, Vendruscolo M, Bertolin TE. 2007. Simultaneous amyloglucosidase and exo-polygalacturonase production by Aspergillus niger using solid-state fermentation. Braz Arch Biol Technol 50, 759-766.
There are 37 citations in total.

Details

Other ID JA67DH32GU
Journal Section Research Article
Authors

Hande Demir This is me

Canan Tarı

Publication Date April 1, 2015
Published in Issue Year 2015 Volume: 40 Issue: 2

Cite

APA Demir, H., & Tarı, C. (2015). TARIMA DAYALI SANAYİ ATIKLARININ KATI KÜLTÜR FERMANTASYONU İLE DEĞERLENDİRİLMESİ: SÜRECE ETKİ EDEN FAKTÖRLERE GENEL BAKIŞ. Gıda, 40(2), 117-124.
AMA Demir H, Tarı C. TARIMA DAYALI SANAYİ ATIKLARININ KATI KÜLTÜR FERMANTASYONU İLE DEĞERLENDİRİLMESİ: SÜRECE ETKİ EDEN FAKTÖRLERE GENEL BAKIŞ. The Journal of Food. April 2015;40(2):117-124.
Chicago Demir, Hande, and Canan Tarı. “TARIMA DAYALI SANAYİ ATIKLARININ KATI KÜLTÜR FERMANTASYONU İLE DEĞERLENDİRİLMESİ: SÜRECE ETKİ EDEN FAKTÖRLERE GENEL BAKIŞ”. Gıda 40, no. 2 (April 2015): 117-24.
EndNote Demir H, Tarı C (April 1, 2015) TARIMA DAYALI SANAYİ ATIKLARININ KATI KÜLTÜR FERMANTASYONU İLE DEĞERLENDİRİLMESİ: SÜRECE ETKİ EDEN FAKTÖRLERE GENEL BAKIŞ. Gıda 40 2 117–124.
IEEE H. Demir and C. Tarı, “TARIMA DAYALI SANAYİ ATIKLARININ KATI KÜLTÜR FERMANTASYONU İLE DEĞERLENDİRİLMESİ: SÜRECE ETKİ EDEN FAKTÖRLERE GENEL BAKIŞ”, The Journal of Food, vol. 40, no. 2, pp. 117–124, 2015.
ISNAD Demir, Hande - Tarı, Canan. “TARIMA DAYALI SANAYİ ATIKLARININ KATI KÜLTÜR FERMANTASYONU İLE DEĞERLENDİRİLMESİ: SÜRECE ETKİ EDEN FAKTÖRLERE GENEL BAKIŞ”. Gıda 40/2 (April 2015), 117-124.
JAMA Demir H, Tarı C. TARIMA DAYALI SANAYİ ATIKLARININ KATI KÜLTÜR FERMANTASYONU İLE DEĞERLENDİRİLMESİ: SÜRECE ETKİ EDEN FAKTÖRLERE GENEL BAKIŞ. The Journal of Food. 2015;40:117–124.
MLA Demir, Hande and Canan Tarı. “TARIMA DAYALI SANAYİ ATIKLARININ KATI KÜLTÜR FERMANTASYONU İLE DEĞERLENDİRİLMESİ: SÜRECE ETKİ EDEN FAKTÖRLERE GENEL BAKIŞ”. Gıda, vol. 40, no. 2, 2015, pp. 117-24.
Vancouver Demir H, Tarı C. TARIMA DAYALI SANAYİ ATIKLARININ KATI KÜLTÜR FERMANTASYONU İLE DEĞERLENDİRİLMESİ: SÜRECE ETKİ EDEN FAKTÖRLERE GENEL BAKIŞ. The Journal of Food. 2015;40(2):117-24.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/