Research Article
BibTex RIS Cite

VURGULU ELEKTRİK ALAN ÖN İŞLEMİ İLE DEREOTUNDAN FENOLİKLERİN EKSTRAKSİYONU: DONDURUP ÇÖZÜNDÜRME, ISIL İŞLEM, MİKRODALGA ÖN İŞLEMLERİ VE SOLVENT EKSTRAKSİYONU İLE KARŞILAŞTIRILMASI

Year 2021, Volume: 46 Issue: 6, 1343 - 1357, 15.10.2021
https://doi.org/10.15237/gida.GD21092

Abstract

Bu çalışmada 3-4 kV/cm aralığındaki vurgulu elektrik alan uygulamasının dereotu dokusunu bozma düzeyleri elektriksel iletkenlik bazlı bir parçalanma indeksi ile tahmin edilip, en yüksek bozunumu sağlayan şartlarda fenoliklerin ekstrakte edilebilirliği katı-sıvı ekstraksiyon sisteminde incelenmiştir. Ekstraksiyon sonunda, toplam fenolik içerik (TFİ), antioksidan kapasite (AK) ve antiradikal aktivite (AA) değerleri ölçülüp, diğer ön işlemlerinki (dondurma-çözme, mikrodalga, solvent işlemi ve ısıl işlem) ile karşılaştırılmıştır. En yüksek indeks (61.43 ± 5.17) 4 kV/cm’de 99x10µs lik uygulama şartlarında gözlenmiş olup, buda dereotunun parçalanma direncinin çalışmada kıyaslanan parankim dokularından ve yenilebilir yapraklardan yüksek olduğuna işaret etmiştir. Vurgulu elektrik alan destekli ekstraksiyonun TFİ ve AK değerleri dondurup-çözündürme ön işleminden yaklaşık %35 oranında düşük bulunurken, ısıl işlem içeren (mikrodalga, solvent işlemi ve ısıl işlem) yöntemlerden ortalamada %68 oranında düşük tespit edilmiştir. Vurgulu elektrik alan önişleminde ekstraksiyon veriminin, doku parçalanma düzeyinden ve fenoliklerin polifenol oksidaz (PPO) tarafından bozulmasından etkilendiği şeklinde yorumlanmıştır.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TUBİTAK)

Project Number

108 O 641

Thanks

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBİTAK, tarafından 108 O 641 proje kodu ile desteklenmiştir.

References

  • Ade-Omowaye, B. I. O., Angersbach, A., Eshtiaghi, N. M., Knorr, D. (2001). Impact of high intensity electric field pulses on cell permeabilisation and as pre-processing step in coconut processing. Innov Food Sci Emerg Technol, 1(3), 203–209. https://doi.org/10.1016/S1466-8564(00)00014-X
  • Angersbach, A., Heinz, V., Knorr, D. (2002). Evaluation of Process-Induced Dimensional Changes in the Membrane Structure of Biological Cells Using Impedance Measurement. Biotechnol Prog, 18(3), 597–603. https://doi.org/10.1021/bp020047j
  • Barba, F. J., Jäger, H., Meneses, N., Esteve, M. J., Frígola, A., Knorr, D. (2012). Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innov Food Sci Emerg Technol, 14, 18–24. https://doi.org/10.1016/j.ifset.2011.12.004
  • Barsotti, L., Cheftel, J. C. (1999). Food processing by pulsed electric fields. II. Biological aspects. Food Rev Int, 15(2), 181–213. https://doi.org/10.1080/87559129909541186
  • Barsotti, L., Merle, P., Cheftel, J. C. (1999). Food processing by pulsed electric fields. I. Physical aspects. Food Rev Int, 15(2), 163–180. https://doi.org/10.1080/87559129909541185
  • Bazhal, M., Nikolai, L., Vorobiev, E., (2003). Optimisation of Pulsed Electric Field Strength for Electroplasmolysis of Vegetable Tissues. Biosyst Eng, 86(3), 339-345. https://doi.org/10.1016/S1537-5110(03)00139-9
  • Chipurura, B., Muchuweti, M., Manditseraa, F. (2010). Effects of thermal treatment on the phenolic content and Antioxidant activity of some vegetables. Asian J Clin Nutr, 2(3), 93–100. https://doi.org/10.3923/ajcn.2010.93.100
  • Chumyam, A., Whangchai, K., Jungklang, J., Faiyue, B. (2013). Effects of heat treatments on antioxidant capacity and total phenolic content of four cultivars of purple skin eggplants. ScienceAsia, 39(3), 246–251. https://doi.org /10.2306/scienceasia1513-1874.2013.39.246
  • Xu, C., Wang, B., Pu, Y., Tao, J., Zhang, T., (2017). Advances in extraction and analysis of phenolic compounds from plant materials. Chin J Nat Med, 15(10), 721–731. https://doi.org/10.1016/S1875-5364(17)30103-6
  • Dai, J., Mumper, R. J. (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313.
  • Dhiman, C., Kumar, N., Kothiyal, P. (2017). Pharmacological actions of Anethum graveolens (Dill). J Phar Res, 11(5), 511–516.
  • Eshtiaghi, M. N., Knorr, D. (2002). High electric field pulse pretreatment: Potential for sugar beet processing. J Food Eng, 52(3), 265–272. https://doi.org/10.1016/S0260-8774(01)00114-5
  • Fanasca, S., Rouphael, Y., Venneria, E., Azzini, E., Durazzo, A., Maiani, G. (2009). Antioxidant properties of raw and cooked spears of green asparagus cultivars. Int J Food Sci Technol, 44, 1017–1023. https://doi.org/10.1111/j.1365-2621.2008.01871.x
  • Fincan, M. (2015). Extractability of phenolics from spearmint treated with pulsed electric field. J Food Eng, 162, 31–37. https://doi.org/10.1016/j.jfoodeng.2015.04.004
  • Gachovska, T., Cassada, D., Subbiah, J., Hanna, M., Thippareddi, H., Snow, D. (2010). Enhanced Anthocyanin Extraction from Red Cabbage Using Pulsed Electric Field Processing, J Food Sci, 75(6), 323-329. https://doi.org/10.1111/j.1750-3841.2010.01699.x.
  • Niya, M. H., Aryai, P., Fatahi, E. (2016). The effect of extraction methods on phenolic and tocophorol content and antioxidant properties of dill extracts (Anethum Graveolens). Iranian J Food Sci Technol, 13(57), 109–119.
  • Isbilir, S. S., Sagiroglu, A. (2011). Antioxidant Poteniıal Of Different Dill (Anethum Graveolens L.) Leaf Extracts. Int J Food Prop, 14(4), 894–902. https://doi.org/10.1080/10942910903474401
  • Jana, S., Shekhawat, G. S. (2010). Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn Rev, 4(8), 179–184. https://doi.org/10.4103/0973-7847.70915
  • Kaufmann, B., Christen, P. (2002). Recent Extraction Techniques for Natural Products : Microwave-assisted Extraction and Pressurised Solvent Extraction. Phytochem Anal, 13(2), 105–113. https://doi.org/10.1002/pca.631
  • Kunyanga, C. N., Imungi, J. K., Okoth, M. W., Biesalski, H. K., Vadivel, V. (2012). Total phenolic content , antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT- Food Sci Technol, 45(2), 269–276. https://doi.org/10.1016/j.lwt.2011.08.006
  • Liu, Z., Esveld, E., Vincken, J., Bruins, M. E. (2019). Pulsed Electric Field as an Alternative Pre-treatment for Drying to Enhance Polyphenol Extraction from Fresh Tea Leaves, Food Bioproc Technol, 12, 183-192. https://doi.org/10.1007/s11947-018-2199-x
  • Maghsoudlou, Y., Ghajari, M. A., Tavasoli, S. (2019). Effects of heat treatment on the phenolic compounds and antioxidant capacity of quince fruit and its tisane’s sensory properties. J Food Sci Technol, 56(5), 2365–2372. https://doi.org/10.1007/s13197-019-03644-6
  • Nguyen, V. T., Nguyen, Q., An, T. N. T., Van, N., T., Anh, N. H. T. (2020). Evaluation of polyphenol content and antioxidant activities of Dill leaves extract Anethum graveolens L., IOP Conf Ser: Mater Sci Eng, 991, 012032. https://doi.org/10.1088/1757-899X/991/1/012032
  • Pan, X., Niu, G., Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process, 42(2), 129–133. https://doi.org/10.1016/S0255-2701(02)00037-5
  • Pandey, M. M., Vijayakumar, M., Rastogi, S., Rawat, A. K. S. (2013). Phenolic Content and Antioxidant Properties of Selected Indian Spices of Apiaceae Phenolic Content and Antioxidant Properties of Selected Indian Spices of Apiaceae. J Herbs Spices Med Plants, 18(3), 246–256. https://doi.org/10.1080/10496475.2012.680548
  • Paven, C. S. J., Radu, D., Alexa, E., Pintilie, S., Rivis, A. (2018) Anethum graveolens - an important source of antioxidant compounds for food industry. 18th International Multidisciplinary Scientific GeoConferance, 02-08 July 2018, Sofia, Bulgaria, pp.11-18. https://doi.org/10.5593/sgem2018/6.2/S25.002
  • Pekyardımcı, Ş. (1992). Polifenol Oksidaz Enzimi ve Esmerleşme Reaksiyonlarının Gıda Endüstrisi Uygulamaları. Gıda, 17(3), 181–186. https://dergipark.org.tr/tr/pub/gida/issue/6953/92734
  • Prieto, P., Pineda, M., Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E, Anal Biochem, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019
  • Radziejewska-Kubzdela, E., Szwengiel, A., Ratajkiewicz, H., Nowak, K. (2020). Effect of ultrasound, heating and enzymatic pre-treatment on bioactive compounds in juice from Berberis amurensis Rupr. Ultrason Sonochem, 63, 104971. https://doi.org/10.1016/j.ultsonch.2020.104971
  • Romero, J. F., Díaz-moreno, C., Bernal-Roa, L. J. (2014). Influencia de Tratamientos Térmicos sobre la Capacidad Antioxidante de Espinaca (Spinacea oleracea L.). Acta Hortic, 1016, 109–112. https://doi.org/10.17660/ActaHortic.2014.1016.13
  • Roy, M. K., Takenaka, M., Isobe, S., Tsushida, T. (2007). Antioxidant potential, anti-proliferative activities, and phenolic content in water-soluble fractions of some commonly consumed vegetables: Effects of thermal treatment. Food Chem, 103(1), 106–114. https://doi.org/10.1016/j.foodchem.2006.08.002
  • Sánchez‐Moreno, C., Larrauri, J. A., Saura-calixto, F. (1998). A Procedure to Measure the Antiradical Efficiency of Polyphenols. J Sci Food Agric, 76, 270–276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
  • Saulis, G. (2010). Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. Food Eng Rev, 2(2), 52–73. https://doi.org/10.1007/s12393-010-9023-3
  • Shyu, Y., Lin, J., Chang, Y., Chiang, C. Yang, D. (2009). Evaluation of antioxidant ability of ethanolic extract from dill (Anethum graveolens L.) flower. Food Chem, 115(2), 515–521. https://doi.org/10.1016/j.foodchem.2008.12.039
  • Carbonell-Capella, J. M., Brnčić, S. R., Žlabur, J. Š., Barba, F. J., Grimi, N., Koubaa, M., Brnčić, M., Vorobiev, E. (2017). Electrotechnologies, microwaves, and ultrasounds combined with binary mixtures of ethanol and water to extract steviol glycosides and antioxidant compounds from Stevia rebaudiana leaves, J Food Process Preserv, 41(5), 1–9. https://doi.org/10.1111/jfpp.13179
  • Soliva-Fortuny, R., Balasa, A., Knorr, D., Martín-Belloso, O. (2009). Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci Technol, 20(11-12), 544–556. https://doi.org/10.1016/j.tifs.2009.07.003
  • Świeca, M., Gawlik-Dziki, U. (2008). Influence of thermal processing on phenolics compounds level and antiradical activity of dill (Anethum graveolens L.). Herba Pol, 54(3), 59–69.
  • Vallverdú-Queralt, A., Regueiro, J., Alvarenga, J. F. R., Martínez-Huélamo, M., Leal, L. N., Lamuela-Raventós, R. M. L. (2015). Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: caraway, turmeric, dill, marjoram and nutmeg. J Food Sci Technol, 35(1), 189–195. https://doi.org/10.1590/1678-457X.6580
  • Vallverdu-Queralt, A., Oms-Oliu, G., Odriozola-Serrano, I., Lamuela-Raventos, R. M., Martín-Belloso, O., Elez-Martínez, P. (2012). Effects of Pulsed Electric Fields on the Bioactive Compound Content, J Agric Food Chem, 60(12), 3126-3134. https://doi.org/10.1021/jf205216m
  • Velioglu, Y. S., Mazza, G., Gao, L., Oomah, B. D. (1998). Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J Agric Food Chem, 46(10), 4113–4117. https://doi.org/10.1021/jf9801973
  • Wilson, L. (2016). Spices and Flavoring Crops: Fruits and Seeds, Encyclopedia of Food and Health. In: Encyclopedia of Food and Health (1st ed.), Caballero, B., Finglas, P., Toldrá, F., (Eds.), Academic Press. pp.73-83
  • Zhang, M. I. N., Willison, J. H. M. (1992). Electrical impedance analysis in plant tissues: The effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can J Plant Sci, 72(2), 545–553. https://doi.org/10.4141/cjps92-068

EXTRACTION OF PHENOLICS FROM DILL LEAF WITH PULSED ELECTRIC FIELD PRETREATMENT: COMPARISON WITH FREEZE THAW, HEAT TREATMENT, MICROWAVE PRETREATMENTS AND SOLVENT EXTRACTION

Year 2021, Volume: 46 Issue: 6, 1343 - 1357, 15.10.2021
https://doi.org/10.15237/gida.GD21092

Abstract

In this study, disintegration of dill leaf in response to pulsed electric field pretreatment of 3-4 kV/cm was estimated using an electrical conductivity based-index, and extractability of phenolics at the highest index was studied in a solid-liquid extraction. Total phenolic content (TPC), antioxidant capacity (AC), and antiradical activity (AA) of the extraction were compared with other pretreatments (freeze-thaw, microwave, heat and solvent extraction). The highest index (61.43 ± 5.17) was obtained at 99x10µs of 4 kV/cm, implying a higher disintegration resistance than the parenchyma tissues and edible leaves compared in the study. TPC and AC of the extraction were found around 35 % less than those of the freeze-thaw while about 68 % lower than the microwave, heat treatment and solvent extraction. The yield of pulsed electric field extraction has been interpreted as affected by the degree of disintegration and degradation of phenolics by polyphenol oxidase (PPO).

Project Number

108 O 641

References

  • Ade-Omowaye, B. I. O., Angersbach, A., Eshtiaghi, N. M., Knorr, D. (2001). Impact of high intensity electric field pulses on cell permeabilisation and as pre-processing step in coconut processing. Innov Food Sci Emerg Technol, 1(3), 203–209. https://doi.org/10.1016/S1466-8564(00)00014-X
  • Angersbach, A., Heinz, V., Knorr, D. (2002). Evaluation of Process-Induced Dimensional Changes in the Membrane Structure of Biological Cells Using Impedance Measurement. Biotechnol Prog, 18(3), 597–603. https://doi.org/10.1021/bp020047j
  • Barba, F. J., Jäger, H., Meneses, N., Esteve, M. J., Frígola, A., Knorr, D. (2012). Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innov Food Sci Emerg Technol, 14, 18–24. https://doi.org/10.1016/j.ifset.2011.12.004
  • Barsotti, L., Cheftel, J. C. (1999). Food processing by pulsed electric fields. II. Biological aspects. Food Rev Int, 15(2), 181–213. https://doi.org/10.1080/87559129909541186
  • Barsotti, L., Merle, P., Cheftel, J. C. (1999). Food processing by pulsed electric fields. I. Physical aspects. Food Rev Int, 15(2), 163–180. https://doi.org/10.1080/87559129909541185
  • Bazhal, M., Nikolai, L., Vorobiev, E., (2003). Optimisation of Pulsed Electric Field Strength for Electroplasmolysis of Vegetable Tissues. Biosyst Eng, 86(3), 339-345. https://doi.org/10.1016/S1537-5110(03)00139-9
  • Chipurura, B., Muchuweti, M., Manditseraa, F. (2010). Effects of thermal treatment on the phenolic content and Antioxidant activity of some vegetables. Asian J Clin Nutr, 2(3), 93–100. https://doi.org/10.3923/ajcn.2010.93.100
  • Chumyam, A., Whangchai, K., Jungklang, J., Faiyue, B. (2013). Effects of heat treatments on antioxidant capacity and total phenolic content of four cultivars of purple skin eggplants. ScienceAsia, 39(3), 246–251. https://doi.org /10.2306/scienceasia1513-1874.2013.39.246
  • Xu, C., Wang, B., Pu, Y., Tao, J., Zhang, T., (2017). Advances in extraction and analysis of phenolic compounds from plant materials. Chin J Nat Med, 15(10), 721–731. https://doi.org/10.1016/S1875-5364(17)30103-6
  • Dai, J., Mumper, R. J. (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10), 7313–7352. https://doi.org/10.3390/molecules15107313.
  • Dhiman, C., Kumar, N., Kothiyal, P. (2017). Pharmacological actions of Anethum graveolens (Dill). J Phar Res, 11(5), 511–516.
  • Eshtiaghi, M. N., Knorr, D. (2002). High electric field pulse pretreatment: Potential for sugar beet processing. J Food Eng, 52(3), 265–272. https://doi.org/10.1016/S0260-8774(01)00114-5
  • Fanasca, S., Rouphael, Y., Venneria, E., Azzini, E., Durazzo, A., Maiani, G. (2009). Antioxidant properties of raw and cooked spears of green asparagus cultivars. Int J Food Sci Technol, 44, 1017–1023. https://doi.org/10.1111/j.1365-2621.2008.01871.x
  • Fincan, M. (2015). Extractability of phenolics from spearmint treated with pulsed electric field. J Food Eng, 162, 31–37. https://doi.org/10.1016/j.jfoodeng.2015.04.004
  • Gachovska, T., Cassada, D., Subbiah, J., Hanna, M., Thippareddi, H., Snow, D. (2010). Enhanced Anthocyanin Extraction from Red Cabbage Using Pulsed Electric Field Processing, J Food Sci, 75(6), 323-329. https://doi.org/10.1111/j.1750-3841.2010.01699.x.
  • Niya, M. H., Aryai, P., Fatahi, E. (2016). The effect of extraction methods on phenolic and tocophorol content and antioxidant properties of dill extracts (Anethum Graveolens). Iranian J Food Sci Technol, 13(57), 109–119.
  • Isbilir, S. S., Sagiroglu, A. (2011). Antioxidant Poteniıal Of Different Dill (Anethum Graveolens L.) Leaf Extracts. Int J Food Prop, 14(4), 894–902. https://doi.org/10.1080/10942910903474401
  • Jana, S., Shekhawat, G. S. (2010). Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn Rev, 4(8), 179–184. https://doi.org/10.4103/0973-7847.70915
  • Kaufmann, B., Christen, P. (2002). Recent Extraction Techniques for Natural Products : Microwave-assisted Extraction and Pressurised Solvent Extraction. Phytochem Anal, 13(2), 105–113. https://doi.org/10.1002/pca.631
  • Kunyanga, C. N., Imungi, J. K., Okoth, M. W., Biesalski, H. K., Vadivel, V. (2012). Total phenolic content , antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT- Food Sci Technol, 45(2), 269–276. https://doi.org/10.1016/j.lwt.2011.08.006
  • Liu, Z., Esveld, E., Vincken, J., Bruins, M. E. (2019). Pulsed Electric Field as an Alternative Pre-treatment for Drying to Enhance Polyphenol Extraction from Fresh Tea Leaves, Food Bioproc Technol, 12, 183-192. https://doi.org/10.1007/s11947-018-2199-x
  • Maghsoudlou, Y., Ghajari, M. A., Tavasoli, S. (2019). Effects of heat treatment on the phenolic compounds and antioxidant capacity of quince fruit and its tisane’s sensory properties. J Food Sci Technol, 56(5), 2365–2372. https://doi.org/10.1007/s13197-019-03644-6
  • Nguyen, V. T., Nguyen, Q., An, T. N. T., Van, N., T., Anh, N. H. T. (2020). Evaluation of polyphenol content and antioxidant activities of Dill leaves extract Anethum graveolens L., IOP Conf Ser: Mater Sci Eng, 991, 012032. https://doi.org/10.1088/1757-899X/991/1/012032
  • Pan, X., Niu, G., Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process, 42(2), 129–133. https://doi.org/10.1016/S0255-2701(02)00037-5
  • Pandey, M. M., Vijayakumar, M., Rastogi, S., Rawat, A. K. S. (2013). Phenolic Content and Antioxidant Properties of Selected Indian Spices of Apiaceae Phenolic Content and Antioxidant Properties of Selected Indian Spices of Apiaceae. J Herbs Spices Med Plants, 18(3), 246–256. https://doi.org/10.1080/10496475.2012.680548
  • Paven, C. S. J., Radu, D., Alexa, E., Pintilie, S., Rivis, A. (2018) Anethum graveolens - an important source of antioxidant compounds for food industry. 18th International Multidisciplinary Scientific GeoConferance, 02-08 July 2018, Sofia, Bulgaria, pp.11-18. https://doi.org/10.5593/sgem2018/6.2/S25.002
  • Pekyardımcı, Ş. (1992). Polifenol Oksidaz Enzimi ve Esmerleşme Reaksiyonlarının Gıda Endüstrisi Uygulamaları. Gıda, 17(3), 181–186. https://dergipark.org.tr/tr/pub/gida/issue/6953/92734
  • Prieto, P., Pineda, M., Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E, Anal Biochem, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019
  • Radziejewska-Kubzdela, E., Szwengiel, A., Ratajkiewicz, H., Nowak, K. (2020). Effect of ultrasound, heating and enzymatic pre-treatment on bioactive compounds in juice from Berberis amurensis Rupr. Ultrason Sonochem, 63, 104971. https://doi.org/10.1016/j.ultsonch.2020.104971
  • Romero, J. F., Díaz-moreno, C., Bernal-Roa, L. J. (2014). Influencia de Tratamientos Térmicos sobre la Capacidad Antioxidante de Espinaca (Spinacea oleracea L.). Acta Hortic, 1016, 109–112. https://doi.org/10.17660/ActaHortic.2014.1016.13
  • Roy, M. K., Takenaka, M., Isobe, S., Tsushida, T. (2007). Antioxidant potential, anti-proliferative activities, and phenolic content in water-soluble fractions of some commonly consumed vegetables: Effects of thermal treatment. Food Chem, 103(1), 106–114. https://doi.org/10.1016/j.foodchem.2006.08.002
  • Sánchez‐Moreno, C., Larrauri, J. A., Saura-calixto, F. (1998). A Procedure to Measure the Antiradical Efficiency of Polyphenols. J Sci Food Agric, 76, 270–276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
  • Saulis, G. (2010). Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. Food Eng Rev, 2(2), 52–73. https://doi.org/10.1007/s12393-010-9023-3
  • Shyu, Y., Lin, J., Chang, Y., Chiang, C. Yang, D. (2009). Evaluation of antioxidant ability of ethanolic extract from dill (Anethum graveolens L.) flower. Food Chem, 115(2), 515–521. https://doi.org/10.1016/j.foodchem.2008.12.039
  • Carbonell-Capella, J. M., Brnčić, S. R., Žlabur, J. Š., Barba, F. J., Grimi, N., Koubaa, M., Brnčić, M., Vorobiev, E. (2017). Electrotechnologies, microwaves, and ultrasounds combined with binary mixtures of ethanol and water to extract steviol glycosides and antioxidant compounds from Stevia rebaudiana leaves, J Food Process Preserv, 41(5), 1–9. https://doi.org/10.1111/jfpp.13179
  • Soliva-Fortuny, R., Balasa, A., Knorr, D., Martín-Belloso, O. (2009). Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci Technol, 20(11-12), 544–556. https://doi.org/10.1016/j.tifs.2009.07.003
  • Świeca, M., Gawlik-Dziki, U. (2008). Influence of thermal processing on phenolics compounds level and antiradical activity of dill (Anethum graveolens L.). Herba Pol, 54(3), 59–69.
  • Vallverdú-Queralt, A., Regueiro, J., Alvarenga, J. F. R., Martínez-Huélamo, M., Leal, L. N., Lamuela-Raventós, R. M. L. (2015). Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: caraway, turmeric, dill, marjoram and nutmeg. J Food Sci Technol, 35(1), 189–195. https://doi.org/10.1590/1678-457X.6580
  • Vallverdu-Queralt, A., Oms-Oliu, G., Odriozola-Serrano, I., Lamuela-Raventos, R. M., Martín-Belloso, O., Elez-Martínez, P. (2012). Effects of Pulsed Electric Fields on the Bioactive Compound Content, J Agric Food Chem, 60(12), 3126-3134. https://doi.org/10.1021/jf205216m
  • Velioglu, Y. S., Mazza, G., Gao, L., Oomah, B. D. (1998). Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J Agric Food Chem, 46(10), 4113–4117. https://doi.org/10.1021/jf9801973
  • Wilson, L. (2016). Spices and Flavoring Crops: Fruits and Seeds, Encyclopedia of Food and Health. In: Encyclopedia of Food and Health (1st ed.), Caballero, B., Finglas, P., Toldrá, F., (Eds.), Academic Press. pp.73-83
  • Zhang, M. I. N., Willison, J. H. M. (1992). Electrical impedance analysis in plant tissues: The effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can J Plant Sci, 72(2), 545–553. https://doi.org/10.4141/cjps92-068
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Mustafa Fincan 0000-0002-9394-6449

Yasemin Çiftci 0000-0001-9934-0723

Project Number 108 O 641
Publication Date October 15, 2021
Published in Issue Year 2021 Volume: 46 Issue: 6

Cite

APA Fincan, M., & Çiftci, Y. (2021). VURGULU ELEKTRİK ALAN ÖN İŞLEMİ İLE DEREOTUNDAN FENOLİKLERİN EKSTRAKSİYONU: DONDURUP ÇÖZÜNDÜRME, ISIL İŞLEM, MİKRODALGA ÖN İŞLEMLERİ VE SOLVENT EKSTRAKSİYONU İLE KARŞILAŞTIRILMASI. Gıda, 46(6), 1343-1357. https://doi.org/10.15237/gida.GD21092
AMA Fincan M, Çiftci Y. VURGULU ELEKTRİK ALAN ÖN İŞLEMİ İLE DEREOTUNDAN FENOLİKLERİN EKSTRAKSİYONU: DONDURUP ÇÖZÜNDÜRME, ISIL İŞLEM, MİKRODALGA ÖN İŞLEMLERİ VE SOLVENT EKSTRAKSİYONU İLE KARŞILAŞTIRILMASI. The Journal of Food. October 2021;46(6):1343-1357. doi:10.15237/gida.GD21092
Chicago Fincan, Mustafa, and Yasemin Çiftci. “VURGULU ELEKTRİK ALAN ÖN İŞLEMİ İLE DEREOTUNDAN FENOLİKLERİN EKSTRAKSİYONU: DONDURUP ÇÖZÜNDÜRME, ISIL İŞLEM, MİKRODALGA ÖN İŞLEMLERİ VE SOLVENT EKSTRAKSİYONU İLE KARŞILAŞTIRILMASI”. Gıda 46, no. 6 (October 2021): 1343-57. https://doi.org/10.15237/gida.GD21092.
EndNote Fincan M, Çiftci Y (October 1, 2021) VURGULU ELEKTRİK ALAN ÖN İŞLEMİ İLE DEREOTUNDAN FENOLİKLERİN EKSTRAKSİYONU: DONDURUP ÇÖZÜNDÜRME, ISIL İŞLEM, MİKRODALGA ÖN İŞLEMLERİ VE SOLVENT EKSTRAKSİYONU İLE KARŞILAŞTIRILMASI. Gıda 46 6 1343–1357.
IEEE M. Fincan and Y. Çiftci, “VURGULU ELEKTRİK ALAN ÖN İŞLEMİ İLE DEREOTUNDAN FENOLİKLERİN EKSTRAKSİYONU: DONDURUP ÇÖZÜNDÜRME, ISIL İŞLEM, MİKRODALGA ÖN İŞLEMLERİ VE SOLVENT EKSTRAKSİYONU İLE KARŞILAŞTIRILMASI”, The Journal of Food, vol. 46, no. 6, pp. 1343–1357, 2021, doi: 10.15237/gida.GD21092.
ISNAD Fincan, Mustafa - Çiftci, Yasemin. “VURGULU ELEKTRİK ALAN ÖN İŞLEMİ İLE DEREOTUNDAN FENOLİKLERİN EKSTRAKSİYONU: DONDURUP ÇÖZÜNDÜRME, ISIL İŞLEM, MİKRODALGA ÖN İŞLEMLERİ VE SOLVENT EKSTRAKSİYONU İLE KARŞILAŞTIRILMASI”. Gıda 46/6 (October 2021), 1343-1357. https://doi.org/10.15237/gida.GD21092.
JAMA Fincan M, Çiftci Y. VURGULU ELEKTRİK ALAN ÖN İŞLEMİ İLE DEREOTUNDAN FENOLİKLERİN EKSTRAKSİYONU: DONDURUP ÇÖZÜNDÜRME, ISIL İŞLEM, MİKRODALGA ÖN İŞLEMLERİ VE SOLVENT EKSTRAKSİYONU İLE KARŞILAŞTIRILMASI. The Journal of Food. 2021;46:1343–1357.
MLA Fincan, Mustafa and Yasemin Çiftci. “VURGULU ELEKTRİK ALAN ÖN İŞLEMİ İLE DEREOTUNDAN FENOLİKLERİN EKSTRAKSİYONU: DONDURUP ÇÖZÜNDÜRME, ISIL İŞLEM, MİKRODALGA ÖN İŞLEMLERİ VE SOLVENT EKSTRAKSİYONU İLE KARŞILAŞTIRILMASI”. Gıda, vol. 46, no. 6, 2021, pp. 1343-57, doi:10.15237/gida.GD21092.
Vancouver Fincan M, Çiftci Y. VURGULU ELEKTRİK ALAN ÖN İŞLEMİ İLE DEREOTUNDAN FENOLİKLERİN EKSTRAKSİYONU: DONDURUP ÇÖZÜNDÜRME, ISIL İŞLEM, MİKRODALGA ÖN İŞLEMLERİ VE SOLVENT EKSTRAKSİYONU İLE KARŞILAŞTIRILMASI. The Journal of Food. 2021;46(6):1343-57.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/