Research Article
BibTex RIS Cite

AUTHENTICATION OF HAZELNUT OIL BY PORTABLE FT-NIR, FT-MIR AND RAMAN SPECTROMETERS COMBINED WITH MULTIVARIATE DATA ANALYSIS

Year 2022, Volume: 47 Issue: 1, 1 - 14, 23.12.2021
https://doi.org/10.15237/gida.GD21113

Abstract

This research studied the authentication of hazelnut oil by portable FT-NIR, FT-MIR, and Raman spectrometers. Hazelnut oils were adulterated with vegetable oils at various concentrations (0-25%) (w/w). Collected spectra were analyzed using Principal Component Analysis (PCA) and Soft Independent Modelling of Class Analogy (SIMCA) to generate classification models to authenticate pure hazelnut oil and Partial Least Squares Regression (PLSR) to predict the fatty acids and adulterant levels. For confirmation, oil’s fatty acid profile was determined by gas chromatography. In all three instruments, SIMCA provided distinct clusters for pure and adulterated samples with interclass distance (ICD)3. All instruments showed excellent performance in predicting fatty acids and adulteration levels with rval>0.93 and standard error prediction (SEP)<1.75%. Specifically, the FT-MIR unit provided the best performances. Still, all the units can be used as an alternative to traditional methods. These units showed great potential for in-situ surveillance to detect hazelnut oil adulterations.

References

  • Abdi, H. (2010). Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2(1), 97–106. https://doi.org/10.1002/wics.51
  • Akkaya, M. R. (2018). Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy. Journal of Food Science and Technology, 55(6), 2318–2325. https://doi.org/10.1007/s13197-018-3150-x
  • Aykas, D. P., Ball, C., Sia, A., Zhu, K., Shotts, M. L., Schmenk, A., & Rodriguez-Saona, L. (2020a). In-situ screening of soybean quality with a novel handheld near-infrared sensor. Sensors (Switzerland), 20(21), 1–19. https://doi.org/10.3390/s20216283
  • Aykas, D. P., Karaman, A. D., Keser, B., & Rodriguez-Saona, L. (2020b). Non-targeted authentication approach for extra virgin olive oil. Foods, 9(2), 1–17. https://doi.org/10.3390/foods9020221
  • Aykas, D. P., & Menevseoglu, A. (2021). A rapid method to detect green pea and peanut adulteration in pistachio by using portable FT-MIR and FT-NIR spectroscopy combined with chemometrics. Food Control, 121. https://doi.org/10.1016/j.foodcont.2020.107670
  • Aykas, D. P., Shotts, M.-L., & Rodriguez-Saona, L. E. (2020c). Authentication of commercial honeys based on Raman fingerprinting and pattern recognition analysis. Food Control, 117(May), 107346. https://doi.org/10.1016/j.foodcont.2020.107346
  • Ayvaz, H., & Rodriguez-Saona, L. E. (2015). Application of handheld and portable spectrometers for screening acrylamide content in commercial potato chips. Food Chemistry, 174, 154–162. https://doi.org/10.1016/j.foodchem.2014.11.001
  • Ayvaz, H., Sierra-Cadavid, A., Aykas, D. P., Mulqueeney, B., Sullivan, S., & Rodriguez-Saona, L. E. (2016). Monitoring multicomponent quality traits in tomato juice using portable mid-infrared (MIR) spectroscopy and multivariate analysis. Food Control, 66, 79–86. https://doi.org/10.1016/j.foodcont.2016.01.031
  • Ballabio, D., & Todeschini, R. (2009). Infrared Spectroscopy for Food Quality Analysis and Control Multivariate Classifi cation for Qualitative Analysis. In D.-W. Sun (Ed.), Infrared Spectroscopy for Food Quality Analysis and Control (1st ed., pp. 83–104). Burlington, MA: Elsevier.
  • Basri, K. N., Hussain, M. N., Bakar, J., Sharif, Z., Khir, M. F. A., & Zoolfakar, A. S. (2017). Classification and quantification of palm oil adulteration via portable NIR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 173, 335–342. https://doi.org/10.1016/j.saa.2016.09.028
  • Benitez-Sánchez, P. L., León-Camacho, M., & Aparicio, R. (2003). A comprehensive study of hazelnut oil composition with comparisons to other vegetable oils, particularly olive oil. European Food Research and Technology, 218(1), 13–19. https://doi.org/10.1007/s00217-003-0766-4
  • Brereton, R. G. (2000). Introduction to multivariate calibration in analytical chemistry. Analyst, 125(11), 2125–2154. https://doi.org/10.1039/b003805i
  • Celenk, V. U., Argon, Z. U., & Gumus, Z. P. (2020). Cold pressed hazelnut (Corylus avellana) oil. In M. F. Ramadan (Ed.), Cold Pressed Oils. https://doi.org/10.1016/b978-0-12-818188-1.00020-7
  • Cercaci, L., Rodriguez-Estrada, M. T., & Lercker, G. (2003). Solid-phase extraction-thin-layer chromatography-gas chromatography method for the detection of hazelnut oil in olive oils by determination of esterified sterols. Journal of Chromatography A, 985(1–2), 211–220. https://doi.org/10.1016/S0021-9673(02)01397-3
  • Christy, A. A., Kasemsumran, S., Du, Y., & Ozaki, Y. (2004). The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Analytical Sciences, 20(6), 935–940. https://doi.org/10.2116/analsci.20.935
  • De Maesschalck, R., Candolfi, A., Massart, D. L., & Heuerding, S. (1999). Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemometrics and Intelligent Laboratory Systems, 47(1), 65–77. https://doi.org/10.1016/S0169-7439(98)00159-2
  • FAO. (2020). FAOSTAT Crops. Retrieved from http://www.fao.org/faostat/en/#data/QC
  • Gelpí, E., Posada de la Paz, M., Terracini, B., Abaitua, I., Gómez de la Cámara, A., Kilbourne, E. M., … Tarkowski, S. (2002). The spanish toxic oil syndrome 20 years after its onset: A multidisciplinary review of scientific knowledge. Environmental Health Perspectives, 110(5), 457–464. https://doi.org/10.1289/ehp.02110457
  • Guiné, R. P. F., & Correia, P. M. R. (2020). Hazelnut: A Valuable Resource. ETP International Journal of Food Engineering, (December), 67–72. https://doi.org/10.18178/ijfe.6.2.67-72
  • Haaland, D. M., & Thomas, E. V. (1988). Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information. Analytical Chemistry, 60(11), 1193–1202. https://doi.org/10.1021/ac00162a020
  • Hourant, P., Baeten, V., Morales, M. T., Meurens, M., & Aparicio, R. (2000). Oil and fat classification by selected bands of near-infrared spectroscopy. Applied Spectroscopy, 54(8), 1168–1174. https://doi.org/10.1366/0003702001950733
  • Ichihara, K., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31(5), 535–539. https://doi.org/10.1007/BF02522648
  • Jong, S. (1993). PLS Fits Closer Than PCR. Journal of Chemometrics, 7, 551–557. https://doi.org/10.1515/jpme.1998.26.4.325
  • Karabulut, I., Topcu, A., Yorulmaz, A., Tekin, A., & Ozay, D. S. (2005). Effects of the industrial refining process on some properties of hazelnut oil. European Journal of Lipid Science and Technology, 107(7–8), 476–480. https://doi.org/10.1002/ejlt.200501147
  • Lavine, B. K. (2000). Clustering and Classification of Analytical Data. Encyclopedia of Analytical Chemistry, 1–21. https://doi.org/10.1002/9780470027318.a5204
  • MAF – Republic of Turkey Ministry of Agriculture And Forestry. (2020). Gida Olarak Findigin Yeri. Retrieved from https://arastirma.tarimorman.gov.tr/findik/Sayfalar/Detay.aspx?SayfaId=29
  • Mariani, C., Bellan, G., Lestini, E., & Aparicio, R. (2006). The detection of the presence of hazelnut oil in olive oil by free and esterified sterols. European Food Research and Technology, 223(5), 655–661. https://doi.org/10.1007/s00217-005-0249-x
  • Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y., & Kaufman, L. (2003). Chemometrics: a textbook (fifth). Amsterdam, Netherlands: Elsevier B.V.
  • Mcgrath, T. F., Haughey, S. A., Islam, M., & Elliott, C. T. (2020). The Potential of Handheld Near Infrared Spectroscopy to detect food adulteration: Results of a global, multi-instrument inter-laboratory study. Food Chemistry, 128718. https://doi.org/10.1016/j.foodchem.2020.128718
  • Menevseoglu, A. (2021) Non-destructive detection of sesame oil adulteration by portable FT-NIR, FT-MIR, and Raman spectrometers combined with chemometrics. JOTCSA, 8(3),775-786. https://doi.org/10.18596/jotcsa.940424
  • Menevseoglu, A., Aykas, D. P., & Adal, E. (2020). Non-targeted approach to detect green pea and peanut adulteration in pistachio by using portable FT-IR, and UV–Vis spectroscopy. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-020-00710-y
  • Miaw, C. S. W., Sena, M. M., Souza, S. V. C. de, Ruisanchez, I., & Callao, M. P. (2018). Variable selection for multivariate classification aiming to detect individual adulterants and their blends in grape nectars. Talanta, 190(July), 55–61. https://doi.org/10.1016/j.talanta.2018.07.078
  • Mossoba, M. M., Srigley, C. T., Farris, S., Kramer, J. K. G., Chirtel, S., & Rader, J. (2014). Evaluation of the Performance of a Portable Mid-Infrared Analyzer for the Rapid Determination of Total Trans Fat in Fast Food. JAOCS, Journal of the American Oil Chemists’ Society, 91(10), 1651–1663. https://doi.org/10.1007/s11746-014-2521-3
  • Ozen, B. F., & Mauer, L. J. (2002). Detection of hazelnut oil adulteration using FT-IR spectroscopy. Journal of Agricultural and Food Chemistry, 50, 3898–3901. https://doi.org/10.1021/jf0201834
  • Pei, X., Tandon, A., Alldrick, A., Giorgi, L., Huang, W., & Yang, R. (2011). The China melamine milk scandal and its implications for food safety regulation. Food Policy, 36(3), 412–420. https://doi.org/10.1016/j.foodpol.2011.03.008
  • Platteau, C., De Loose, M., De Meulenaer, B., & Taverniers, I. (2011). Quantitative detection of hazelnut (Corylus avellana) in cookies: ELISA versus real-time PCR. Journal of Agricultural and Food Chemistry, 59(21), 11395–11402. https://doi.org/10.1021/jf202167b
  • Quintanilla-Casas, B., Strocchi, G., Bustamante, J., Torres-Cobos, B., Guardiola, F., Moreda, W., … Vichi, S. (2021). Large-scale evaluation of shotgun triacylglycerol profiling for the fast detection of olive oil adulteration. Food Control, 123. https://doi.org/10.1016/j.foodcont.2020.107851
  • Rodriguez-Saona, L., Aykas, D. P., Borba, K. R., & Urtubia, A. (2020). Miniaturization of optical sensors and their potential for high-throughput screening of foods. Current Opinion in Food Science, 31, 136–150. https://doi.org/10.1016/j.cofs.2020.04.008
  • Rodriguez-Saona, L. E., Giusti, M. M., & Shotts, M. (2016a). Advances in infrared spectroscopy for food authenticity testing. In Advances in Food Authenticity Testing. https://doi.org/10.1016/B978-0-08-100220-9.00004-7
  • Shenk, J. S., & Westerhaus, M. O. (1996). Calibration the ISI way. Near infrared spectroscopy: The future waves. Chichester, UK: NIR Publications.
  • Shotts, M. L., Plans Pujolras, M., Rossell, C., & Rodriguez-Saona, L. (2018). Authentication of indigenous flours (Quinoa, Amaranth and kañiwa) from the Andean region using a portable ATR-Infrared device in combination with pattern recognition analysis. Journal of Cereal Science, 82, 65–72. https://doi.org/10.1016/j.jcs.2018.04.005
  • Şisik Ogras, Ş., Kaban, G., & Kaya, M. (2018). Ham ve Rafine Fındık Yağlarının Uçucu Bileşikleri ve Yağ Asidi Kompozisyonu. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 9(2), 104–110. https://doi.org/10.17097/ataunizfd.392547
  • Sun, Y., Yuan, M., Liu, X., Su, M., Wang, L., Zeng, Y., … Nie, L. (2020). Comparative analysis of rapid quality evaluation of Salvia miltiorrhiza (Danshen) with Fourier transform near-infrared spectrometer and portable near-infrared spectrometer. Microchemical Journal, 159(August), 105492. https://doi.org/10.1016/j.microc.2020.105492
  • Turan, A. (2018). Effect of drying methods on fatty acid profile and oil oxidation of hazelnut oil during storage. European Food Research and Technology, 244(12), 2181–2190. https://doi.org/10.1007/s00217-018-3128-y
  • Urbano Cuadrado, M., Luque De Castro, M. D., Pérez Juan, P. M., & Gómez-Nieto, M. A. (2005). Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters. Talanta, 66(1), 218–224. https://doi.org/10.1016/j.talanta.2004.11.011
  • Wold, S. (1976). Pattern recognition by means of disjoint principal components models. Pattern Recognition, 8(3), 127–139. https://doi.org/10.1016/0031-3203(76)90014-5
  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
  • Zabaras, D., & Gordon, M. H. (2004). Detection of pressed hazelnut oil in virgin olive oil by analysis of polar components: Improvement and validation of the method. Food Chemistry, 84(3), 475–483. https://doi.org/10.1016/j.foodchem.2003.07.029
  • Zambiazi, R. U. I. C., Przybylski, R., Zambiazi, M. W., & Mendonça, C. B. (2007). Fatty Acid Composition of Vegetable Oils and Fats. Boletim Do Centro de Pesquisa de Processamento de Alimentos, 25(1), 111–120.

FINDIK YAĞININ FT-NIR, FT-MIR VE RAMAN SPEKTROMETRELERİ İLE BİRLİKTE ÇOK BİLEŞENLİ VERİ ANALİZLERİ KULLANILARAK DOĞRULANMASI

Year 2022, Volume: 47 Issue: 1, 1 - 14, 23.12.2021
https://doi.org/10.15237/gida.GD21113

Abstract

Bu araştırma fındık yağının taşınabilir FT-NIR, FT-MIR ve Raman spektrometreleri ile tağşişlerinin belirlenmesi üzerinedir. Fındık yağları değişik konsantrasyonlardaki (0-25%) (w/w) bitkisel yağlar ile karıştırılmıştır. Toplanan spektralarin Temel Bileşen Analizi (PCA) ve Sınıf Analojisinin Yumuşak Bağımsız Modellenmesi (SIMCA) ile saf fındık yağı sınıflandırma modelleri oluşturulmuştur. Yağ asitleri ve tağşiş seviyesi Kısmi En Küçük Kareler Regresyonu (PLSR) kullanılarak belirlenmiştir. Sonuçların doğrulanması için gaz kromatografisi kullanılarak yağların yağ asidi profilleri belirlenmiştir. Her üç cihazda da SIMCA, saf ve tağşiş edilmiş örneklerin gruplarının sınıflar arası mesafesi (ICD) üçten büyük olarak bulunmuştur. Tüm cihazlar, yağ asidi ve tağşiş miktarlarının belirlenmesinde yüksek performans göstermiştir, rval>0.93 ve standart hata tahmini (SEP)<1.75%. Özellikle, FT-MIR cihazı en iyi performansı göstermiştir. Yine de, tüm cihazlar geleneksel yöntemlere alternatif olarak kullanılabilir. Bu cihazlar, fındık yağı tağşişinin yerinde belirlenmesi icin yüksek bir potansiyel göstermiştir.

References

  • Abdi, H. (2010). Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2(1), 97–106. https://doi.org/10.1002/wics.51
  • Akkaya, M. R. (2018). Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy. Journal of Food Science and Technology, 55(6), 2318–2325. https://doi.org/10.1007/s13197-018-3150-x
  • Aykas, D. P., Ball, C., Sia, A., Zhu, K., Shotts, M. L., Schmenk, A., & Rodriguez-Saona, L. (2020a). In-situ screening of soybean quality with a novel handheld near-infrared sensor. Sensors (Switzerland), 20(21), 1–19. https://doi.org/10.3390/s20216283
  • Aykas, D. P., Karaman, A. D., Keser, B., & Rodriguez-Saona, L. (2020b). Non-targeted authentication approach for extra virgin olive oil. Foods, 9(2), 1–17. https://doi.org/10.3390/foods9020221
  • Aykas, D. P., & Menevseoglu, A. (2021). A rapid method to detect green pea and peanut adulteration in pistachio by using portable FT-MIR and FT-NIR spectroscopy combined with chemometrics. Food Control, 121. https://doi.org/10.1016/j.foodcont.2020.107670
  • Aykas, D. P., Shotts, M.-L., & Rodriguez-Saona, L. E. (2020c). Authentication of commercial honeys based on Raman fingerprinting and pattern recognition analysis. Food Control, 117(May), 107346. https://doi.org/10.1016/j.foodcont.2020.107346
  • Ayvaz, H., & Rodriguez-Saona, L. E. (2015). Application of handheld and portable spectrometers for screening acrylamide content in commercial potato chips. Food Chemistry, 174, 154–162. https://doi.org/10.1016/j.foodchem.2014.11.001
  • Ayvaz, H., Sierra-Cadavid, A., Aykas, D. P., Mulqueeney, B., Sullivan, S., & Rodriguez-Saona, L. E. (2016). Monitoring multicomponent quality traits in tomato juice using portable mid-infrared (MIR) spectroscopy and multivariate analysis. Food Control, 66, 79–86. https://doi.org/10.1016/j.foodcont.2016.01.031
  • Ballabio, D., & Todeschini, R. (2009). Infrared Spectroscopy for Food Quality Analysis and Control Multivariate Classifi cation for Qualitative Analysis. In D.-W. Sun (Ed.), Infrared Spectroscopy for Food Quality Analysis and Control (1st ed., pp. 83–104). Burlington, MA: Elsevier.
  • Basri, K. N., Hussain, M. N., Bakar, J., Sharif, Z., Khir, M. F. A., & Zoolfakar, A. S. (2017). Classification and quantification of palm oil adulteration via portable NIR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 173, 335–342. https://doi.org/10.1016/j.saa.2016.09.028
  • Benitez-Sánchez, P. L., León-Camacho, M., & Aparicio, R. (2003). A comprehensive study of hazelnut oil composition with comparisons to other vegetable oils, particularly olive oil. European Food Research and Technology, 218(1), 13–19. https://doi.org/10.1007/s00217-003-0766-4
  • Brereton, R. G. (2000). Introduction to multivariate calibration in analytical chemistry. Analyst, 125(11), 2125–2154. https://doi.org/10.1039/b003805i
  • Celenk, V. U., Argon, Z. U., & Gumus, Z. P. (2020). Cold pressed hazelnut (Corylus avellana) oil. In M. F. Ramadan (Ed.), Cold Pressed Oils. https://doi.org/10.1016/b978-0-12-818188-1.00020-7
  • Cercaci, L., Rodriguez-Estrada, M. T., & Lercker, G. (2003). Solid-phase extraction-thin-layer chromatography-gas chromatography method for the detection of hazelnut oil in olive oils by determination of esterified sterols. Journal of Chromatography A, 985(1–2), 211–220. https://doi.org/10.1016/S0021-9673(02)01397-3
  • Christy, A. A., Kasemsumran, S., Du, Y., & Ozaki, Y. (2004). The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Analytical Sciences, 20(6), 935–940. https://doi.org/10.2116/analsci.20.935
  • De Maesschalck, R., Candolfi, A., Massart, D. L., & Heuerding, S. (1999). Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemometrics and Intelligent Laboratory Systems, 47(1), 65–77. https://doi.org/10.1016/S0169-7439(98)00159-2
  • FAO. (2020). FAOSTAT Crops. Retrieved from http://www.fao.org/faostat/en/#data/QC
  • Gelpí, E., Posada de la Paz, M., Terracini, B., Abaitua, I., Gómez de la Cámara, A., Kilbourne, E. M., … Tarkowski, S. (2002). The spanish toxic oil syndrome 20 years after its onset: A multidisciplinary review of scientific knowledge. Environmental Health Perspectives, 110(5), 457–464. https://doi.org/10.1289/ehp.02110457
  • Guiné, R. P. F., & Correia, P. M. R. (2020). Hazelnut: A Valuable Resource. ETP International Journal of Food Engineering, (December), 67–72. https://doi.org/10.18178/ijfe.6.2.67-72
  • Haaland, D. M., & Thomas, E. V. (1988). Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information. Analytical Chemistry, 60(11), 1193–1202. https://doi.org/10.1021/ac00162a020
  • Hourant, P., Baeten, V., Morales, M. T., Meurens, M., & Aparicio, R. (2000). Oil and fat classification by selected bands of near-infrared spectroscopy. Applied Spectroscopy, 54(8), 1168–1174. https://doi.org/10.1366/0003702001950733
  • Ichihara, K., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31(5), 535–539. https://doi.org/10.1007/BF02522648
  • Jong, S. (1993). PLS Fits Closer Than PCR. Journal of Chemometrics, 7, 551–557. https://doi.org/10.1515/jpme.1998.26.4.325
  • Karabulut, I., Topcu, A., Yorulmaz, A., Tekin, A., & Ozay, D. S. (2005). Effects of the industrial refining process on some properties of hazelnut oil. European Journal of Lipid Science and Technology, 107(7–8), 476–480. https://doi.org/10.1002/ejlt.200501147
  • Lavine, B. K. (2000). Clustering and Classification of Analytical Data. Encyclopedia of Analytical Chemistry, 1–21. https://doi.org/10.1002/9780470027318.a5204
  • MAF – Republic of Turkey Ministry of Agriculture And Forestry. (2020). Gida Olarak Findigin Yeri. Retrieved from https://arastirma.tarimorman.gov.tr/findik/Sayfalar/Detay.aspx?SayfaId=29
  • Mariani, C., Bellan, G., Lestini, E., & Aparicio, R. (2006). The detection of the presence of hazelnut oil in olive oil by free and esterified sterols. European Food Research and Technology, 223(5), 655–661. https://doi.org/10.1007/s00217-005-0249-x
  • Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y., & Kaufman, L. (2003). Chemometrics: a textbook (fifth). Amsterdam, Netherlands: Elsevier B.V.
  • Mcgrath, T. F., Haughey, S. A., Islam, M., & Elliott, C. T. (2020). The Potential of Handheld Near Infrared Spectroscopy to detect food adulteration: Results of a global, multi-instrument inter-laboratory study. Food Chemistry, 128718. https://doi.org/10.1016/j.foodchem.2020.128718
  • Menevseoglu, A. (2021) Non-destructive detection of sesame oil adulteration by portable FT-NIR, FT-MIR, and Raman spectrometers combined with chemometrics. JOTCSA, 8(3),775-786. https://doi.org/10.18596/jotcsa.940424
  • Menevseoglu, A., Aykas, D. P., & Adal, E. (2020). Non-targeted approach to detect green pea and peanut adulteration in pistachio by using portable FT-IR, and UV–Vis spectroscopy. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-020-00710-y
  • Miaw, C. S. W., Sena, M. M., Souza, S. V. C. de, Ruisanchez, I., & Callao, M. P. (2018). Variable selection for multivariate classification aiming to detect individual adulterants and their blends in grape nectars. Talanta, 190(July), 55–61. https://doi.org/10.1016/j.talanta.2018.07.078
  • Mossoba, M. M., Srigley, C. T., Farris, S., Kramer, J. K. G., Chirtel, S., & Rader, J. (2014). Evaluation of the Performance of a Portable Mid-Infrared Analyzer for the Rapid Determination of Total Trans Fat in Fast Food. JAOCS, Journal of the American Oil Chemists’ Society, 91(10), 1651–1663. https://doi.org/10.1007/s11746-014-2521-3
  • Ozen, B. F., & Mauer, L. J. (2002). Detection of hazelnut oil adulteration using FT-IR spectroscopy. Journal of Agricultural and Food Chemistry, 50, 3898–3901. https://doi.org/10.1021/jf0201834
  • Pei, X., Tandon, A., Alldrick, A., Giorgi, L., Huang, W., & Yang, R. (2011). The China melamine milk scandal and its implications for food safety regulation. Food Policy, 36(3), 412–420. https://doi.org/10.1016/j.foodpol.2011.03.008
  • Platteau, C., De Loose, M., De Meulenaer, B., & Taverniers, I. (2011). Quantitative detection of hazelnut (Corylus avellana) in cookies: ELISA versus real-time PCR. Journal of Agricultural and Food Chemistry, 59(21), 11395–11402. https://doi.org/10.1021/jf202167b
  • Quintanilla-Casas, B., Strocchi, G., Bustamante, J., Torres-Cobos, B., Guardiola, F., Moreda, W., … Vichi, S. (2021). Large-scale evaluation of shotgun triacylglycerol profiling for the fast detection of olive oil adulteration. Food Control, 123. https://doi.org/10.1016/j.foodcont.2020.107851
  • Rodriguez-Saona, L., Aykas, D. P., Borba, K. R., & Urtubia, A. (2020). Miniaturization of optical sensors and their potential for high-throughput screening of foods. Current Opinion in Food Science, 31, 136–150. https://doi.org/10.1016/j.cofs.2020.04.008
  • Rodriguez-Saona, L. E., Giusti, M. M., & Shotts, M. (2016a). Advances in infrared spectroscopy for food authenticity testing. In Advances in Food Authenticity Testing. https://doi.org/10.1016/B978-0-08-100220-9.00004-7
  • Shenk, J. S., & Westerhaus, M. O. (1996). Calibration the ISI way. Near infrared spectroscopy: The future waves. Chichester, UK: NIR Publications.
  • Shotts, M. L., Plans Pujolras, M., Rossell, C., & Rodriguez-Saona, L. (2018). Authentication of indigenous flours (Quinoa, Amaranth and kañiwa) from the Andean region using a portable ATR-Infrared device in combination with pattern recognition analysis. Journal of Cereal Science, 82, 65–72. https://doi.org/10.1016/j.jcs.2018.04.005
  • Şisik Ogras, Ş., Kaban, G., & Kaya, M. (2018). Ham ve Rafine Fındık Yağlarının Uçucu Bileşikleri ve Yağ Asidi Kompozisyonu. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 9(2), 104–110. https://doi.org/10.17097/ataunizfd.392547
  • Sun, Y., Yuan, M., Liu, X., Su, M., Wang, L., Zeng, Y., … Nie, L. (2020). Comparative analysis of rapid quality evaluation of Salvia miltiorrhiza (Danshen) with Fourier transform near-infrared spectrometer and portable near-infrared spectrometer. Microchemical Journal, 159(August), 105492. https://doi.org/10.1016/j.microc.2020.105492
  • Turan, A. (2018). Effect of drying methods on fatty acid profile and oil oxidation of hazelnut oil during storage. European Food Research and Technology, 244(12), 2181–2190. https://doi.org/10.1007/s00217-018-3128-y
  • Urbano Cuadrado, M., Luque De Castro, M. D., Pérez Juan, P. M., & Gómez-Nieto, M. A. (2005). Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters. Talanta, 66(1), 218–224. https://doi.org/10.1016/j.talanta.2004.11.011
  • Wold, S. (1976). Pattern recognition by means of disjoint principal components models. Pattern Recognition, 8(3), 127–139. https://doi.org/10.1016/0031-3203(76)90014-5
  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
  • Zabaras, D., & Gordon, M. H. (2004). Detection of pressed hazelnut oil in virgin olive oil by analysis of polar components: Improvement and validation of the method. Food Chemistry, 84(3), 475–483. https://doi.org/10.1016/j.foodchem.2003.07.029
  • Zambiazi, R. U. I. C., Przybylski, R., Zambiazi, M. W., & Mendonça, C. B. (2007). Fatty Acid Composition of Vegetable Oils and Fats. Boletim Do Centro de Pesquisa de Processamento de Alimentos, 25(1), 111–120.
There are 49 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Ahmed Menevseoglu 0000-0003-2454-7898

Didem Peren Aykas 0000-0002-5500-0441

Publication Date December 23, 2021
Published in Issue Year 2022 Volume: 47 Issue: 1

Cite

APA Menevseoglu, A., & Aykas, D. P. (2021). AUTHENTICATION OF HAZELNUT OIL BY PORTABLE FT-NIR, FT-MIR AND RAMAN SPECTROMETERS COMBINED WITH MULTIVARIATE DATA ANALYSIS. Gıda, 47(1), 1-14. https://doi.org/10.15237/gida.GD21113
AMA Menevseoglu A, Aykas DP. AUTHENTICATION OF HAZELNUT OIL BY PORTABLE FT-NIR, FT-MIR AND RAMAN SPECTROMETERS COMBINED WITH MULTIVARIATE DATA ANALYSIS. The Journal of Food. December 2021;47(1):1-14. doi:10.15237/gida.GD21113
Chicago Menevseoglu, Ahmed, and Didem Peren Aykas. “AUTHENTICATION OF HAZELNUT OIL BY PORTABLE FT-NIR, FT-MIR AND RAMAN SPECTROMETERS COMBINED WITH MULTIVARIATE DATA ANALYSIS”. Gıda 47, no. 1 (December 2021): 1-14. https://doi.org/10.15237/gida.GD21113.
EndNote Menevseoglu A, Aykas DP (December 1, 2021) AUTHENTICATION OF HAZELNUT OIL BY PORTABLE FT-NIR, FT-MIR AND RAMAN SPECTROMETERS COMBINED WITH MULTIVARIATE DATA ANALYSIS. Gıda 47 1 1–14.
IEEE A. Menevseoglu and D. P. Aykas, “AUTHENTICATION OF HAZELNUT OIL BY PORTABLE FT-NIR, FT-MIR AND RAMAN SPECTROMETERS COMBINED WITH MULTIVARIATE DATA ANALYSIS”, The Journal of Food, vol. 47, no. 1, pp. 1–14, 2021, doi: 10.15237/gida.GD21113.
ISNAD Menevseoglu, Ahmed - Aykas, Didem Peren. “AUTHENTICATION OF HAZELNUT OIL BY PORTABLE FT-NIR, FT-MIR AND RAMAN SPECTROMETERS COMBINED WITH MULTIVARIATE DATA ANALYSIS”. Gıda 47/1 (December 2021), 1-14. https://doi.org/10.15237/gida.GD21113.
JAMA Menevseoglu A, Aykas DP. AUTHENTICATION OF HAZELNUT OIL BY PORTABLE FT-NIR, FT-MIR AND RAMAN SPECTROMETERS COMBINED WITH MULTIVARIATE DATA ANALYSIS. The Journal of Food. 2021;47:1–14.
MLA Menevseoglu, Ahmed and Didem Peren Aykas. “AUTHENTICATION OF HAZELNUT OIL BY PORTABLE FT-NIR, FT-MIR AND RAMAN SPECTROMETERS COMBINED WITH MULTIVARIATE DATA ANALYSIS”. Gıda, vol. 47, no. 1, 2021, pp. 1-14, doi:10.15237/gida.GD21113.
Vancouver Menevseoglu A, Aykas DP. AUTHENTICATION OF HAZELNUT OIL BY PORTABLE FT-NIR, FT-MIR AND RAMAN SPECTROMETERS COMBINED WITH MULTIVARIATE DATA ANALYSIS. The Journal of Food. 2021;47(1):1-14.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/