Research Article
BibTex RIS Cite

YAYGIN OLARAK TÜKETİLEN SEBZELERİN İN-VİTRO MİNERAL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ

Year 2025, Volume: 50 Issue: 5, 713 - 722, 15.10.2025
https://doi.org/10.15237/gida.GD25037

Abstract

Sebzeler, özellikle bitkisel bazlı diyetleri takip eden bireyler için önemli mineral kaynaklarıdır. Ancak toplam mineral içeriği, minerallerin mide-bağırsak sisteminde emilim için ne kadar erişilebilir olduğunu ifade eden biyoerişilebilirliği doğrudan yansıtmaz. Bu çalışma, yaygın olarak tüketilen ıspanak (Spinacia oleracea), marul (Lactuca sativa), salatalık (Cucumis sativus), brokoli (Brassica oleracea), ve maydanoz (Petroselinum crispum) gibi sebzelerin elementel kompozisyonu ve in-vitro mineral biyoerişilebilirliğini değerlendirmektedir. K, Mg, Ca, Na, Fe, Mn ve Zn konsantrasyonları, mikrodalga destekli sindirim sonrası ICP-OES kullanılarak analiz edilmiştir. İn-vitro sindirim modeli, mide ve bağırsak koşullarını simüle etmiştir. En yüksek Fe biyoerişilebilirliği %18.82, en yüksek K, Mg ve Ca biyoerişilebilirlikleri sırasıyla salatalık (%21.9), marul (%25.09) ve maydanozda (%23.42) gözlemlenmiştir. Bu sonuçlar, beslenme değerlendirmelerinde biyoerişilebilirliğin dikkate alınması gerektiğini vurgulamaktadır. Gelecek çalışmalar, pişirme yöntemleri ve toprak bileşiminin mineral biyoyararlanımı üzerindeki etkilerini incelemelidir.

Project Number

1919B012305356

References

  • Aghili, F., Khoshgoftarmanesh, A. H., Afyuni, M., Mobli, M. (2009). Relationships between fruit mineral nutrients concentrations and some fruit quality attributes in greenhouse cucumber. Journal of Plant Nutrition, 32(12), 1994–2007. https://doi.org/10.1080/01904160903308119
  • Amalraj, A., Pius, A. (2015). In vitro study on the bioavailability of calcium and its absorption inhibitors in raw and cooked pulses commonly consumed in India. International Food Research Journal, 22(4), 1525–1532.
  • Apaydın, H., Demirci, M., Bölük, E., Kopuk, B., Palabiyik, I. (2024). Effect of different roasting conditions on the physicochemical properties, acrylamide concentration, and mineral bioaccessibility of nuts. Food Bioscience, 58, 103646. https://doi.org/10.1016/j.fbio.2024.103646
  • Aribas, M., Kahraman, K., Koksel, H. (2020). Effects of resistant starch type 4 supplementation of bread on in vitro glycemic index value, bile acid-binding capacity, and mineral bioavailability. Cereal Chemistry, 97(2), 163–171. https://doi.org/10.1002/cche.10229
  • Atta-Aly, M. A. (1999). Effect of nickel addition on the yield and quality of parsley leaves. Scientia Horticulturae, 82(1–2), 9–24. https://doi.org/ 10.1016/S0304-4238(99)00032-1
  • Buturi, C. V., Mauro, R. P., Fogliano, V., Leonardi, C., Giuffrida, F. (2021). Mineral biofortification of vegetables as a tool to improve human diet. Foods, 10(2), 1–23. https://doi.org/ 10.3390/foods10020223
  • Ceccanti, C., Guidi, L., D’Alessandro, C., Cupisti, A. (2022). Potassium Bioaccessibility in Uncooked and Cooked Plant Foods: Results from a Static In Vitro Digestion Methodology. Toxins, 14(10). https://doi.org/10.3390/toxins14100668
  • Choleva, T. G., Tziasiou, C., Gouma, V., Vlessidis, A. G., Giokas, D. L. (2023). In Vitro Assessment of the Physiologically Relevant Oral Bioaccessibility of Metallic Elements in Edible Herbs Using the Unified Bioaccessibility Protocol. Molecules, 28(14). https://doi.org/ 10.3390/molecules28145396
  • do Nascimento da Silva, E., Cadore, S. (2019). Bioavailability Assessment of Copper, Iron, Manganese, Molybdenum, Selenium, and Zinc from Selenium-Enriched Lettuce. Journal of Food Science, 84(10), 2840–2846. https://doi.org/ 10.1111/1750-3841.14785
  • do Nascimento da Silva, E., Heerdt, G., Cidade, M., Pereira, C. D., Morgon, N. H., Cadore, S. (2015). Use of in vitro digestion method and theoretical calculations to evaluate the bioaccessibility of Al, Cd, Fe and Zn in lettuce and cole by inductively coupled plasma mass spectrometry. Microchemical Journal, 119, 152–158. https://doi.org/10.1016/j.microc.2014.12.002
  • Doniec, J., Florkiewicz, A., Duliński, R., Filipiak-Florkiewicz, A. (2022). Impact of Hydrothermal Treatments on Nutritional Value and Mineral Bioaccessibility of Brussels Sprouts (Brassica oleracea var. gemmifera). Molecules, 27(6). https://doi.org/10.3390/molecules27061861
  • Etcheverry, P., Wallingford, J. C., Miller, D. D., Glahn, R. P. (2004). Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: A comparison study. Journal of Dairy Science, 87(11), 3629–3637. https://doi.org/ 10.3168/jds.S0022-0302(04)73501-8
  • Fernández-García, E., Carvajal-Lérida, I., Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751–760. https://doi.org/10.1016/j.nutres.2009.09.016
  • Hayes, M., Pottorff, M., Kay, C., Van Deynze, A., Osorio-Marin, J., Lila, M. A., Iorrizo, M., Ferruzzi, M. G. (2020). In Vitro Bioaccessibility of Carotenoids and Chlorophylls in a Diverse Collection of Spinach Accessions and Commercial Cultivars. Journal of Agricultural and Food Chemistry, 68(11), 3495–3505. https://doi.org/10.1021/acs.jafc.0c00158
  • International, A., of official analytical chemists international, A., Horwitz, W., Latimer, ed, Latimer, G. W. (2012). Official Methods of Analysis of AOAC International (Issue 1. c.). AOAC International. https://books.google.com.tr/ books?id=kPe4NAEACAAJ
  • Ismail, T., Akhtar, S., Qamar, M., Esatbeyoglu, T., Sestili, P., Saeed, W., Lazarte, C. E. (2024). Effect of crop maturity stages and lactic acid fermentation on nutrient absorption properties, and bioaccessibility of Fe, Zn and Ca in Spinacia oleracea L. Journal of Food Composition and Analysis, 133(June), 106427. https://doi.org/10.1016/ j.jfca.2024.106427
  • Khouzam, R. B., Pohl, P., Lobinski, R. (2011). Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta, 86(1), 425–428. https://doi.org/10.1016/ j.talanta.2011.08.049
  • Klepacka, J., Najda, A., Klimek, K. (2020). Effect of buckwheat groats processing on the content and bioaccessibility of selected minerals. Foods, 9(6). https://doi.org/10.3390/foods9060832
  • Lafarga, T., Gallagher, E., Bademunt, A., Viñas, I., Bobo, G., Villaró, S., Aguiló-Aguayo, I. (2019). Bioaccessibility, physicochemical, sensorial, and nutritional characteristics of bread containing broccoli co-products. Journal of Food Processing and Preservation, 43(2), 1–11. https://doi.org/ 10.1111/jfpp.13861
  • Liu, C., Wu, L., Xue, Y., Liu, F., Sun, S., Wang, L. (2018). Effect of cooking methods on bioaccessibility of Zn, Se, Cd, Cu in sea cucumber (Apostichopus japonicus). Food Science and Biotechnology, 27(3), 899–904. https://doi.org/ 10.1007/s10068-017-0298-5
  • Muleya, M., F. Bailey, E., H. Bailey, E. (2024). A comparison of the bioaccessible calcium supplies of various plant-based products relative to bovine milk. Food Research International, 175, 113795.https://doi.org/10.1016/j.foodres.2023.113795
  • Ololade, I. A., Akindumila, O. I., Oloyede, O. J., Asanga, O. P., Ololade, O. O., Oladoja, N. A. (2025). Exploring the influence of household cooking energy sources on trace metal bioavailability in cobwebs: A health risk assessment. Journal of Environmental Chemical Engineering, 13(2), 115673. https://doi.org/ 10.1016/j.jece.2025.115673
  • Rodriguez-Ramiro, I., Dell’Aquila, C., Ward, J. L., Neal, A. L., Bruggraber, S. F. A., Shewry, P. R., Fairweather-Tait, S. (2019). Estimation of the iron bioavailability in green vegetables using an in vitro digestion/Caco-2 cell model. Food Chemistry, 301, 125292. https://doi.org/10.1016/ j.foodchem.2019.125292
  • Sezer, B., Apaydin, H., Bilge, G., Boyaci, I. H. (2018). Coffee arabica adulteration: Detection of wheat, corn and chickpea. Food Chemistry, 264(January), 142–148. https://doi.org/10.1016/ j.foodchem.2018.05.037
  • Shi, M., Gu, J., Wu, H., Rauf, A., Emran, T. Bin, Khan, Z., Mitra, S., Aljohani, A. S. M., Alhumaydhi, F. A., Al-awthan, Y. S., Bahattab, O. (2022). Health Benefits in Lettuce — A Comprehensive Review. Antioxidants , 11(1158), 23.
  • Singh, A., Bains, K., Kaur, H. (2016). Effect of inclusion of key foods on in vitro iron bioaccessibility in composite meals. Journal of Food Science and Technology, 53(4), 2033–2039. https://doi.org/10.1007/s13197-015-2154-z
  • Song, J., Huang, H., Hao, Y., Song, S., Zhang, Y., Su, W., Liu, H. (2020). Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59574-3
  • Tokalıoğlu, Ş. (2023). Bioaccessibility of Cu, Mn, Fe, and Zn in Fruit and Vegetables by the In Vitro UBM and Statistical Evaluation of the Results. Biological Trace Element Research, 201(3), 1538–1546. https://doi.org/10.1007/s12011-022-03253-z

EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES

Year 2025, Volume: 50 Issue: 5, 713 - 722, 15.10.2025
https://doi.org/10.15237/gida.GD25037

Abstract

Vegetables are vital sources of dietary minerals, particularly for individuals following plant-based diets. However, the total mineral content does not necessarily reflect its bioaccessibility, which determines the proportion available for absorption in the gastrointestinal tract. This study evaluates the elemental composition and in-vitro mineral bioaccessibility of commonly consumed vegetables, including spinach (Spinacia oleracea), lettuce (Lactuca sativa), cucumber (Cucumis sativus), broccoli (Brassica oleracea), and parsley (Petroselinum crispum). Mineral concentrations of K, Mg, Ca, Na, Fe, Mn, and Zn were quantified using ICP-OES following microwave-assisted digestion. An in-vitro digestion model simulated gastric and intestinal conditions. The highest Fe bioaccessibility was 18.82%, while K, Mg, and Ca were most bioaccessible in cucumber (21.9%), lettuce (25.09%), and parsley (23.42%), respectively. These findings highlight the importance of considering bioaccessibility in nutritional assessments. Future studies should investigate the effects of cooking methods and soil composition on mineral bioavailability to improve dietary recommendations.

Supporting Institution

TUBITAK

Project Number

1919B012305356

Thanks

This study was derived from the project titled “Vegan – Vejetaryen Beslenme Eğilimlerinde Sıklıkla Kullanılan Yeşil Sebzelerin In-Vitro Mineral Biyoyararlanımının Değerlendirilmesi (Project no: 1919B012305356)”, which was supported under the “TÜBİTAK–2209-A Üniversite Öğrencileri Araştırma Projeleri Desteği Programı”.

References

  • Aghili, F., Khoshgoftarmanesh, A. H., Afyuni, M., Mobli, M. (2009). Relationships between fruit mineral nutrients concentrations and some fruit quality attributes in greenhouse cucumber. Journal of Plant Nutrition, 32(12), 1994–2007. https://doi.org/10.1080/01904160903308119
  • Amalraj, A., Pius, A. (2015). In vitro study on the bioavailability of calcium and its absorption inhibitors in raw and cooked pulses commonly consumed in India. International Food Research Journal, 22(4), 1525–1532.
  • Apaydın, H., Demirci, M., Bölük, E., Kopuk, B., Palabiyik, I. (2024). Effect of different roasting conditions on the physicochemical properties, acrylamide concentration, and mineral bioaccessibility of nuts. Food Bioscience, 58, 103646. https://doi.org/10.1016/j.fbio.2024.103646
  • Aribas, M., Kahraman, K., Koksel, H. (2020). Effects of resistant starch type 4 supplementation of bread on in vitro glycemic index value, bile acid-binding capacity, and mineral bioavailability. Cereal Chemistry, 97(2), 163–171. https://doi.org/10.1002/cche.10229
  • Atta-Aly, M. A. (1999). Effect of nickel addition on the yield and quality of parsley leaves. Scientia Horticulturae, 82(1–2), 9–24. https://doi.org/ 10.1016/S0304-4238(99)00032-1
  • Buturi, C. V., Mauro, R. P., Fogliano, V., Leonardi, C., Giuffrida, F. (2021). Mineral biofortification of vegetables as a tool to improve human diet. Foods, 10(2), 1–23. https://doi.org/ 10.3390/foods10020223
  • Ceccanti, C., Guidi, L., D’Alessandro, C., Cupisti, A. (2022). Potassium Bioaccessibility in Uncooked and Cooked Plant Foods: Results from a Static In Vitro Digestion Methodology. Toxins, 14(10). https://doi.org/10.3390/toxins14100668
  • Choleva, T. G., Tziasiou, C., Gouma, V., Vlessidis, A. G., Giokas, D. L. (2023). In Vitro Assessment of the Physiologically Relevant Oral Bioaccessibility of Metallic Elements in Edible Herbs Using the Unified Bioaccessibility Protocol. Molecules, 28(14). https://doi.org/ 10.3390/molecules28145396
  • do Nascimento da Silva, E., Cadore, S. (2019). Bioavailability Assessment of Copper, Iron, Manganese, Molybdenum, Selenium, and Zinc from Selenium-Enriched Lettuce. Journal of Food Science, 84(10), 2840–2846. https://doi.org/ 10.1111/1750-3841.14785
  • do Nascimento da Silva, E., Heerdt, G., Cidade, M., Pereira, C. D., Morgon, N. H., Cadore, S. (2015). Use of in vitro digestion method and theoretical calculations to evaluate the bioaccessibility of Al, Cd, Fe and Zn in lettuce and cole by inductively coupled plasma mass spectrometry. Microchemical Journal, 119, 152–158. https://doi.org/10.1016/j.microc.2014.12.002
  • Doniec, J., Florkiewicz, A., Duliński, R., Filipiak-Florkiewicz, A. (2022). Impact of Hydrothermal Treatments on Nutritional Value and Mineral Bioaccessibility of Brussels Sprouts (Brassica oleracea var. gemmifera). Molecules, 27(6). https://doi.org/10.3390/molecules27061861
  • Etcheverry, P., Wallingford, J. C., Miller, D. D., Glahn, R. P. (2004). Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: A comparison study. Journal of Dairy Science, 87(11), 3629–3637. https://doi.org/ 10.3168/jds.S0022-0302(04)73501-8
  • Fernández-García, E., Carvajal-Lérida, I., Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751–760. https://doi.org/10.1016/j.nutres.2009.09.016
  • Hayes, M., Pottorff, M., Kay, C., Van Deynze, A., Osorio-Marin, J., Lila, M. A., Iorrizo, M., Ferruzzi, M. G. (2020). In Vitro Bioaccessibility of Carotenoids and Chlorophylls in a Diverse Collection of Spinach Accessions and Commercial Cultivars. Journal of Agricultural and Food Chemistry, 68(11), 3495–3505. https://doi.org/10.1021/acs.jafc.0c00158
  • International, A., of official analytical chemists international, A., Horwitz, W., Latimer, ed, Latimer, G. W. (2012). Official Methods of Analysis of AOAC International (Issue 1. c.). AOAC International. https://books.google.com.tr/ books?id=kPe4NAEACAAJ
  • Ismail, T., Akhtar, S., Qamar, M., Esatbeyoglu, T., Sestili, P., Saeed, W., Lazarte, C. E. (2024). Effect of crop maturity stages and lactic acid fermentation on nutrient absorption properties, and bioaccessibility of Fe, Zn and Ca in Spinacia oleracea L. Journal of Food Composition and Analysis, 133(June), 106427. https://doi.org/10.1016/ j.jfca.2024.106427
  • Khouzam, R. B., Pohl, P., Lobinski, R. (2011). Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta, 86(1), 425–428. https://doi.org/10.1016/ j.talanta.2011.08.049
  • Klepacka, J., Najda, A., Klimek, K. (2020). Effect of buckwheat groats processing on the content and bioaccessibility of selected minerals. Foods, 9(6). https://doi.org/10.3390/foods9060832
  • Lafarga, T., Gallagher, E., Bademunt, A., Viñas, I., Bobo, G., Villaró, S., Aguiló-Aguayo, I. (2019). Bioaccessibility, physicochemical, sensorial, and nutritional characteristics of bread containing broccoli co-products. Journal of Food Processing and Preservation, 43(2), 1–11. https://doi.org/ 10.1111/jfpp.13861
  • Liu, C., Wu, L., Xue, Y., Liu, F., Sun, S., Wang, L. (2018). Effect of cooking methods on bioaccessibility of Zn, Se, Cd, Cu in sea cucumber (Apostichopus japonicus). Food Science and Biotechnology, 27(3), 899–904. https://doi.org/ 10.1007/s10068-017-0298-5
  • Muleya, M., F. Bailey, E., H. Bailey, E. (2024). A comparison of the bioaccessible calcium supplies of various plant-based products relative to bovine milk. Food Research International, 175, 113795.https://doi.org/10.1016/j.foodres.2023.113795
  • Ololade, I. A., Akindumila, O. I., Oloyede, O. J., Asanga, O. P., Ololade, O. O., Oladoja, N. A. (2025). Exploring the influence of household cooking energy sources on trace metal bioavailability in cobwebs: A health risk assessment. Journal of Environmental Chemical Engineering, 13(2), 115673. https://doi.org/ 10.1016/j.jece.2025.115673
  • Rodriguez-Ramiro, I., Dell’Aquila, C., Ward, J. L., Neal, A. L., Bruggraber, S. F. A., Shewry, P. R., Fairweather-Tait, S. (2019). Estimation of the iron bioavailability in green vegetables using an in vitro digestion/Caco-2 cell model. Food Chemistry, 301, 125292. https://doi.org/10.1016/ j.foodchem.2019.125292
  • Sezer, B., Apaydin, H., Bilge, G., Boyaci, I. H. (2018). Coffee arabica adulteration: Detection of wheat, corn and chickpea. Food Chemistry, 264(January), 142–148. https://doi.org/10.1016/ j.foodchem.2018.05.037
  • Shi, M., Gu, J., Wu, H., Rauf, A., Emran, T. Bin, Khan, Z., Mitra, S., Aljohani, A. S. M., Alhumaydhi, F. A., Al-awthan, Y. S., Bahattab, O. (2022). Health Benefits in Lettuce — A Comprehensive Review. Antioxidants , 11(1158), 23.
  • Singh, A., Bains, K., Kaur, H. (2016). Effect of inclusion of key foods on in vitro iron bioaccessibility in composite meals. Journal of Food Science and Technology, 53(4), 2033–2039. https://doi.org/10.1007/s13197-015-2154-z
  • Song, J., Huang, H., Hao, Y., Song, S., Zhang, Y., Su, W., Liu, H. (2020). Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59574-3
  • Tokalıoğlu, Ş. (2023). Bioaccessibility of Cu, Mn, Fe, and Zn in Fruit and Vegetables by the In Vitro UBM and Statistical Evaluation of the Results. Biological Trace Element Research, 201(3), 1538–1546. https://doi.org/10.1007/s12011-022-03253-z
There are 28 citations in total.

Details

Primary Language English
Subjects Food Nutritional Balance, Food Engineering
Journal Section Articles
Authors

Hakan Apaydin 0000-0001-8507-6212

Ahmet Serhat Afşar 0009-0005-2515-2144

Project Number 1919B012305356
Publication Date October 15, 2025
Submission Date March 4, 2025
Acceptance Date August 30, 2025
Published in Issue Year 2025 Volume: 50 Issue: 5

Cite

APA Apaydin, H., & Afşar, A. S. (2025). EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES. Gıda, 50(5), 713-722. https://doi.org/10.15237/gida.GD25037
AMA Apaydin H, Afşar AS. EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES. The Journal of Food. October 2025;50(5):713-722. doi:10.15237/gida.GD25037
Chicago Apaydin, Hakan, and Ahmet Serhat Afşar. “EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES”. Gıda 50, no. 5 (October 2025): 713-22. https://doi.org/10.15237/gida.GD25037.
EndNote Apaydin H, Afşar AS (October 1, 2025) EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES. Gıda 50 5 713–722.
IEEE H. Apaydin and A. S. Afşar, “EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES”, The Journal of Food, vol. 50, no. 5, pp. 713–722, 2025, doi: 10.15237/gida.GD25037.
ISNAD Apaydin, Hakan - Afşar, Ahmet Serhat. “EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES”. Gıda 50/5 (October2025), 713-722. https://doi.org/10.15237/gida.GD25037.
JAMA Apaydin H, Afşar AS. EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES. The Journal of Food. 2025;50:713–722.
MLA Apaydin, Hakan and Ahmet Serhat Afşar. “EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES”. Gıda, vol. 50, no. 5, 2025, pp. 713-22, doi:10.15237/gida.GD25037.
Vancouver Apaydin H, Afşar AS. EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES. The Journal of Food. 2025;50(5):713-22.