Araştırma Makalesi
BibTex RIS Kaynak Göster

YAYGIN OLARAK TÜKETİLEN SEBZELERİN İN-VİTRO MİNERAL BİYOERİŞİLEBİLİRLİĞİNİN DEĞERLENDİRİLMESİ

Yıl 2025, Cilt: 50 Sayı: 5, 713 - 722, 15.10.2025
https://doi.org/10.15237/gida.GD25037

Öz

Sebzeler, özellikle bitkisel bazlı diyetleri takip eden bireyler için önemli mineral kaynaklarıdır. Ancak toplam mineral içeriği, minerallerin mide-bağırsak sisteminde emilim için ne kadar erişilebilir olduğunu ifade eden biyoerişilebilirliği doğrudan yansıtmaz. Bu çalışma, yaygın olarak tüketilen ıspanak (Spinacia oleracea), marul (Lactuca sativa), salatalık (Cucumis sativus), brokoli (Brassica oleracea), ve maydanoz (Petroselinum crispum) gibi sebzelerin elementel kompozisyonu ve in-vitro mineral biyoerişilebilirliğini değerlendirmektedir. K, Mg, Ca, Na, Fe, Mn ve Zn konsantrasyonları, mikrodalga destekli sindirim sonrası ICP-OES kullanılarak analiz edilmiştir. İn-vitro sindirim modeli, mide ve bağırsak koşullarını simüle etmiştir. En yüksek Fe biyoerişilebilirliği %18.82, en yüksek K, Mg ve Ca biyoerişilebilirlikleri sırasıyla salatalık (%21.9), marul (%25.09) ve maydanozda (%23.42) gözlemlenmiştir. Bu sonuçlar, beslenme değerlendirmelerinde biyoerişilebilirliğin dikkate alınması gerektiğini vurgulamaktadır. Gelecek çalışmalar, pişirme yöntemleri ve toprak bileşiminin mineral biyoyararlanımı üzerindeki etkilerini incelemelidir.

Proje Numarası

1919B012305356

Kaynakça

  • Aghili, F., Khoshgoftarmanesh, A. H., Afyuni, M., Mobli, M. (2009). Relationships between fruit mineral nutrients concentrations and some fruit quality attributes in greenhouse cucumber. Journal of Plant Nutrition, 32(12), 1994–2007. https://doi.org/10.1080/01904160903308119
  • Amalraj, A., Pius, A. (2015). In vitro study on the bioavailability of calcium and its absorption inhibitors in raw and cooked pulses commonly consumed in India. International Food Research Journal, 22(4), 1525–1532.
  • Apaydın, H., Demirci, M., Bölük, E., Kopuk, B., Palabiyik, I. (2024). Effect of different roasting conditions on the physicochemical properties, acrylamide concentration, and mineral bioaccessibility of nuts. Food Bioscience, 58, 103646. https://doi.org/10.1016/j.fbio.2024.103646
  • Aribas, M., Kahraman, K., Koksel, H. (2020). Effects of resistant starch type 4 supplementation of bread on in vitro glycemic index value, bile acid-binding capacity, and mineral bioavailability. Cereal Chemistry, 97(2), 163–171. https://doi.org/10.1002/cche.10229
  • Atta-Aly, M. A. (1999). Effect of nickel addition on the yield and quality of parsley leaves. Scientia Horticulturae, 82(1–2), 9–24. https://doi.org/ 10.1016/S0304-4238(99)00032-1
  • Buturi, C. V., Mauro, R. P., Fogliano, V., Leonardi, C., Giuffrida, F. (2021). Mineral biofortification of vegetables as a tool to improve human diet. Foods, 10(2), 1–23. https://doi.org/ 10.3390/foods10020223
  • Ceccanti, C., Guidi, L., D’Alessandro, C., Cupisti, A. (2022). Potassium Bioaccessibility in Uncooked and Cooked Plant Foods: Results from a Static In Vitro Digestion Methodology. Toxins, 14(10). https://doi.org/10.3390/toxins14100668
  • Choleva, T. G., Tziasiou, C., Gouma, V., Vlessidis, A. G., Giokas, D. L. (2023). In Vitro Assessment of the Physiologically Relevant Oral Bioaccessibility of Metallic Elements in Edible Herbs Using the Unified Bioaccessibility Protocol. Molecules, 28(14). https://doi.org/ 10.3390/molecules28145396
  • do Nascimento da Silva, E., Cadore, S. (2019). Bioavailability Assessment of Copper, Iron, Manganese, Molybdenum, Selenium, and Zinc from Selenium-Enriched Lettuce. Journal of Food Science, 84(10), 2840–2846. https://doi.org/ 10.1111/1750-3841.14785
  • do Nascimento da Silva, E., Heerdt, G., Cidade, M., Pereira, C. D., Morgon, N. H., Cadore, S. (2015). Use of in vitro digestion method and theoretical calculations to evaluate the bioaccessibility of Al, Cd, Fe and Zn in lettuce and cole by inductively coupled plasma mass spectrometry. Microchemical Journal, 119, 152–158. https://doi.org/10.1016/j.microc.2014.12.002
  • Doniec, J., Florkiewicz, A., Duliński, R., Filipiak-Florkiewicz, A. (2022). Impact of Hydrothermal Treatments on Nutritional Value and Mineral Bioaccessibility of Brussels Sprouts (Brassica oleracea var. gemmifera). Molecules, 27(6). https://doi.org/10.3390/molecules27061861
  • Etcheverry, P., Wallingford, J. C., Miller, D. D., Glahn, R. P. (2004). Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: A comparison study. Journal of Dairy Science, 87(11), 3629–3637. https://doi.org/ 10.3168/jds.S0022-0302(04)73501-8
  • Fernández-García, E., Carvajal-Lérida, I., Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751–760. https://doi.org/10.1016/j.nutres.2009.09.016
  • Hayes, M., Pottorff, M., Kay, C., Van Deynze, A., Osorio-Marin, J., Lila, M. A., Iorrizo, M., Ferruzzi, M. G. (2020). In Vitro Bioaccessibility of Carotenoids and Chlorophylls in a Diverse Collection of Spinach Accessions and Commercial Cultivars. Journal of Agricultural and Food Chemistry, 68(11), 3495–3505. https://doi.org/10.1021/acs.jafc.0c00158
  • International, A., of official analytical chemists international, A., Horwitz, W., Latimer, ed, Latimer, G. W. (2012). Official Methods of Analysis of AOAC International (Issue 1. c.). AOAC International. https://books.google.com.tr/ books?id=kPe4NAEACAAJ
  • Ismail, T., Akhtar, S., Qamar, M., Esatbeyoglu, T., Sestili, P., Saeed, W., Lazarte, C. E. (2024). Effect of crop maturity stages and lactic acid fermentation on nutrient absorption properties, and bioaccessibility of Fe, Zn and Ca in Spinacia oleracea L. Journal of Food Composition and Analysis, 133(June), 106427. https://doi.org/10.1016/ j.jfca.2024.106427
  • Khouzam, R. B., Pohl, P., Lobinski, R. (2011). Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta, 86(1), 425–428. https://doi.org/10.1016/ j.talanta.2011.08.049
  • Klepacka, J., Najda, A., Klimek, K. (2020). Effect of buckwheat groats processing on the content and bioaccessibility of selected minerals. Foods, 9(6). https://doi.org/10.3390/foods9060832
  • Lafarga, T., Gallagher, E., Bademunt, A., Viñas, I., Bobo, G., Villaró, S., Aguiló-Aguayo, I. (2019). Bioaccessibility, physicochemical, sensorial, and nutritional characteristics of bread containing broccoli co-products. Journal of Food Processing and Preservation, 43(2), 1–11. https://doi.org/ 10.1111/jfpp.13861
  • Liu, C., Wu, L., Xue, Y., Liu, F., Sun, S., Wang, L. (2018). Effect of cooking methods on bioaccessibility of Zn, Se, Cd, Cu in sea cucumber (Apostichopus japonicus). Food Science and Biotechnology, 27(3), 899–904. https://doi.org/ 10.1007/s10068-017-0298-5
  • Muleya, M., F. Bailey, E., H. Bailey, E. (2024). A comparison of the bioaccessible calcium supplies of various plant-based products relative to bovine milk. Food Research International, 175, 113795.https://doi.org/10.1016/j.foodres.2023.113795
  • Ololade, I. A., Akindumila, O. I., Oloyede, O. J., Asanga, O. P., Ololade, O. O., Oladoja, N. A. (2025). Exploring the influence of household cooking energy sources on trace metal bioavailability in cobwebs: A health risk assessment. Journal of Environmental Chemical Engineering, 13(2), 115673. https://doi.org/ 10.1016/j.jece.2025.115673
  • Rodriguez-Ramiro, I., Dell’Aquila, C., Ward, J. L., Neal, A. L., Bruggraber, S. F. A., Shewry, P. R., Fairweather-Tait, S. (2019). Estimation of the iron bioavailability in green vegetables using an in vitro digestion/Caco-2 cell model. Food Chemistry, 301, 125292. https://doi.org/10.1016/ j.foodchem.2019.125292
  • Sezer, B., Apaydin, H., Bilge, G., Boyaci, I. H. (2018). Coffee arabica adulteration: Detection of wheat, corn and chickpea. Food Chemistry, 264(January), 142–148. https://doi.org/10.1016/ j.foodchem.2018.05.037
  • Shi, M., Gu, J., Wu, H., Rauf, A., Emran, T. Bin, Khan, Z., Mitra, S., Aljohani, A. S. M., Alhumaydhi, F. A., Al-awthan, Y. S., Bahattab, O. (2022). Health Benefits in Lettuce — A Comprehensive Review. Antioxidants , 11(1158), 23.
  • Singh, A., Bains, K., Kaur, H. (2016). Effect of inclusion of key foods on in vitro iron bioaccessibility in composite meals. Journal of Food Science and Technology, 53(4), 2033–2039. https://doi.org/10.1007/s13197-015-2154-z
  • Song, J., Huang, H., Hao, Y., Song, S., Zhang, Y., Su, W., Liu, H. (2020). Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59574-3
  • Tokalıoğlu, Ş. (2023). Bioaccessibility of Cu, Mn, Fe, and Zn in Fruit and Vegetables by the In Vitro UBM and Statistical Evaluation of the Results. Biological Trace Element Research, 201(3), 1538–1546. https://doi.org/10.1007/s12011-022-03253-z

EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES

Yıl 2025, Cilt: 50 Sayı: 5, 713 - 722, 15.10.2025
https://doi.org/10.15237/gida.GD25037

Öz

Vegetables are vital sources of dietary minerals, particularly for individuals following plant-based diets. However, the total mineral content does not necessarily reflect its bioaccessibility, which determines the proportion available for absorption in the gastrointestinal tract. This study evaluates the elemental composition and in-vitro mineral bioaccessibility of commonly consumed vegetables, including spinach (Spinacia oleracea), lettuce (Lactuca sativa), cucumber (Cucumis sativus), broccoli (Brassica oleracea), and parsley (Petroselinum crispum). Mineral concentrations of K, Mg, Ca, Na, Fe, Mn, and Zn were quantified using ICP-OES following microwave-assisted digestion. An in-vitro digestion model simulated gastric and intestinal conditions. The highest Fe bioaccessibility was 18.82%, while K, Mg, and Ca were most bioaccessible in cucumber (21.9%), lettuce (25.09%), and parsley (23.42%), respectively. These findings highlight the importance of considering bioaccessibility in nutritional assessments. Future studies should investigate the effects of cooking methods and soil composition on mineral bioavailability to improve dietary recommendations.

Destekleyen Kurum

TUBITAK

Proje Numarası

1919B012305356

Teşekkür

This study was derived from the project titled “Vegan – Vejetaryen Beslenme Eğilimlerinde Sıklıkla Kullanılan Yeşil Sebzelerin In-Vitro Mineral Biyoyararlanımının Değerlendirilmesi (Project no: 1919B012305356)”, which was supported under the “TÜBİTAK–2209-A Üniversite Öğrencileri Araştırma Projeleri Desteği Programı”.

Kaynakça

  • Aghili, F., Khoshgoftarmanesh, A. H., Afyuni, M., Mobli, M. (2009). Relationships between fruit mineral nutrients concentrations and some fruit quality attributes in greenhouse cucumber. Journal of Plant Nutrition, 32(12), 1994–2007. https://doi.org/10.1080/01904160903308119
  • Amalraj, A., Pius, A. (2015). In vitro study on the bioavailability of calcium and its absorption inhibitors in raw and cooked pulses commonly consumed in India. International Food Research Journal, 22(4), 1525–1532.
  • Apaydın, H., Demirci, M., Bölük, E., Kopuk, B., Palabiyik, I. (2024). Effect of different roasting conditions on the physicochemical properties, acrylamide concentration, and mineral bioaccessibility of nuts. Food Bioscience, 58, 103646. https://doi.org/10.1016/j.fbio.2024.103646
  • Aribas, M., Kahraman, K., Koksel, H. (2020). Effects of resistant starch type 4 supplementation of bread on in vitro glycemic index value, bile acid-binding capacity, and mineral bioavailability. Cereal Chemistry, 97(2), 163–171. https://doi.org/10.1002/cche.10229
  • Atta-Aly, M. A. (1999). Effect of nickel addition on the yield and quality of parsley leaves. Scientia Horticulturae, 82(1–2), 9–24. https://doi.org/ 10.1016/S0304-4238(99)00032-1
  • Buturi, C. V., Mauro, R. P., Fogliano, V., Leonardi, C., Giuffrida, F. (2021). Mineral biofortification of vegetables as a tool to improve human diet. Foods, 10(2), 1–23. https://doi.org/ 10.3390/foods10020223
  • Ceccanti, C., Guidi, L., D’Alessandro, C., Cupisti, A. (2022). Potassium Bioaccessibility in Uncooked and Cooked Plant Foods: Results from a Static In Vitro Digestion Methodology. Toxins, 14(10). https://doi.org/10.3390/toxins14100668
  • Choleva, T. G., Tziasiou, C., Gouma, V., Vlessidis, A. G., Giokas, D. L. (2023). In Vitro Assessment of the Physiologically Relevant Oral Bioaccessibility of Metallic Elements in Edible Herbs Using the Unified Bioaccessibility Protocol. Molecules, 28(14). https://doi.org/ 10.3390/molecules28145396
  • do Nascimento da Silva, E., Cadore, S. (2019). Bioavailability Assessment of Copper, Iron, Manganese, Molybdenum, Selenium, and Zinc from Selenium-Enriched Lettuce. Journal of Food Science, 84(10), 2840–2846. https://doi.org/ 10.1111/1750-3841.14785
  • do Nascimento da Silva, E., Heerdt, G., Cidade, M., Pereira, C. D., Morgon, N. H., Cadore, S. (2015). Use of in vitro digestion method and theoretical calculations to evaluate the bioaccessibility of Al, Cd, Fe and Zn in lettuce and cole by inductively coupled plasma mass spectrometry. Microchemical Journal, 119, 152–158. https://doi.org/10.1016/j.microc.2014.12.002
  • Doniec, J., Florkiewicz, A., Duliński, R., Filipiak-Florkiewicz, A. (2022). Impact of Hydrothermal Treatments on Nutritional Value and Mineral Bioaccessibility of Brussels Sprouts (Brassica oleracea var. gemmifera). Molecules, 27(6). https://doi.org/10.3390/molecules27061861
  • Etcheverry, P., Wallingford, J. C., Miller, D. D., Glahn, R. P. (2004). Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: A comparison study. Journal of Dairy Science, 87(11), 3629–3637. https://doi.org/ 10.3168/jds.S0022-0302(04)73501-8
  • Fernández-García, E., Carvajal-Lérida, I., Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751–760. https://doi.org/10.1016/j.nutres.2009.09.016
  • Hayes, M., Pottorff, M., Kay, C., Van Deynze, A., Osorio-Marin, J., Lila, M. A., Iorrizo, M., Ferruzzi, M. G. (2020). In Vitro Bioaccessibility of Carotenoids and Chlorophylls in a Diverse Collection of Spinach Accessions and Commercial Cultivars. Journal of Agricultural and Food Chemistry, 68(11), 3495–3505. https://doi.org/10.1021/acs.jafc.0c00158
  • International, A., of official analytical chemists international, A., Horwitz, W., Latimer, ed, Latimer, G. W. (2012). Official Methods of Analysis of AOAC International (Issue 1. c.). AOAC International. https://books.google.com.tr/ books?id=kPe4NAEACAAJ
  • Ismail, T., Akhtar, S., Qamar, M., Esatbeyoglu, T., Sestili, P., Saeed, W., Lazarte, C. E. (2024). Effect of crop maturity stages and lactic acid fermentation on nutrient absorption properties, and bioaccessibility of Fe, Zn and Ca in Spinacia oleracea L. Journal of Food Composition and Analysis, 133(June), 106427. https://doi.org/10.1016/ j.jfca.2024.106427
  • Khouzam, R. B., Pohl, P., Lobinski, R. (2011). Bioaccessibility of essential elements from white cheese, bread, fruit and vegetables. Talanta, 86(1), 425–428. https://doi.org/10.1016/ j.talanta.2011.08.049
  • Klepacka, J., Najda, A., Klimek, K. (2020). Effect of buckwheat groats processing on the content and bioaccessibility of selected minerals. Foods, 9(6). https://doi.org/10.3390/foods9060832
  • Lafarga, T., Gallagher, E., Bademunt, A., Viñas, I., Bobo, G., Villaró, S., Aguiló-Aguayo, I. (2019). Bioaccessibility, physicochemical, sensorial, and nutritional characteristics of bread containing broccoli co-products. Journal of Food Processing and Preservation, 43(2), 1–11. https://doi.org/ 10.1111/jfpp.13861
  • Liu, C., Wu, L., Xue, Y., Liu, F., Sun, S., Wang, L. (2018). Effect of cooking methods on bioaccessibility of Zn, Se, Cd, Cu in sea cucumber (Apostichopus japonicus). Food Science and Biotechnology, 27(3), 899–904. https://doi.org/ 10.1007/s10068-017-0298-5
  • Muleya, M., F. Bailey, E., H. Bailey, E. (2024). A comparison of the bioaccessible calcium supplies of various plant-based products relative to bovine milk. Food Research International, 175, 113795.https://doi.org/10.1016/j.foodres.2023.113795
  • Ololade, I. A., Akindumila, O. I., Oloyede, O. J., Asanga, O. P., Ololade, O. O., Oladoja, N. A. (2025). Exploring the influence of household cooking energy sources on trace metal bioavailability in cobwebs: A health risk assessment. Journal of Environmental Chemical Engineering, 13(2), 115673. https://doi.org/ 10.1016/j.jece.2025.115673
  • Rodriguez-Ramiro, I., Dell’Aquila, C., Ward, J. L., Neal, A. L., Bruggraber, S. F. A., Shewry, P. R., Fairweather-Tait, S. (2019). Estimation of the iron bioavailability in green vegetables using an in vitro digestion/Caco-2 cell model. Food Chemistry, 301, 125292. https://doi.org/10.1016/ j.foodchem.2019.125292
  • Sezer, B., Apaydin, H., Bilge, G., Boyaci, I. H. (2018). Coffee arabica adulteration: Detection of wheat, corn and chickpea. Food Chemistry, 264(January), 142–148. https://doi.org/10.1016/ j.foodchem.2018.05.037
  • Shi, M., Gu, J., Wu, H., Rauf, A., Emran, T. Bin, Khan, Z., Mitra, S., Aljohani, A. S. M., Alhumaydhi, F. A., Al-awthan, Y. S., Bahattab, O. (2022). Health Benefits in Lettuce — A Comprehensive Review. Antioxidants , 11(1158), 23.
  • Singh, A., Bains, K., Kaur, H. (2016). Effect of inclusion of key foods on in vitro iron bioaccessibility in composite meals. Journal of Food Science and Technology, 53(4), 2033–2039. https://doi.org/10.1007/s13197-015-2154-z
  • Song, J., Huang, H., Hao, Y., Song, S., Zhang, Y., Su, W., Liu, H. (2020). Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59574-3
  • Tokalıoğlu, Ş. (2023). Bioaccessibility of Cu, Mn, Fe, and Zn in Fruit and Vegetables by the In Vitro UBM and Statistical Evaluation of the Results. Biological Trace Element Research, 201(3), 1538–1546. https://doi.org/10.1007/s12011-022-03253-z
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda ve Beslenme Dengesi, Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Hakan Apaydin 0000-0001-8507-6212

Ahmet Serhat Afşar 0009-0005-2515-2144

Proje Numarası 1919B012305356
Yayımlanma Tarihi 15 Ekim 2025
Gönderilme Tarihi 4 Mart 2025
Kabul Tarihi 30 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 5

Kaynak Göster

APA Apaydin, H., & Afşar, A. S. (2025). EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES. Gıda, 50(5), 713-722. https://doi.org/10.15237/gida.GD25037
AMA Apaydin H, Afşar AS. EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES. GIDA. Ekim 2025;50(5):713-722. doi:10.15237/gida.GD25037
Chicago Apaydin, Hakan, ve Ahmet Serhat Afşar. “EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES”. Gıda 50, sy. 5 (Ekim 2025): 713-22. https://doi.org/10.15237/gida.GD25037.
EndNote Apaydin H, Afşar AS (01 Ekim 2025) EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES. Gıda 50 5 713–722.
IEEE H. Apaydin ve A. S. Afşar, “EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES”, GIDA, c. 50, sy. 5, ss. 713–722, 2025, doi: 10.15237/gida.GD25037.
ISNAD Apaydin, Hakan - Afşar, Ahmet Serhat. “EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES”. Gıda 50/5 (Ekim2025), 713-722. https://doi.org/10.15237/gida.GD25037.
JAMA Apaydin H, Afşar AS. EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES. GIDA. 2025;50:713–722.
MLA Apaydin, Hakan ve Ahmet Serhat Afşar. “EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES”. Gıda, c. 50, sy. 5, 2025, ss. 713-22, doi:10.15237/gida.GD25037.
Vancouver Apaydin H, Afşar AS. EVALUATION OF IN-VITRO MINERAL BIOACCESSIBILITY OF COMMONLY CONSUMED VEGETABLES. GIDA. 2025;50(5):713-22.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/