Review
BibTex RIS Cite

Probiyotik mikroorganizmaların mikroenkapsülasyonunda kullanılan materyal ve yöntemler

Year 2024, Issue: 31, 33 - 49, 13.02.2024
https://doi.org/10.56833/gidaveyem.1430779

Abstract

Amaç: Fonksiyonel gıdaların önemli bir kısmını oluşturan probiyotik mikroorganizmalar insan sağlığına faydalı olduğu kanıtlanmış canlılardır. Ancak çoğu zaman gıda üretim aşamalarında maruz kaldıkları çeşitli dejeneratif işlemler nedeniyle insan gastrointestinal sistemine ulaşamadan canlılıklarını tamamen veya kısmen kaybederler. Canlılığını koruyabilenler sindirim sisteminde yıkıcı biyoproseslere maruz kalırlar.
Sonuç: Teknolojik bir paketleme işlemi olarak değerlendirebileceğimiz mikroenkapsülasyon yöntemi ile probiyotik mikroorganizmaların canlılıklarını optimum düzeyde koruyarak hedef noktaya ulaşmasını sağlamak mümkündür. Bu çalışmada probiyotik mikroorganizmalara uygulanan mikroenkapsülasyon yöntemleri ve kullanılan kaplama malzemeleri hakkında bilgi verilmektedir.

References

  • Açu, M. (2014). Fonksiyonel özellikleri geliştirilmiş dondurma üretimi (Master's thesis, Ege Üniversitesi).
  • Afzaal, M., Saeed, F., Arshad, M. U., Nadeem, M. T., Saeed, M., and Tufail, T. (2019). The effect of encapsulation on the stability of probiotic bacteria in ice cream and simulated gastrointestinal conditions. Probiotics and antimicrobial proteins, 11(4), 1348-1354.
  • Akpınar, A., Gizem, E. R. K., and Seven, A. (2019). Vegan ve vejetaryan beslenmede probiyotik bitkisel bazlı süt ürünlerinin yeri. Gıda, 44(3), 453-462.
  • Aloğlu, H. Ş., and Öner, Z. (2010). Peyniraltı suyu proteinlerinin mikroenkapsülasyon teknolojisinde kaplama materyali olarak kullanım olanakları. Akademik Gıda, 8(3), 38-42.
  • Altındiş, M., and Yılmaz, K. (2017). Sindirim sistemi mikrobiyotası ve fekal transplantasyon. Nobel Medicus, 13(1), 9–15.
  • Altun, B., and Özcan, T. (2013). Süt ürünlerinde probiyotik bakterilerin mikroenkapsülasyonu II: kaplama materyalleri ve süt ürünlerinde uygulamalar. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 27(2), 105-114.
  • Amin, T., Thakur, M., and Jain, S. (2013). Microencapsulation-the future of probiotic cultures. Journal of Microbiology, Biotechnology and Food Sciences, 9(1), 35–43.
  • Anonymous. (2004). Law No. 5179 on the Amendment and Adoption of the Decree-Law on the Production, Consumption and Inspection of Foods, Official Gazette Published: 05.06.2004-25483.
  • Anonymous. (2018). The Global Probiotics Markets.www.lumina-intelligence.com. (Erişim tarihi: 15.06.2020).
  • Anonymous. (2017). Turkish Food Codex. Regulation on Nutrition and 844 Health Claims. Appendix 2: List of health claims, excluding statements on disease risk reduction, child development and health. Ministry of Food, Agriculture and Livestock. Official Gazette dated 26 January 2017 and numbered 847 29960, Ankara.
  • Anonymous. (2020). http://www.gidabilgi.com/Makale/Detay/mikroenkapsulasyon-teknolojisi-206667 (Erişim tarihi: 15.06.2020).
  • Anselmo AC, McHugh KJ, Webster J, and Langer R, Jaklenec A. (2016). Layer-by-Layer Encapsulation of Probiotics for Delivery to the Microbiome. Advanced Materials, 28(43): 9486–90.
  • Arslan-Tontul, S., and Erbas, M. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT-Food Science and Technology, 81, 160-169.
  • Arvanitoyannis, I. S., and Van Houwelingen-Koukaliaroglou, M. (2005). Functional foods: A survey of health claims, pros and cons, and current legislation. In Critical Reviews in Food Science and Nutrition (Vol. 45, Issue 5, pp. 385–404).
  • Bosnea, L. A., T. Moschakis, P. S. Nigam, and C. G. Biliaderis. (2017). Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT - Food Science and Technology, 77: 282–89.
  • Braber, N. V., Vergara, L. D., Rossi, Y. E., Aminahuel, C. A., Mauri, A. N., Cavaglieri, L. R., and Montenegro, M. A. (2020). Effect of microencapsulation in whey protein and water-soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions. LWT, 118, 108844.
  • Cencic, A., and Chingwaru, W. (2010). The role of functional foods, nutraceuticals, and food supplements in ıntestinal health. Nutrients, 2(6), 611–625.
  • Chen, J., Wang, Q., Liu, C. M., and Gong, J. (2017). Issues deserve attention in encapsulating probiotics: Critical review of existing literature. Critical Reviews in Food Science and Nutrition, 57(6), 1228-1238.
  • Chen, K. N., Chen, M. J., and Lin, C. W. (2006). Optimal combination of the encapsulating materials for probiotic microcapsules and its experimental verification (R1). Journal of Food Engineering, 76(3), 313-320.
  • Chen, L., and Subirade, M. (2007). Effect of preparation conditions on the nutrient release properties of alginate–whey protein granular microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 65(3), 354-362.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D., and Khutoryanskiy, V. V. (2014). Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels. International journal of pharmaceutics, 466(1-2), 400-408.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D., and Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of controlled release, 162(1), 56-67.
  • Çelikel, A., Göncü, B., Akın, M. B., and Akın, S. M. (2018). Süt ürünlerinde probiyotik bakterilerin canlılığını etkileyen faktörler. Batman Üniversitesi Journal of Life Sciences, 8(1), 59–68.
  • Dave, A., N. Joshi, and S. D. Purohit. (2004). In vitro propagation of Chlorophytum borivilianum using encapsulated shoot buds. European Journal of Horticultural Science, 69(1): 37–42.
  • de Araújo Etchepare, M., Nunes, G. L., Nicoloso, B. R., Barin, J. S., Flores, E. M. M., de Oliveira Mello, R., and de Menezes, C. R. (2020). Improvement of the viability of encapsulated probiotics using whey proteins. LWT, 117, 108601.
  • de Prisco, A., and Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trends in food science and technology, 48, 27-39.
  • Dodoo, C. C., Wang, J., Basit, A. W., Stapleton, P., and Gaisford, S. (2017). Targeted delivery of probiotics to enhance gastrointestinal stability and ıntestinal colonisation. International Journal of Pharmaceutics.
  • Doherty, S. B., Auty, M. A., Stanton, C., Ross, R. P., Fitzgerald, G. F., and Brodkorb, A. J. I. D. J. (2012). Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. International Dairy Journal, 22(1), 31-43.
  • Erem, F. (2019). Probiyotik fırın ürünleri üretim yöntemleri. Gıda, 44(3), 430–441.
  • Erginkaya, Z., Sarıkodal, E., Özkütük, S. T., Konuray, G., and Turhan, E. Ü. (2019). Probiyotik bitter çikolata üretiminde mikroenkapsüle Lactobacıllus rhamnosus kullanımı. Gıda/The Journal of Food, 44(2).
  • FAO/WHO (2001). Evaluation of Health and Nutritional Properties of Powder Milk and Live Lactic Acid Bacteria, Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report. www.fao.org/documents/pub_dett.asp?lang=en andpub_id=61756.
  • Geniş, B., and Tuncer, Y. (2019). Probiyotik kültürlerin mikroenkapsülasyonunda kullanılan farklı kaplama materyalleri ve yöntemler. Gıda, 44(6), 1222-1236.
  • González-Ferrero, C., Irache, J. M., and González-Navarro, C. J., (2018). Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chemistry, 239, 879-888.
  • Gökbulut, İ., and Öztürk, F. S. (2018). Gıda mikrokapsülasyonunda aljinat kullanımı. Batman Üniversitesi Yaşam Bilimleri Dergisi, 8(1/2), 16-28.
  • Haghshenas, B., Abdullah, N., Nami, Y., Radiah, D., Rosli, R., and Yari Khosroushahi, A. (2015). Microencapsulation of probiotic bacteria Lactobacillus plantarum 15 HN using alginate‐psyllium‐fenugreek polymeric blends. Journal of Applied Microbiology, 118(4), 1048-1057.
  • Heidebach, T., Först, P., and Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical reviews in food science and nutrition, 52(4), 291-311.
  • Hejazi, R., and Amiji, M. (2003). Chitosan-based gastrointestinal delivery systems. Journal of controlled release, 89(2), 151-165. http://www.gidabilgi.com/Makale/Detay/mikroenkapsulasyon-teknolojisi-206667(erişim 15.06.2020)
  • İşleyen, M. F. (2010). Mikroenkapsülasyon tekniğinin Lactobacillus acidophilus KPb4b ve Lactobacillus rhamnosus KPb7 probiyotik kültürlerinin stabilitesi üzerine etkilerinin araştırılması (Master's thesis, Fen Bilimleri Enstitüsü).
  • Koç, M., Sakin, M., and Kaymak-Ertekin, F. (2010). Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. Pamukkale University Journal of Engineering Sciences, 16(1).
  • Krasaekoopt, W., Bhandari, B., and Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14(8), 737-743.
  • Kumagai, H. (2014). Achievements and discoveries as to functional foods in Japan (813.14). The FASEB Journal, 28, 813-14.
  • Lee, Y., Ji, Y. R., Lee, S., Choi, M. J., and Cho, Y. (2019). Microencapsulation of probiotic Lactobacillus acidophilus kbl409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. J. Microbiol. Biotechnol, 29(5), 721730.
  • Li, R., Zhang, Y., Polk, D. B., Tomasula, P. M., Yan, F., and Liu, L. (2016). Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. Journal of Controlled Release, 230, 79-87.
  • Li, Y., Feng, C., Li, J., Mu, Y., Liu, Y., Kong, M., and Chen, X. (2017). Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells. International Journal of Biological Macromolecules, 105, 924-930.
  • Liu, Y., Sun, Y., Sun, L., and Wang, Y. (2016). In vitro and in vivo study of sodium polyacrylate grafted alginate as microcapsule matrix for live probiotic delivery. Journal of Functional Foods, 24, 429-437.
  • Marcial-Coba, M. S., Cieplak, T., Cahú, T. B., Blennow, A., Knøchel, S., and Nielsen, D. S. (2018). Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage. Food and Function, 9(11), 5868-5879.
  • Markowiak, P., and Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021.
  • Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., and Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies, 27, 15-25.
  • Merve, A. Ç. U., Yerlikaya, O., and Kınık, Ö. (2014). Mikroenkapsülasyon ve süt teknolojisindeki yeri. Akademik Gıda, 12(1), 97-107.
  • Mirtič, J., Rijavec, T., Zupančič, Š., Pobirk, A. Z., Lapanje, A., and Kristl, J. (2018). Development of probiotic-loaded microcapsules for local delivery: Physical properties, cell release and growth. European Journal of Pharmaceutical Sciences, 121, 178-187.
  • Muthukumarasamy, P., and Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111(2), 164-169.
  • Palamutoğlu, R., and Sariçoban, C. (2013). Probiyotik mikrororganizmaların mikroenkapsülasyonu. Academic Food Journal/Akademik Gıda, 11(1).
  • Pankasemsuk, T., Apichartsrangkoon, A., Worametrachanon, S., and Techarang, J. (2016). Encapsulation of Lactobacillus casei 01 by alginate along with hi-maize starch for exposure to a simulated gut model. Food Bioscience, 16, 32-36.
  • Pech-Canul, A. D. L. C., Ortega, D., García-Triana, A., and González-Silva, N. (2020). A brief review of edible coating materials for the microencapsulation of probiotics. Coatings, 10(3), 197.
  • Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., and Zhou, J. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature, 513(7516), 59-64.
  • Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., and Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. In Molecular Nutrition and Food Research.
  • Sarao, L. K., and Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition, 57(2), 344-371.
  • Shiby, V. K., and Mishra, H. N. (2013). Fermented milk and milk products as functional foods-A Review. In Critical Reviews in Food Science and Nutrition (Vol. 53, Issue 5, pp. 482–496). Taylor and Francis Group.
  • Speranza, B., Campaniello, D., Bevilacqua, A., Altieri, C., Sinigaglia, M., and Corbo, M. R. (2018). Viability of Lactobacillus plantarum on fresh-cut chitosan and alginate-coated apple and melon pieces. Frontiers in Microbiology, 9, 2538.
  • Uran, H., Şanlıdere Aloğlu, H., and Çetin, B. (2017). Probiyotik bakterilerin mikroenkapsülasyonu. Mediterranean Agricultural Sciences.
  • Ünal, E., and Erginkaya, Z. (2010). Probiyotik mikroorganizmaların mikroenkapsülasyonu. Gıda, 35(4), 297-304.
  • Wandrey, C., Bartkowiak, A., and Harding, S. E. (2010). Materials for encapsulation. Encapsulation technologies for active food ingredients and food processing, 31-100.
  • Yeung, T. W., Üçok, E. F., Tiani, K. A., McClements, D. J., and Sela, D. A., (2016). Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Frontiers in Microbiology, 7, 494.
  • Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., and Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857-874.
  • Zhang, L. D. H. (2020). Recent advances in probiotics encapsulation by electrospinning. ES Food and Agroforestry, 2, 3-12.

Materials and methods used in microencapsulation of probiotic microorganisms

Year 2024, Issue: 31, 33 - 49, 13.02.2024
https://doi.org/10.56833/gidaveyem.1430779

Abstract

Objective: Probiotic microorganisms which constitute an important part of functional foods are living creatures that have been proven to benefit human health. However, most of the time they lose their vitality entirely or partly before reaching the human gastrointestinal system due to the various degenerative processes that they are exposed to during food production stages. Those who have been able to maintain their vitality are exposed to destructive bioprocesses in the digestive system.
Conclusion: It is possible to provide the probiotic microorganisms to reach the target point by maintaining their vitality at an optimum level utilizing the microencapsulation method which we could consider as a technological packaging process. In this study, information is given about microencapsulation methods applied to probiotic microorganisms and the coating materials used.

References

  • Açu, M. (2014). Fonksiyonel özellikleri geliştirilmiş dondurma üretimi (Master's thesis, Ege Üniversitesi).
  • Afzaal, M., Saeed, F., Arshad, M. U., Nadeem, M. T., Saeed, M., and Tufail, T. (2019). The effect of encapsulation on the stability of probiotic bacteria in ice cream and simulated gastrointestinal conditions. Probiotics and antimicrobial proteins, 11(4), 1348-1354.
  • Akpınar, A., Gizem, E. R. K., and Seven, A. (2019). Vegan ve vejetaryan beslenmede probiyotik bitkisel bazlı süt ürünlerinin yeri. Gıda, 44(3), 453-462.
  • Aloğlu, H. Ş., and Öner, Z. (2010). Peyniraltı suyu proteinlerinin mikroenkapsülasyon teknolojisinde kaplama materyali olarak kullanım olanakları. Akademik Gıda, 8(3), 38-42.
  • Altındiş, M., and Yılmaz, K. (2017). Sindirim sistemi mikrobiyotası ve fekal transplantasyon. Nobel Medicus, 13(1), 9–15.
  • Altun, B., and Özcan, T. (2013). Süt ürünlerinde probiyotik bakterilerin mikroenkapsülasyonu II: kaplama materyalleri ve süt ürünlerinde uygulamalar. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 27(2), 105-114.
  • Amin, T., Thakur, M., and Jain, S. (2013). Microencapsulation-the future of probiotic cultures. Journal of Microbiology, Biotechnology and Food Sciences, 9(1), 35–43.
  • Anonymous. (2004). Law No. 5179 on the Amendment and Adoption of the Decree-Law on the Production, Consumption and Inspection of Foods, Official Gazette Published: 05.06.2004-25483.
  • Anonymous. (2018). The Global Probiotics Markets.www.lumina-intelligence.com. (Erişim tarihi: 15.06.2020).
  • Anonymous. (2017). Turkish Food Codex. Regulation on Nutrition and 844 Health Claims. Appendix 2: List of health claims, excluding statements on disease risk reduction, child development and health. Ministry of Food, Agriculture and Livestock. Official Gazette dated 26 January 2017 and numbered 847 29960, Ankara.
  • Anonymous. (2020). http://www.gidabilgi.com/Makale/Detay/mikroenkapsulasyon-teknolojisi-206667 (Erişim tarihi: 15.06.2020).
  • Anselmo AC, McHugh KJ, Webster J, and Langer R, Jaklenec A. (2016). Layer-by-Layer Encapsulation of Probiotics for Delivery to the Microbiome. Advanced Materials, 28(43): 9486–90.
  • Arslan-Tontul, S., and Erbas, M. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT-Food Science and Technology, 81, 160-169.
  • Arvanitoyannis, I. S., and Van Houwelingen-Koukaliaroglou, M. (2005). Functional foods: A survey of health claims, pros and cons, and current legislation. In Critical Reviews in Food Science and Nutrition (Vol. 45, Issue 5, pp. 385–404).
  • Bosnea, L. A., T. Moschakis, P. S. Nigam, and C. G. Biliaderis. (2017). Growth adaptation of probiotics in biopolymer-based coacervate structures to enhance cell viability. LWT - Food Science and Technology, 77: 282–89.
  • Braber, N. V., Vergara, L. D., Rossi, Y. E., Aminahuel, C. A., Mauri, A. N., Cavaglieri, L. R., and Montenegro, M. A. (2020). Effect of microencapsulation in whey protein and water-soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions. LWT, 118, 108844.
  • Cencic, A., and Chingwaru, W. (2010). The role of functional foods, nutraceuticals, and food supplements in ıntestinal health. Nutrients, 2(6), 611–625.
  • Chen, J., Wang, Q., Liu, C. M., and Gong, J. (2017). Issues deserve attention in encapsulating probiotics: Critical review of existing literature. Critical Reviews in Food Science and Nutrition, 57(6), 1228-1238.
  • Chen, K. N., Chen, M. J., and Lin, C. W. (2006). Optimal combination of the encapsulating materials for probiotic microcapsules and its experimental verification (R1). Journal of Food Engineering, 76(3), 313-320.
  • Chen, L., and Subirade, M. (2007). Effect of preparation conditions on the nutrient release properties of alginate–whey protein granular microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 65(3), 354-362.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D., and Khutoryanskiy, V. V. (2014). Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels. International journal of pharmaceutics, 466(1-2), 400-408.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D., and Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of controlled release, 162(1), 56-67.
  • Çelikel, A., Göncü, B., Akın, M. B., and Akın, S. M. (2018). Süt ürünlerinde probiyotik bakterilerin canlılığını etkileyen faktörler. Batman Üniversitesi Journal of Life Sciences, 8(1), 59–68.
  • Dave, A., N. Joshi, and S. D. Purohit. (2004). In vitro propagation of Chlorophytum borivilianum using encapsulated shoot buds. European Journal of Horticultural Science, 69(1): 37–42.
  • de Araújo Etchepare, M., Nunes, G. L., Nicoloso, B. R., Barin, J. S., Flores, E. M. M., de Oliveira Mello, R., and de Menezes, C. R. (2020). Improvement of the viability of encapsulated probiotics using whey proteins. LWT, 117, 108601.
  • de Prisco, A., and Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trends in food science and technology, 48, 27-39.
  • Dodoo, C. C., Wang, J., Basit, A. W., Stapleton, P., and Gaisford, S. (2017). Targeted delivery of probiotics to enhance gastrointestinal stability and ıntestinal colonisation. International Journal of Pharmaceutics.
  • Doherty, S. B., Auty, M. A., Stanton, C., Ross, R. P., Fitzgerald, G. F., and Brodkorb, A. J. I. D. J. (2012). Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. International Dairy Journal, 22(1), 31-43.
  • Erem, F. (2019). Probiyotik fırın ürünleri üretim yöntemleri. Gıda, 44(3), 430–441.
  • Erginkaya, Z., Sarıkodal, E., Özkütük, S. T., Konuray, G., and Turhan, E. Ü. (2019). Probiyotik bitter çikolata üretiminde mikroenkapsüle Lactobacıllus rhamnosus kullanımı. Gıda/The Journal of Food, 44(2).
  • FAO/WHO (2001). Evaluation of Health and Nutritional Properties of Powder Milk and Live Lactic Acid Bacteria, Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report. www.fao.org/documents/pub_dett.asp?lang=en andpub_id=61756.
  • Geniş, B., and Tuncer, Y. (2019). Probiyotik kültürlerin mikroenkapsülasyonunda kullanılan farklı kaplama materyalleri ve yöntemler. Gıda, 44(6), 1222-1236.
  • González-Ferrero, C., Irache, J. M., and González-Navarro, C. J., (2018). Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chemistry, 239, 879-888.
  • Gökbulut, İ., and Öztürk, F. S. (2018). Gıda mikrokapsülasyonunda aljinat kullanımı. Batman Üniversitesi Yaşam Bilimleri Dergisi, 8(1/2), 16-28.
  • Haghshenas, B., Abdullah, N., Nami, Y., Radiah, D., Rosli, R., and Yari Khosroushahi, A. (2015). Microencapsulation of probiotic bacteria Lactobacillus plantarum 15 HN using alginate‐psyllium‐fenugreek polymeric blends. Journal of Applied Microbiology, 118(4), 1048-1057.
  • Heidebach, T., Först, P., and Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical reviews in food science and nutrition, 52(4), 291-311.
  • Hejazi, R., and Amiji, M. (2003). Chitosan-based gastrointestinal delivery systems. Journal of controlled release, 89(2), 151-165. http://www.gidabilgi.com/Makale/Detay/mikroenkapsulasyon-teknolojisi-206667(erişim 15.06.2020)
  • İşleyen, M. F. (2010). Mikroenkapsülasyon tekniğinin Lactobacillus acidophilus KPb4b ve Lactobacillus rhamnosus KPb7 probiyotik kültürlerinin stabilitesi üzerine etkilerinin araştırılması (Master's thesis, Fen Bilimleri Enstitüsü).
  • Koç, M., Sakin, M., and Kaymak-Ertekin, F. (2010). Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. Pamukkale University Journal of Engineering Sciences, 16(1).
  • Krasaekoopt, W., Bhandari, B., and Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14(8), 737-743.
  • Kumagai, H. (2014). Achievements and discoveries as to functional foods in Japan (813.14). The FASEB Journal, 28, 813-14.
  • Lee, Y., Ji, Y. R., Lee, S., Choi, M. J., and Cho, Y. (2019). Microencapsulation of probiotic Lactobacillus acidophilus kbl409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. J. Microbiol. Biotechnol, 29(5), 721730.
  • Li, R., Zhang, Y., Polk, D. B., Tomasula, P. M., Yan, F., and Liu, L. (2016). Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. Journal of Controlled Release, 230, 79-87.
  • Li, Y., Feng, C., Li, J., Mu, Y., Liu, Y., Kong, M., and Chen, X. (2017). Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells. International Journal of Biological Macromolecules, 105, 924-930.
  • Liu, Y., Sun, Y., Sun, L., and Wang, Y. (2016). In vitro and in vivo study of sodium polyacrylate grafted alginate as microcapsule matrix for live probiotic delivery. Journal of Functional Foods, 24, 429-437.
  • Marcial-Coba, M. S., Cieplak, T., Cahú, T. B., Blennow, A., Knøchel, S., and Nielsen, D. S. (2018). Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage. Food and Function, 9(11), 5868-5879.
  • Markowiak, P., and Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021.
  • Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., and Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies, 27, 15-25.
  • Merve, A. Ç. U., Yerlikaya, O., and Kınık, Ö. (2014). Mikroenkapsülasyon ve süt teknolojisindeki yeri. Akademik Gıda, 12(1), 97-107.
  • Mirtič, J., Rijavec, T., Zupančič, Š., Pobirk, A. Z., Lapanje, A., and Kristl, J. (2018). Development of probiotic-loaded microcapsules for local delivery: Physical properties, cell release and growth. European Journal of Pharmaceutical Sciences, 121, 178-187.
  • Muthukumarasamy, P., and Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111(2), 164-169.
  • Palamutoğlu, R., and Sariçoban, C. (2013). Probiyotik mikrororganizmaların mikroenkapsülasyonu. Academic Food Journal/Akademik Gıda, 11(1).
  • Pankasemsuk, T., Apichartsrangkoon, A., Worametrachanon, S., and Techarang, J. (2016). Encapsulation of Lactobacillus casei 01 by alginate along with hi-maize starch for exposure to a simulated gut model. Food Bioscience, 16, 32-36.
  • Pech-Canul, A. D. L. C., Ortega, D., García-Triana, A., and González-Silva, N. (2020). A brief review of edible coating materials for the microencapsulation of probiotics. Coatings, 10(3), 197.
  • Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., and Zhou, J. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature, 513(7516), 59-64.
  • Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., and Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. In Molecular Nutrition and Food Research.
  • Sarao, L. K., and Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition, 57(2), 344-371.
  • Shiby, V. K., and Mishra, H. N. (2013). Fermented milk and milk products as functional foods-A Review. In Critical Reviews in Food Science and Nutrition (Vol. 53, Issue 5, pp. 482–496). Taylor and Francis Group.
  • Speranza, B., Campaniello, D., Bevilacqua, A., Altieri, C., Sinigaglia, M., and Corbo, M. R. (2018). Viability of Lactobacillus plantarum on fresh-cut chitosan and alginate-coated apple and melon pieces. Frontiers in Microbiology, 9, 2538.
  • Uran, H., Şanlıdere Aloğlu, H., and Çetin, B. (2017). Probiyotik bakterilerin mikroenkapsülasyonu. Mediterranean Agricultural Sciences.
  • Ünal, E., and Erginkaya, Z. (2010). Probiyotik mikroorganizmaların mikroenkapsülasyonu. Gıda, 35(4), 297-304.
  • Wandrey, C., Bartkowiak, A., and Harding, S. E. (2010). Materials for encapsulation. Encapsulation technologies for active food ingredients and food processing, 31-100.
  • Yeung, T. W., Üçok, E. F., Tiani, K. A., McClements, D. J., and Sela, D. A., (2016). Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Frontiers in Microbiology, 7, 494.
  • Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., and Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857-874.
  • Zhang, L. D. H. (2020). Recent advances in probiotics encapsulation by electrospinning. ES Food and Agroforestry, 2, 3-12.
There are 65 citations in total.

Details

Primary Language English
Subjects Food Sciences (Other)
Journal Section Review Papers
Authors

Sinem Gümüşsoy 0000-0003-1589-7706

Fatih Tosun This is me 0000-0002-2993-8727

Osman Kola 0000-0003-0000-248X

Publication Date February 13, 2024
Published in Issue Year 2024 Issue: 31

Cite

APA Gümüşsoy, S., Tosun, F., & Kola, O. (2024). Materials and methods used in microencapsulation of probiotic microorganisms. Gıda Ve Yem Bilimi Teknolojisi Dergisi(31), 33-49. https://doi.org/10.56833/gidaveyem.1430779

by-nc-nd.png?resize=300%2C105&ssl=1
Gıda ve Yem Bilimi-Teknolojisi Dergisi  CC BY-NC-ND 4.0 lisansı altında lisanslanmıştır
 Journal of Food and Feed Science-Technology is licensed under CC BY-NC-ND 4.0