Research Article
BibTex RIS Cite

Investigation of antioxidant activity, total phenolic content and -glucosidase enzyme inhibition potential of Trachystemon orientalis (L.) G. Don plant

Year 2024, Issue: 32, 27 - 36

Abstract

Objective: This study aims to determine the protein content, antioxidant activity, total phenolic content, and α-glucosidase inhibition rate of the parts of Trachystemon orientalis (L.) G. Don plant separating the plant into 3 parts: leaf, stem, and rhizome.
Material and Method: Proximate analyses of the plant were made according to the methods of the Association of Official Analytical Chemists (AOAC). Spectrophotometric methods were used to determine antioxidant activity, total phenolic content analysis, and α-glucosidase inhibition. One-way ANOVA and Tukey tests were applied to evaluate the differences between samples (p<0.05).
Results and Conclusion: The ash and dry matter ratios of the leaf, stem, and rhizome parts of the plant were found as statistically significant. While the highest protein content was obtained from the leaf (15.67%), no significant difference was observed between the stem and rhizome. The highest antioxidant activity was observed in the rhizome, followed by the leaf and stem, respectively (p<0.05) for DPPH and ABTS methods. The results of the total phenolic content of leaf, stem, and rhizome were compatible with the antioxidant activity results, and the total phenolic content was found as rhizome>leaf>stem with the values of 2.78 ± 0.04, 1.11 ± 0.06 and 0.81 ± 0.07 mg GAE /g fresh weight, respectively. In addition, the α-glucosidase inhibition values of leaf (52.06 ± 2.87) and rhizome (54.34 ± 1.10) extracts were found to be higher than the standard α-glucosidase inhibitor acarbose (43.05±1.27) (p<0.05). As a result, this study showed that all edible and inedible parts of the Trachystemon orientalis (L.) G. Don plants are important in terms of protein content and it has been revealed that this plant can enhance human health with its antioxidant and antidiabetic properties.

References

  • Andrade-Cetto, A., Becerra-Jimenez J. and Cardenas-Vazquez R. (2008). Alfa-glucosidase-inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. Journal of Ethnopharmacology, (116), 27–32. https://doi.org/10.1016/j.jep.2007.10.031
  • Anonim (2023). Tarım ve Orman Bakanlığı Risk Değerlendirme Başkanlığı Bitki listesi (Güncelleme tarihi 22.12.2023). https://www.tarimorman.gov.tr/konu/957/bitki-listesi (Erişim tarihi 01.03.2024).
  • AOAC (2015). Official Methods of Analysis. Association of Official Analytical Chemists.18th Edition, AOAC, Arlington, 806-814.
  • Ayhan, B. S., Yalçın, E., Çavuşoğlu, K., and Acar, A. (2019). Antidiabetic potential and multi-biological activities of Trachystemon orientalis extracts. Journal of Food Measurement and Characterization, 13(4), 2887-2893. https://doi.org/10.1007/s11694-019-00209-1
  • Bekar, E., Akpınar Bayizit, A., Çetin, K., Ünal, T. ve Ömeroğlu, P. Y. (2021). Fonksiyonel Nitelikteki Yenilebilir Bazı Çiçeklerin Yağ Asidi Profilinin Gaz Kromatografi-Alev İyonizasyon Dedektörü (GC-FID) ile Belirlenmesi. Gıda ve Yem Bilimi Teknolojisi Dergisi, (26), 49-59. https://dergipark.org.tr/tr/pub/gidaveyem/issue/64673/984848#article_cite
  • Bıyık B, Yılmaz Sarıaltın S, Gökbulut A, Çoban T and Çoşkun M. (2023). Trachystemon orientalis (L.) G. Don as a Valuable Source of Rosmarinic Acid: Biological Activities and HPLC Profiles. Turk J Pharm Sci., 20(3), 141-148. https://doi.org/10.4274%2Ftjps.galenos.2022.14265
  • Demir, E. (2022). Profile of fatty acids, vitamins, phytosterols and phenolic acids in Trachystemon orientalis L. and evaluation of their antioxidant activity. Avrupa Bilim ve Teknoloji Dergisi, (33), 112-118. https://doi.org/10.31590/ejosat.1027061
  • Ergen Akçin, Ö., Kandemir, N. and Akçin, Y. (2004). A morphological and anatomical study on a medicinal and edible plant Trachystemon orientalis (L.) G.Don (Boraginaceae) in the Black Sea region. Turkish Journal of Botany, 28(4), 435-442. https://journals.tubitak.gov.tr/botany/vol28/iss4/7
  • Gu, C., Howell, K., Dunshea, F.R. and Suleria, H.A.R. (2019). LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and Their Potential Antioxidant Activities. Antioxidants (Basel), 8(9), 405. https://pubmed.ncbi.nlm.nih.gov/31533286/
  • Hussain, F., Khan, Z., Jan, M. S., Ahmad, S., Ahmad, A., Rashid, U., Ullah, F., Ayaz, M. and Sadiq, A. (2019). Synthesis, in-vitro alpha-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorg Chem., (91), 103128. https://pubmed.ncbi.nlm.nih.gov/31369977/
  • Iqbal, Y., Ponnampalam, E. N., Cottrell, J. J., Suleria, H. A., and Dunshea, F. R. (2022). Extraction and characterization of polyphenols from non-conventional edible plants and their antioxidant activities. Food Research International, (157), 111205. https://doi.org/10.1016/j.foodres.2022.111205
  • Jabeen, A., Narayan, S., Hussain, K., Ahmed Mir, S., and Khan, F. A. (2018). Effect of organic manures and biofertilizers on quality of spinach beet (Beta vulgaris var. bengalensis). Int. J. Curr. Microbiol. Appl. Sci., 7(9), 1312-1317. https://doi.org/10.20546/ijcmas.2018.709.156
  • Kaur, S., and Roy, A. (2021). A Review on the nutritional aspects of wild edible plants. Current Traditional Medicine, 7(4), 552-563. https://doi.org/10.2174/2215083806999201123201150
  • Kaya, G.Ö., Küçükboyacı, N., Ayaz, F., Hürkul, M.M., Uzunhisarcıklı M.E. ve Köroğlu, A.(2010). Ankara ve Adana’da Aktarlarda “Hatmi” Adı Altındasatılan Drogların Avrupa Farmakopesi'ne Uygunluğunun Değerlendirilmesi. Journal of Faculty of Pharmacy of Ankara University, 39(4), 291-316. https://doi.org/10.1501/Eczfak_0000000571
  • Kibar, B., and Kibar, H. (2017). Determination of the nutritional and seed properties of some wild edible plants consumed as vegetable in the Middle Black Sea Region of Turkey. South African Journal of Botany, (108), 117-125. https://doi.org/10.1016/j.sajb.2016.10.011
  • Koca, L., Hasbay, I., Bostanci, S., Yılmaz, V. and Koca, A. (2015). Some wild edible plants and their dietary fiber contents. Pakistan Journal of Nutrition, 14(4). https://doi.org/10.3923/pjn.2015.188.194
  • Kokila, N.R., Mahesh, B., Ramu, R., Mruthunjaya, K., Bettadaiah, B.K. and Madhyastha, H. (2023) Inhibitory effect of gallic acid from Thunbergia mysorensis against α-glucosidase, α-amylase, aldose reductase and their interaction: Inhibition kinetics and molecular simulations. J. Biomol. Struct. Dyn., 41(20),10642-10658. https://pubmed.ncbi.nlm.nih.gov/36533383/
  • Kumar, S., Narwal, S., Kumar, V. and Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn Rev., 5(9),19-29. https://pubmed.ncbi.nlm.nih.gov/22096315/
  • Lefsrud, M., Kopsell, D., Sams, C., Wills, J., and Both, A. J. (2008). Dry matter content and stability of carotenoids in kale and spinach during drying. HortScience, 43(6), 1731-1736. https://doi.org/10.21273/HORTSCI.43.6.1731
  • Lin, L., Dong, Y., Zhao, H., Wen, L., Yang, B. and Zhao, M. (2011). Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra (MAXIM.) HARA as inhibitors of tyrosinase and α-glucosidase. Food Chem.,129(3), 884-9.https://pubmed.ncbi.nlm.nih.gov/25212314/
  • Lin, W.R., Liu, K.H., Ling, T.C., Wang, M.C. and Lin, W.H. (2023). Role of antidiabetic agents in type 2 diabetes patients with chronic kidney disease. World J Diabetes, 14(4), 352-363. https://pubmed.ncbi.nlm.nih.gov/37122432/
  • Mašković, P., Đukić, D., Mandić, L., Knežević, D., Cvijović, M., Radojković, M., and Đurović, S. (2017). Quality and Chemical Profile Assessment Of Different Teas in Serbia, XXII Savetovanje O Biotehnologiji Book of Proceedings, 549. http://arhiva.nara.ac.rs/handle/123456789/2183
  • Mohd Bukhari, D.A., Siddiqui, M.J., Shamsudin, S.H., Rahman, M.M. and So'ad, S.Z.M. (2017). α-Glucosidase Inhibitory Activity of Selected Malaysian Plants. J Pharm Bioallied Sci, 9(3), 164-170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621178/
  • Onaran, A., and Yılar, M. (2012). Antifungal activity of Trachystemon orientalis L. aqueous extracts against plant pathogens. Iğdır Üni. Fen Bilimleri Enst. Der., 8 (1), 37-43. https://dergipark.org.tr/tr/download/article-file/443965
  • Özbakır Özer, M. and Aksoy, M. (2019.) Mineral composition and nutritional properties of trachystemon orientalis (L.) G. don populations in the central black sea region of Turkey. Acta Scientiarum Polonorum, Hortorum Cultus, 18(4), 157-167. https://doi.org/10.24326/asphc.2019.4.15
  • Özen, T. (2010). Antioxidant activity of wild edible plants in the Black Sea Region of Turkey. Grasas y Aceites, 61(1), 86-94. https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/625
  • Sacan, O. (2018). Antioxidant Activity, Total Phenol and Total Flavonoid Contents of Trachystemon orientalis (L.) G. Don. Eur J Biol., 77(2): 70-75.https://dergipark.org.tr/en/pub/iufsjb/issue/42249/508378
  • Sadikoğlu, N. and Cevahir, G. (2014). Anthocyanin content and localization in different parts of trachystemon orientalis (l.) g. Don. Biotechnology and Biotechnological Equipment, 18(1).https://doi.org/10.1080/13102818.2004.10819241
  • Trinh, P.T.N., Giang, B.L., Tuan, N.T., Hang, H.T.T., Thuy, N.T.L., Tuan, N.N and Dung, L.T. (2021). Alfa glucosidase inhibitory, anti inflammatory activities and a new furanocoumarin derivative of Ruellia tuberosa. Nat Prod Res., 35(22), 4248-4255. https://doi.org/10.1080/14786419.2019.1696790
  • Verma, N., Behera, B. C., and Sharma, B. O. (2012). Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid. Hacettepe Journal of Biology and Chemistry, 40(1), 7-21. https://dergipark.org.tr/en/pub/hjbc/issue/61880/926022
  • Zhu, F., Asada, T., Sato, A., Koi, Y., Nishiwaki, H. and Tamura, H. (2014). Rosmarinic acid extract for antioxidant, antiallergic, and α-glucosidase inhibitory activities, isolated by supramolecular technique and solvent extraction from Perilla leaves. J. Agric. Food Chem., 62(4), 885-92. https://pubmed.ncbi.nlm.nih.gov/24400891/
  • Zlatanović, S., Kalušević, A., Micić, D., Laličić-Petronijević, J., Tomić, N., Ostojić, S., and Gorjanović, S. (2019). Functionality and storability of cookies fortified at the industrial scale with up to 75% of apple pomace flour produced by dehydration. Foods, 8(11), 561. https://doi.org/10.3390/foods8110561

Trachystemon orientalis (L.) G. Don bitkisinin antioksidan aktivite, toplam fenolik madde içeriği ve -glukozidaz enzimi inhibisyon potansiyelinin araştırılması

Year 2024, Issue: 32, 27 - 36

Abstract

Amaç: Bu çalışmanın amacı Trachystemon orientalis (L.) G.Don bitkisini yaprak, sap ve rizom olarak 3 kısma ayırıp, bu kısımların protein içeriğini, antioksidan aktivitesini, toplam fenolik madde içeriğini ve α- glukozidaz inhibisyon oranını belirlemektir.
Materyal ve Yöntem: Bitkinin proksimet analizleri Association of Official Analytical Chemists’in (AOAC) metotlarına göre yapılmıştır. Antioksidan aktivite, toplam fenolik madde analizleri ve α- glukosidaz inhibisyonunun belirlenmesinde ise spektrofotometrik yöntemler kullanılmıştır. Örnekler arasındaki farklılıkların değerlendirilmesinde tek yönlü ANOVA ve Tukey testi uygulanmıştır (p<0,05).
Tartışma ve Sonuç: Bitkinin yaprak, sap ve rizom kısımlarının içerdiği kül ve kuru madde oranları istatistiksel olarak anlamlı farklılık içermektedir. Buna karşın protein oranı en çok yaprak kısmından elde edilirken (%15,67), sap ve rizom kısımlarında önemli bir fark görülmemiştir. DPPH ve ABTS yöntemleriyle antioksidan aktivitesi ölçüldüğünde; en yüksek antioksidan aktivite rizom kısmında, ardından sırasıyla yaprak ve sap kısımlarında görülmüştür (p<0,05). Yaprak, sap, rizom kısımlarının toplam fenolik madde içeriği, antioksidan aktivite sonuçlarıyla paralellik göstermektedir. Toplam fenolik madde içeriği rizom>yaprak>sap şeklinde, sırasıyla 2,78  0,04; 1,11  0,06 ve 0,81  0,07 mg GAE/ g taze ağırlık olarak bulunmuştur. Yaprak (%52,06  2,87) ve rizom (%54,34  1,10) ekstraktlarının α-glukozidaz inhibisyon değerleri standart α-glukozidaz inhibitörü olan akarboza (%43,051,27) göre daha yüksek bulunmuştur (p<0,05). Sonuç olarak bu çalışma, Trachystemon orientalis (L.) G. Don bitkisinin protein içeriği açısından önemli olduğunu; antioksidan ve antidiyabetik özellikleriyle insan sağlığını destekleyebileceğini ortaya koymuştur.

References

  • Andrade-Cetto, A., Becerra-Jimenez J. and Cardenas-Vazquez R. (2008). Alfa-glucosidase-inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. Journal of Ethnopharmacology, (116), 27–32. https://doi.org/10.1016/j.jep.2007.10.031
  • Anonim (2023). Tarım ve Orman Bakanlığı Risk Değerlendirme Başkanlığı Bitki listesi (Güncelleme tarihi 22.12.2023). https://www.tarimorman.gov.tr/konu/957/bitki-listesi (Erişim tarihi 01.03.2024).
  • AOAC (2015). Official Methods of Analysis. Association of Official Analytical Chemists.18th Edition, AOAC, Arlington, 806-814.
  • Ayhan, B. S., Yalçın, E., Çavuşoğlu, K., and Acar, A. (2019). Antidiabetic potential and multi-biological activities of Trachystemon orientalis extracts. Journal of Food Measurement and Characterization, 13(4), 2887-2893. https://doi.org/10.1007/s11694-019-00209-1
  • Bekar, E., Akpınar Bayizit, A., Çetin, K., Ünal, T. ve Ömeroğlu, P. Y. (2021). Fonksiyonel Nitelikteki Yenilebilir Bazı Çiçeklerin Yağ Asidi Profilinin Gaz Kromatografi-Alev İyonizasyon Dedektörü (GC-FID) ile Belirlenmesi. Gıda ve Yem Bilimi Teknolojisi Dergisi, (26), 49-59. https://dergipark.org.tr/tr/pub/gidaveyem/issue/64673/984848#article_cite
  • Bıyık B, Yılmaz Sarıaltın S, Gökbulut A, Çoban T and Çoşkun M. (2023). Trachystemon orientalis (L.) G. Don as a Valuable Source of Rosmarinic Acid: Biological Activities and HPLC Profiles. Turk J Pharm Sci., 20(3), 141-148. https://doi.org/10.4274%2Ftjps.galenos.2022.14265
  • Demir, E. (2022). Profile of fatty acids, vitamins, phytosterols and phenolic acids in Trachystemon orientalis L. and evaluation of their antioxidant activity. Avrupa Bilim ve Teknoloji Dergisi, (33), 112-118. https://doi.org/10.31590/ejosat.1027061
  • Ergen Akçin, Ö., Kandemir, N. and Akçin, Y. (2004). A morphological and anatomical study on a medicinal and edible plant Trachystemon orientalis (L.) G.Don (Boraginaceae) in the Black Sea region. Turkish Journal of Botany, 28(4), 435-442. https://journals.tubitak.gov.tr/botany/vol28/iss4/7
  • Gu, C., Howell, K., Dunshea, F.R. and Suleria, H.A.R. (2019). LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and Their Potential Antioxidant Activities. Antioxidants (Basel), 8(9), 405. https://pubmed.ncbi.nlm.nih.gov/31533286/
  • Hussain, F., Khan, Z., Jan, M. S., Ahmad, S., Ahmad, A., Rashid, U., Ullah, F., Ayaz, M. and Sadiq, A. (2019). Synthesis, in-vitro alpha-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorg Chem., (91), 103128. https://pubmed.ncbi.nlm.nih.gov/31369977/
  • Iqbal, Y., Ponnampalam, E. N., Cottrell, J. J., Suleria, H. A., and Dunshea, F. R. (2022). Extraction and characterization of polyphenols from non-conventional edible plants and their antioxidant activities. Food Research International, (157), 111205. https://doi.org/10.1016/j.foodres.2022.111205
  • Jabeen, A., Narayan, S., Hussain, K., Ahmed Mir, S., and Khan, F. A. (2018). Effect of organic manures and biofertilizers on quality of spinach beet (Beta vulgaris var. bengalensis). Int. J. Curr. Microbiol. Appl. Sci., 7(9), 1312-1317. https://doi.org/10.20546/ijcmas.2018.709.156
  • Kaur, S., and Roy, A. (2021). A Review on the nutritional aspects of wild edible plants. Current Traditional Medicine, 7(4), 552-563. https://doi.org/10.2174/2215083806999201123201150
  • Kaya, G.Ö., Küçükboyacı, N., Ayaz, F., Hürkul, M.M., Uzunhisarcıklı M.E. ve Köroğlu, A.(2010). Ankara ve Adana’da Aktarlarda “Hatmi” Adı Altındasatılan Drogların Avrupa Farmakopesi'ne Uygunluğunun Değerlendirilmesi. Journal of Faculty of Pharmacy of Ankara University, 39(4), 291-316. https://doi.org/10.1501/Eczfak_0000000571
  • Kibar, B., and Kibar, H. (2017). Determination of the nutritional and seed properties of some wild edible plants consumed as vegetable in the Middle Black Sea Region of Turkey. South African Journal of Botany, (108), 117-125. https://doi.org/10.1016/j.sajb.2016.10.011
  • Koca, L., Hasbay, I., Bostanci, S., Yılmaz, V. and Koca, A. (2015). Some wild edible plants and their dietary fiber contents. Pakistan Journal of Nutrition, 14(4). https://doi.org/10.3923/pjn.2015.188.194
  • Kokila, N.R., Mahesh, B., Ramu, R., Mruthunjaya, K., Bettadaiah, B.K. and Madhyastha, H. (2023) Inhibitory effect of gallic acid from Thunbergia mysorensis against α-glucosidase, α-amylase, aldose reductase and their interaction: Inhibition kinetics and molecular simulations. J. Biomol. Struct. Dyn., 41(20),10642-10658. https://pubmed.ncbi.nlm.nih.gov/36533383/
  • Kumar, S., Narwal, S., Kumar, V. and Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn Rev., 5(9),19-29. https://pubmed.ncbi.nlm.nih.gov/22096315/
  • Lefsrud, M., Kopsell, D., Sams, C., Wills, J., and Both, A. J. (2008). Dry matter content and stability of carotenoids in kale and spinach during drying. HortScience, 43(6), 1731-1736. https://doi.org/10.21273/HORTSCI.43.6.1731
  • Lin, L., Dong, Y., Zhao, H., Wen, L., Yang, B. and Zhao, M. (2011). Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra (MAXIM.) HARA as inhibitors of tyrosinase and α-glucosidase. Food Chem.,129(3), 884-9.https://pubmed.ncbi.nlm.nih.gov/25212314/
  • Lin, W.R., Liu, K.H., Ling, T.C., Wang, M.C. and Lin, W.H. (2023). Role of antidiabetic agents in type 2 diabetes patients with chronic kidney disease. World J Diabetes, 14(4), 352-363. https://pubmed.ncbi.nlm.nih.gov/37122432/
  • Mašković, P., Đukić, D., Mandić, L., Knežević, D., Cvijović, M., Radojković, M., and Đurović, S. (2017). Quality and Chemical Profile Assessment Of Different Teas in Serbia, XXII Savetovanje O Biotehnologiji Book of Proceedings, 549. http://arhiva.nara.ac.rs/handle/123456789/2183
  • Mohd Bukhari, D.A., Siddiqui, M.J., Shamsudin, S.H., Rahman, M.M. and So'ad, S.Z.M. (2017). α-Glucosidase Inhibitory Activity of Selected Malaysian Plants. J Pharm Bioallied Sci, 9(3), 164-170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621178/
  • Onaran, A., and Yılar, M. (2012). Antifungal activity of Trachystemon orientalis L. aqueous extracts against plant pathogens. Iğdır Üni. Fen Bilimleri Enst. Der., 8 (1), 37-43. https://dergipark.org.tr/tr/download/article-file/443965
  • Özbakır Özer, M. and Aksoy, M. (2019.) Mineral composition and nutritional properties of trachystemon orientalis (L.) G. don populations in the central black sea region of Turkey. Acta Scientiarum Polonorum, Hortorum Cultus, 18(4), 157-167. https://doi.org/10.24326/asphc.2019.4.15
  • Özen, T. (2010). Antioxidant activity of wild edible plants in the Black Sea Region of Turkey. Grasas y Aceites, 61(1), 86-94. https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/625
  • Sacan, O. (2018). Antioxidant Activity, Total Phenol and Total Flavonoid Contents of Trachystemon orientalis (L.) G. Don. Eur J Biol., 77(2): 70-75.https://dergipark.org.tr/en/pub/iufsjb/issue/42249/508378
  • Sadikoğlu, N. and Cevahir, G. (2014). Anthocyanin content and localization in different parts of trachystemon orientalis (l.) g. Don. Biotechnology and Biotechnological Equipment, 18(1).https://doi.org/10.1080/13102818.2004.10819241
  • Trinh, P.T.N., Giang, B.L., Tuan, N.T., Hang, H.T.T., Thuy, N.T.L., Tuan, N.N and Dung, L.T. (2021). Alfa glucosidase inhibitory, anti inflammatory activities and a new furanocoumarin derivative of Ruellia tuberosa. Nat Prod Res., 35(22), 4248-4255. https://doi.org/10.1080/14786419.2019.1696790
  • Verma, N., Behera, B. C., and Sharma, B. O. (2012). Glucosidase Inhibitory and Radical Scavenging Properties of Lichen Metabolites Salazinic Acid, Sekikaic Acid and Usnic Acid. Hacettepe Journal of Biology and Chemistry, 40(1), 7-21. https://dergipark.org.tr/en/pub/hjbc/issue/61880/926022
  • Zhu, F., Asada, T., Sato, A., Koi, Y., Nishiwaki, H. and Tamura, H. (2014). Rosmarinic acid extract for antioxidant, antiallergic, and α-glucosidase inhibitory activities, isolated by supramolecular technique and solvent extraction from Perilla leaves. J. Agric. Food Chem., 62(4), 885-92. https://pubmed.ncbi.nlm.nih.gov/24400891/
  • Zlatanović, S., Kalušević, A., Micić, D., Laličić-Petronijević, J., Tomić, N., Ostojić, S., and Gorjanović, S. (2019). Functionality and storability of cookies fortified at the industrial scale with up to 75% of apple pomace flour produced by dehydration. Foods, 8(11), 561. https://doi.org/10.3390/foods8110561
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Original Articles
Authors

Fatma Cebeci 0000-0003-4715-6689

Tayyibe Erten 0000-0002-2150-2726

Publication Date
Submission Date February 23, 2024
Acceptance Date May 8, 2024
Published in Issue Year 2024 Issue: 32

Cite

APA Cebeci, F., & Erten, T. (n.d.). Trachystemon orientalis (L.) G. Don bitkisinin antioksidan aktivite, toplam fenolik madde içeriği ve -glukozidaz enzimi inhibisyon potansiyelinin araştırılması. Gıda Ve Yem Bilimi Teknolojisi Dergisi(32), 27-36.