Genetik modifiye gıda bitkilerinin moleküler ve kimyasal karakterizasyonu için omik yaklaşımın kullanımı
Yıl 2025,
Sayı: 33, 21 - 31
Begüm Zeynep Hançerlioğulları
,
Remziye Yılmaz
Öz
Öz
Amaç: Bu derleme çalışmasında, omik teknolojilerinin genetik modifiye (GM) gıda bitkilerinin moleküler ve kimyasal karakterizasyonunda kullanımına ilişkin temel bilgiler verilmiştir. “Gıda omikleri” olarak adlandırılan bu yeni alanda kullanılabilecek genomik, transkriptomik, metabolomik, lipidomik ve proteomik gibi temel başlıklar tanımlanmıştır. Ayrıca, GM mısırın moleküler ve kimyasal karakterizasyonunun ilgili yaklaşımlarla gerçekleştirilmesi ve bu teknolojilerin risk değerlendirmesinde kullanım potansiyeli açıklanmıştır.
Sonuç: Gıda biyoteknolojisi ve gıda güvencesi gibi iki temel başlık altında araştırmalarını sürdüren bilim insanları için omik teknolojilerin kullanımı önem arz etmektedir.
Kaynakça
- AgbioInvestor. (2024). Global GM crop area 2023 review. AgbioInvestor GM Monitor, https://gm.agbioinvestor.com/downloads/9 (Erişim Tarihi/Access Date 01.12.2024).
- Aharoni, A., and Galili, G. (2011). Metabolic engineering of the plant primary-secondary metabolism interface. Current Opinion in Biotechnology, 22(2), 239-244. Retrieved from https://doi.org/10.1016/j.copbio.2010.11.004
- Anonim (2010). 5977 Sayılı Biyogüvenlik Kanunu. T. C. Resmî Gazete, Sayı: 27533, 26 Mart 2010, https://www.mevzuat.gov.tr/mevzuatmetin/1.5.5977.pdf (Erişim Tarihi/Access Date 01.12.2024).
- Anonim (2011). EFSA Panel on Genetically Modified Organisms (GMO). Guidance for risk assessment of food and feed from genetically modified plants. EFSA Journal, 9(5), 2150.
- Anonim (2016). Committee on Genetically Engineered Crops, Genetically Engineered Crops: Experiences and Prospects, National Academies Press, Washington DC, http://www.nap.edu/catalog/23395/genetically-engineered-crops-experiences-and-prospects (Erişim Tarihi/Access Date 01.12.2024).
- Anonim (2024). Türkiye Biyogüvenlik Bilgi Değişim Mekanizması. Onaylı GDO listesi, https://www.tarimorman.gov.tr/TAGEM/Belgeler/TBBDM/TBBDM.zip (Erişim Tarihi/Access Date 01.12.2024).
- Balkir, P., Kemahlioglu, K., and Yucel, U. (2021). Foodomics: A new approach in food quality and safety. Trends in Food Science & Technology, 108, 49-57. Retrieved from https://doi.org/10.1016/j.tifs.2020.11.028
- Bedair, M., and Glenn, K. C. (2020). Evaluation of the use of untargeted metabolomics in the safety assessment of genetically modified crops. Metabolomics, 16(10), 111. Retrieved from https://doi.org/10.1007/s11306-020-01733-8
- Benevenuto, R. F., Venter, H. J., Zanatta, C. B., Nodari, R. O., and Agapito-Tenfen, S. Z. (2022). Alterations in genetically modified crops assessed by omics studies: systematic review and meta-analysis. Trends in Food Science & Technology, 120, 325-337. Retrieved from https://doi.org/10.1016/j.tifs.2022.01.002
- Benevenuto, R. F., Zanatta, C. B., Waßmann, F., Eckerstorfer, M. F., and Agapito-Tenfen, S. Z. (2023). Integration of omics analyses into GMO risk assessment in Europe: A case study from soybean field trials. Environmental Sciences Europe, 35(1), 14. Retrieved from https://doi.org/10.1186/s12302-023-00715-6
- Biocompare (2024). Genomics Tools, https://www.biocompare.com/Lab-Equipment/7184-Genomics-Tools/ (Erişim Tarihi/Access Date 01.12.2024).
- Brondz, I. (2005). Lipids | Fatty acids. Encyclopedia of Analytical Science, Elsevier, 76-88 s.
- Caetano-Anollés, D. (2013). Polymerase chain reaction. Brenner's Encyclopedia of Genetics, Academic Press, 392-395 s.
- Canarini, A., Kaiser, C., Merchant, A., Richter, A., and Wanek, W. (2019). Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 10, 157. Retrieved from https://doi.org/10.3389/fpls.2019.00157
- Casas, L., and Saborido-Rey, F. (2023). A review of genomics methods and bioinformatics tools for the analysis of close-kin mark-recapture. Frontiers in Marine Science, 10, 1113870. Retrieved from https://doi.org/10.3389/fmars.2023.1113870
- Chen, H., Wei, F., Dong, X. Y., Xiang, J. Q., Quek, S. Y., and Wang, X. (2017). Lipidomics in food science. Current Opinion in Food Science, 16, 80-87. Retrieved from https://doi.org/10.1016/j.cofs.2017.08.003
- Cifuentes, A. (2009). Food analysis and foodomics. Journal of Chromatography A, 1216 (43) 7109. Retrieved from https://doi.org/10.1016/j.chroma.2009.09.018
- Conroy, M. J., Andrews, R. M., Andrews, S., Cockayne, L., Dennis, E. A., Fahy, E., ... and O’Donnell, V. B. (2024). LIPID MAPS: update to databases and tools for the lipidomics community. Nucleic Acids Research, 52(D1), D1677-D1682. Retrieved from https://doi.org/10.1093/nar/gkad896
- Corujo, M., Pla, M., van Dijk, J., Voorhuijzen, M., Staats, M., Slot, M., ... and Kok, E. (2019). Use of omics analytical methods in the study of genetically modified maize varieties tested in 90 days feeding trials. Food Chemistry, 292, 359-371. Retrieved from https://doi.org/10.1016/j.foodchem.2018.05.109
- da Costa, L. F., Tormena, C. F., and Arruda, M. A. Z. (2021). Ionomics and lipidomics for evaluating the transgenic (cp4-EPSPS gene) and non-transgenic soybean seed generations. Microchemical Journal, 165, 106130. Retrieved from https://doi.org/10.1016/j.microc.2021.106130
- dos Santos-Donado, P. R., Donado-Pestana, C. M., Rondán-Sanabria, G. G., Pauletti, B. A., Kawahara, R., Palmisano, G., and Finardi-Filho, F. (2024). Two-dimensional gel and shotgun proteomics approaches for the comparative evaluation of genetically modified maize. Journal of Food Measurement and Characterization, 1-21. Retrieved from https://doi.org/10.1007/s11694-024-02397-x
- Dwivedi, G. R., and Sisodia, B. S. (2019). Secondary metabolites: metabolomics for secondary metabolites. new and future developments in microbial biotechnology and bioengineering, Elsevier, 333-344 s.
- EFSA, Aguilera, J., Aguilera‐Gomez, M., Barrucci, F., Cocconcelli, P. S., Davies, H., ... and Wright, M. C. (2018). EFSA Scientific Colloquium 24–'Omics in risk assessment: State of the art and next steps.
- EFSA Supporting Publications, 15(11), 1512E. Retrieved from https://doi.org/10.2903/sp.efsa.2018.EN-1512
- EMBL-EBI (2024). Metabolomics: An introduction, EMBL-EBI training, https://www.ebi.ac.uk/training/online/courses/metabolomics-introduction/ (Erişim Tarihi/Access Date 01.12.2024).
- Fahy, E., Cotter, D., Sud, M., and Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1811(11), 637-647. Retrieved from https://doi.org/10.1016/j.bbalip.2011.06.009
- Farag, M. A., Porzel, A., and Wessjohann, L. A. (2012). Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC–MS, LC–MS and 1D NMR techniques. Phytochemistry, 76, 60-72. Retrieved from https://doi.org/10.1016/j.phytochem.2011.12.010
- Feizi, N., Hashemi-Nasab, F. S., Golpelichi, F., Saburouh, N., and Parastar, H. (2021). Recent trends in application of chemometric methods for GC-MS and GC×GC-MS-based metabolomic studies. TrAC Trends in Analytical Chemistry, 138, 116239. Retrieved from https://doi.org/10.1016/j.trac.2021.116239
- Fraga-Corral, M., Carpena, M., Garcia-Oliveira, P., Pereira, A. G., Prieto, M. A., and Simal-Gandara, J. (2022). Analytical metabolomics and applications in health, environmental and food science. Critical Reviews in Analytical Chemistry, 52(4), 712-734. Retrieved from https://doi.org/10.1080/10408347.2020.1823811
- Garcia-Alonso, M. (2013). Safety assessment of food and feed derived from GM crops: Using problem formulation to ensure “fit for purpose” risk assessments. Collection of Biosafety Reviews, 8(01), 72-101.
- Gong, C. Y., and Wang, T. (2013). Proteomic evaluation of genetically modified crops: current status and challenges. Frontiers in Plant Science, 4, 41. Retrieved from https://doi.org/10.3389/fpls.2013.00041
- Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., and Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83-90. Retrieved from https://doi.org/10.1016/j.tifs.2017.12.006
- Hançerlioğulları, B. Z. (2024). Mikrodalga uygulanan MIR604 ve MON810 mısır unlarının omik yaklaşım ile karakterizasyonu, Doktora Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü.
- Hançerlioğulları, B. Z., and Yılmaz, R. (2023). Screening of P-35S, P-FMV, and T-NOS genetic elements in microwave-treated genetically modified cereal flours. Molecular Biology Reports, 50(6), 4813-4822. Retrieved from https://doi.org/10.1007/s11033-023-08408-2
- Hançerlioğulları, B. Z., Toprak, U., and Yılmaz, R. (2024). Analyses of metabolites in microwave-treated maize flours. Food and Bioprocess Technology, 17(3), 686-696. Retrieved from https://doi.org/10.1007/s11947-023-03164-4
- Harfouche, A. L., Petousi, V., Meilan, R., Sweet, J., Twardowski, T., and Altman, A. (2021). Promoting ethically responsible use of agricultural biotechnology. Trends in Plant Science, 26(6), 546-559. Retrieved from https://doi.org/10.1016/j.tplants.2020.12.015
- Hernández, M., Esteve, T., and Pla, M. (2005). Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat. Journal of Agricultural and Food Chemistry, 53(18), 7003-7009. Retrieved from https://doi.org/10.1021/jf050797j
- Huang, C., Wang, Z., Zhu, P., Xu, W., Du, Z., Qian, Y., and Fu, W. (2024). RNAi‐based genetically engineered rice resistant to black‐streaked dwarf virus does not show adverse genetic effects: A multi‐omics analysis. Plants, People, Planet, 6, 622-639. Retrieved from https://doi.org/10.1002/ppp3.10477
- Jumhawan, U., Putri, S. P., Bamba, T., and Fukusaki, E. (2015). Application of gas chromatography/flame ionization detector-based metabolite fingerprinting for authentication of asian palm civet coffee (kopi luwak). Journal of Bioscience and Bioengineering, 120(5), 555-561. Retrieved from https://doi.org/10.1016/j.jbiosc.2015.03.005
- Jumtee, K., Bamba, T., and Fukusaki, E. (2009). Fast GC‐FID based metabolic fingerprinting of Japanese green tea leaf for its quality ranking prediction. Journal of Separation Science, 32(13), 2296-2304. Retrieved from https://doi.org/10.1002/jssc.200900096
- Kobayashi, S., Putri, S. P., Yamamoto, Y., Donghyo, K., Bamba, T., and Fukusaki, E. (2012). Gas chromatography-mass spectrometry based metabolic profiling for the identification of discrimination markers of Angelicae Radix and its application to gas chromatography-flame ionization detector system. Journal of Bioscience and Bioengineering, 114(2), 232-236. Retrieved from https://doi.org/10.1016/j.jbiosc.2012.03.022
- Li, M., Yang, L., Bai, Y., and Liu, H. (2014). Analytical methods in lipidomics and their applications. Analytical Chemistry, 86(1), 161-175. Retrieved from https://doi.org/10.1021/ac403554h
- Li, Q., Cai, S., Xu, D., Lin, J., Shen, G., and Feng, J. (2023). Comparative analysis of nutritional composition between GM and non-GM soybeans and soybean oils by NMR and GC-FID techniques. Food Analytical Methods, 16(3), 478-490. Retrieved from https://doi.org/10.1007/s12161-022-02435-8
Liang, Z., Ding, L., Tang, M., Wang, X., Chen, X., Xu, J., ... and Peng, C. (2024). Review on the evolution in DNA-based techniques for molecular characterization and authentication of GMOs. Microchemical Journal, 198, 110176. Retrieved from https://doi.org/10.1016/j.microc.2024.110176
- Liu, W., Zhao, H., Miao, C., and Jin, W. (2021). Integrated proteomics and metabolomics analysis of transgenic and gene-stacked maize line seeds. GM Crops & Food, 12(1), 361-375. Retrieved from https://doi.org/10.1080/21645698.2021.1934351
- Lydic, T. A., and Goo, Y. H. (2018). Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clinical and Translational Medicine, 7, 1-13. Retrieved from https://doi.org/10.1186/s40169-018-0182-9
- Makhutova, O. N., Sushchik, N. N., and Gladyshev, M. I. (2022). Fatty acid-markers as foodweb tracers in inland waters. Encyclopedia of Inland Waters, Elsevier, 713-726 s.
- Meriç, S., Ayan, A., Atak, Ç., and Arı, Ş. (2023). Profile-based proteomic investigation of unintended effects on transgenic and gamma radiation induced mutant soybean plants. Genetic Resources and Crop Evolution, 70(7), 2077-2095. Retrieved from https://doi.org/10.1007/s10722-023-01560-5
- Moebes, M., Kuhlmann, H., Demidov, D., and Lermontova, I. (2022). Optimization of quantitative reverse transcription PCR method for analysis of weakly expressed genes in crops based on rapeseed. Frontiers in Plant Science, 13, 954976. Retrieved from https://doi.org/10.3389/fpls.2022.954976
- Pedrosa, M. C., Lima, L., Heleno, S., Carocho, M., Ferreira, I. C., and Barros, L. (2021). Food metabolites as tools for authentication, processing, and nutritive value assessment. Foods, 10(9), 2213. Retrieved from https://doi.org/10.3390/foods10092213
- Peng, C., Wang, P., Xu, X., Wang, X., Wei, W., Chen, X., and Xu, J. (2016). Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms. Springer Plus, 5, 1-6. Retrieved from https://doi.org/10.1186/s40064-016-2395-y
- Pfaffl, M. W. (2007). Relative quantification. Real-time PCR, Taylor & Francis, 89-108 s, London.
- Raghavachari, N., and Garcia-Reyero, N. (2018). Overview of gene expression analysis: transcriptomics. Methods in Molecular Biology, Humana Press, 1-6 s, New York.
- Romsdahl, T. B., Cocuron, J. C., Pearson, M. J., Alonso, A. P., and Chapman, K. D. (2022). A lipidomics platform to analyze the fatty acid compositions of non-polar and polar lipid molecular species from plant tissues: Examples from developing seeds and seedlings of pennycress (Thlaspi arvense). Frontiers in Plant Science, 13, 1038161. Retrieved from https://doi.org/10.3389/fpls.2022.1038161
- Safaei, P., Rezaie, S., Alimohammadi, M., Agha Kuchak Afshari, S., Mehdizadeh, M., and Molaee Aghaee, E. (2020). Qualitative PCR-based detection of genetically modified soy and maize products in Iran. International Journal of Food Properties, 23(1), 459-469. Retrieved from https://doi.org/10.1080/10942912.2020.1734613
Salimon, J., Omar, T. A., and Salih, N. (2014). Comparison of two derivatization methods for the analysis of fatty acids and trans fatty acids in bakery products using gas chromatography. The Scientific World Journal, 2014. Retrieved from https://doi.org/10.1155/2014/906407
- Santos, M. C., Von Pinho, É. V. D. R., dos SANTOS, H. O., Vilela, D. R., Neta, I. C. S., de ABREU, V. M., and de Castro Vasconcellos, R. C. (2021). Enzymatic activity and gene expression related to drought stress tolerance in maize seeds and seedlings. Bioscience Journal, 37, e37079. Retrieved from https://doi.org/10.14393/BJ-v37n0a2021-53953
- Sevim, D., Köseoğlu, O., ve Özdemir, D. (2017). Determination of triacylglycerol composition of Ayvalık and Memecik olive oils during storage by chemometric methods. Sakarya University Journal of Science, 21(6), 1497-1504. Retrieved from https://doi.org/10.16984/saufenbilder.284473
- Shen, S., Zhan, C., Yang, C., Fernie, A. R., and Luo, J. (2023). Metabolomics-centered mining of plant metabolic diversity and function: past decade and future perspectives. Molecular Plant, 16(1), 43-63. Retrieved from https://doi.org/10.1016/j.molp.2022.09.007
- Shepherd, L. V., McNicol, J. W., Razzo, R., Taylor, M. A., and Davies, H. V. (2006). Assessing the potential for unintended effects in genetically modified potatoes perturbed in metabolic and developmental processes. Targeted analysis of key nutrients and anti-nutrients. Transgenic Research, 15, 409-425. Retrieved from https://doi.org/10.1007/s11248-006-0012-5
- Simó, C., and García-Cañas, V. (2019). Food transcriptomics-An overview. Reference Module in Food Science, Elsevier.
- Simó, C., Ibáñez, C., Valdés, A., Cifuentes, A., and García-Cañas, V. (2014). Metabolomics of genetically modified crops. International Journal of Molecular Sciences, 15(10), 18941-18966. Retrieved from https://doi.org/10.3390/ijms151018941
- Smid, E. J. and Hugenholtz, J. (2010). Functional genomics for food fermentation processes. Annual Review of Food Science and Technology, 1, 497-519. Retrieved from https://doi.org/10.1146/annurev.food.102308.124143
- Swinnen, J. V., and Dehairs, J. (2022). A beginner’s guide to lipidomics. The Biochemist, 44(1), 20-24. Retrieved from https://doi.org/10.1042/bio_2021_181
- Tang, J. Y. (2023). Detection of microbiological hazards. Food Safety Management, Academic Press, 835-850 s.
- Valdés, A., Álvarez-Rivera, G., Socas-Rodríguez, B., Herrero, M., Ibanez, E., and Cifuentes, A. (2021). Foodomics: Analytical opportunities and challenges. Analytical Chemistry, 94(1), 366-381. Retrieved from https://doi.org/10.1021/acs.analchem.1c04678
- Valdés, A., Cifuentes, A., and León, C. (2017). Foodomics evaluation of bioactive compounds in foods. TrAC Trends in Analytical Chemistry, 96, 2-13. Retrieved from https://doi.org/10.1016/j.trac.2017.06.004
- Valdés, A., Simó, C., Ibáñez, C., and García-Cañas, V. (2014). Emerging RNA-Seq applications in food science. Comprehensive Analytical Chemistry, Elsevier, 107-128 s.
- Varunjikar, M. S., Bøhn, T., Sanden, M., Belghit, I., Pineda-Pampliega, J., Palmblad, M., ... and Rasinger, J. D. (2023). Proteomics analyses of herbicide-tolerant genetically modified, conventionally, and organically farmed soybean seeds. Food Control, 151, 109795. Retrieved from https://doi.org/10.1016/j.foodcont.2023.109795
- Windarsih, A., Arifah, M. F., Utami, I. D., Suratno, and Rohman, A. (2024). Detection of goat milk adulteration in horse milk using LC-HRMS-based non-targeted metabolomics and chemometrics. Chemical Papers, 78(2), 809-821. Retrieved from https://doi.org/10.1007/s11696-023-03123-5
- Yadav, D., Tanveer, A., Malviya, N., and Yadav, S. (2018). Overview and principles of bioengineering: the drivers of omics technologies. Omics Technologies and Bio-Engineering, Academic Press, 3-23 s.
- Yang, K., and Han, X. (2016). Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends in Biochemical Sciences, 41(11), 954-969. Retrieved from https://doi.org/10.1016/j.tibs.2016.08.010
- Yılmaz, R., ve Bayraç, C. (2017). Türkiye ulusal biyogüvenlik çerçevesi uygulama projesi, genetik mühendisliği ürünü bitki, gıda ve yem için risk değerlendirme teknik rehberi, TAGEM, Ankara.
- Zhang, F. L., Niu, B., Chang, L. J., Yin, Q., Luo, P., Wang, D., ... and Deng, Q. (2018). A new construct specific real-time PCR method for screening GMO ingredients with gat-tpinii cassette in foods, feeds and seeds. Food Control, 86, 266-274. Retrieved from https://doi.org/10.1016/j.foodcont.2017.11.035
- Zhou, J., Ma, C., Xu, H., Yuan, K., Lu, X., Zhu, Z., ... and Xu, G. (2009). Metabolic profiling of transgenic rice with cryIAc and sck genes: An evaluation of unintended effects at metabolic level by using GC-FID and GC-MS. Journal of Chromatography B, 877(8-9), 725-732. Retrieved from https://doi.org/10.1016/j.jchromb.2009.01.040