Review
BibTex RIS Cite

ANNE SÜTÜ OLİGOSAKKARİTLERİ VE SAĞLIK ÜZERİNE ETKİLERİ

Year 2021, Volume: 6 Issue: 1, 22 - 33, 17.03.2021

Abstract

Anne sütü, yenidoğanın büyüme ve gelişimini destekleyen, besin öğeleri ve biyoaktif maddeler yönünden zengin biyolojik bir sıvıdır. Bebekler için besin kaynağı olmasının yanı sıra, anne sütü çok sayıda biyolojik aktif madde içermektedir. Bu biyoaktif maddelerden biri de anne sütü oligosakkaritleridir. Miktar ve bileşimleri kadınlar arasında değişiklik göstermekle birlikte anne sütü oligosakkaritleri yenidoğanın bağışıklık sistemi, bağırsak mikrobiyotası ve beyin gelişiminin düzenlenmesinde ve enfeksiyonlara karşı korunmada önemli rollere sahiptir. Ayrıca anne sütü oligosakkaritlerinin diyare, nekrotizan enterokolit ve alerji gibi hastalıklar üzerinde olumlu etkileri bulunmaktadır. Tüm bu özellikleri ile anne sütü yenidoğan ve anne sağlığı üzerine etkileri açısından oldukça önemlidir. Bu derleme anne sütü oligosakkaritleri ve sağlık üzerine etkilerini incelemek amacıyla yazılmıştır.

References

  • 1. Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr. 2014; 99(3):734-41.
  • 2. Doherty AM, Lodge CJ, Dharmage SC, Dai X, Bode L, Lowe AJ. Human milk oligosaccharides and associations with immune-mediated disease and infection in childhood: A systematic review. Front Pediatrics. 2018; 6:91.
  • 3. Bode L. The functional biology of human milk oligosaccharides. Early Hum Dev. 2015; 91(11):619-22.
  • 4. Ruhaak LR, Stroble C, Underwood MA, Lebrilla CB. Detection of milk oligosaccharides in plasma of infants. Anal Bioanal Chem. 2014; 406(24):5775-84.
  • 5. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr. 2014; 34:143-69.
  • 6. Andreas NJ, Kampmann B, Le-Doare KM. Human breast milk: A review on its composition and bioactivity. Early Hum Dev. 2015; 91(11):629-35.
  • 7. Hanson LA, Korotkova M. The role of breastfeeding in prevention of neonatal infection. Sem Neonatol. 2002; 7(4):275-81.
  • 8. World Health Assembly, 54. Global strategy for infant and young child feeding, the optimal duration of exclusive breastfeeding. Geneva: WHO. 2001.
  • 9. Cacho NT, Lawrence RM. Innate immunity and breast milk. Front Immunol. 2017; 8:584.
  • 10. Mosca F, Giannì ML. Human milk: composition and health benefits. Pediatr Med Chir. 2017; 39(2):155.
  • 11. Anatolitou F. Human milk benefits and breastfeeding. J Pediatr Neonat Ind Med (JPNIM). 2012; 1(1):11-8.
  • 12. Horta BL, Loret de Mola C, Victora CG. Breastfeeding and intelligence: a systematic review and meta‐analysis. Acta Paediatr. 2015; 104:14-9.
  • 13. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013; 60(1):49-74.
  • 14. Koletzko B, Rodriguez-Palmero M, Demmelmair H, Fidler N, Jensen R, Sauerwald T. Physiological aspects of human milk lipids. Early Hum Dev. 2001; 65:3-18.
  • 15. Martin CR, Ling P-R, Blackburn GL. Review of infant feeding: key features of breast milk and infant formula. Nutrients. 2016; 8(5):279.
  • 16. Koletzko B, Mrotzek M, Bremer HJ. Fatty acid composition of mature human milk in Germany. Am J Clin Nutr. 1988; 47(6):954-9.
  • 17. Lonnerdal B. Human milk proteins: key components for the biological activity of human milk. Adv Exp Med Biol. 2004; 554:11-25.
  • 18. Lonnerdal B. Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr. 2003; 77(6):1537-43.
  • 19. Donovan SM. Human Milk Proteins: Composition and Physiological Significance. Human Milk: Composition, Clinical Benefits and Future Opportunities. Nestle Nutrition Institute Workshop Series Karger Publishers. 2019; 90:93-101.
  • 20. Lonnerdal B. Bioactive proteins in breast milk. J Paediatr Child Health. 2013; 49(1):1-7.
  • 21. Gridneva Z, Rea A, Tie WJ, Lai CT, Kugananthan S, Ward LC, et al. Carbohydrates in Human Milk and Body Composition of Term Infants during the First 12 Months of Lactation. Nutrients. 2019; 11(7):1472.
  • 22. Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, Clowers BH, et al. A strategy for annotating the human milk glycome. J Agricult Food Chem. 2006; 54(20):7471-80.
  • 23. Koreti S, Prasad N. Micronutrient content of breast milk. J Evol Med Dent Sci. 2014; 3(7):1633-8.
  • 24. Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000; 20(1):699-722.
  • 25. Grabarics M, Csernák O, Balogh R, Béni S. Analytical characterization of human milk oligosaccharides–potential applications in pharmaceutical analysis. J Pharm Biomed Anal. 2017; 146:168-78.
  • 26. Ayechu-Muruzabal V, van Stigt AH, Mank M, Willemsen LE, Stahl B, Garssen J, et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front Pediatrics. 2018; 6:239.
  • 27. Kobata A. Structures and application of oligosaccharides in human milk. Proceedings of the Japan Academy, Series B. Physical Biol Sci. 2010; 86(7):731-47.
  • 28. Triantis V, Bode L, Van Neerven R. Immunological effects of human milk oligosaccharides. Front Pediatrics. 2018; 6:190.
  • 29. Kunz C, Meyer C, Collado MC, Geiger L, García-Mantrana I, Bertua-Ríos B, et al. Influence of gestational age, secretor, and lewis blood group status on the oligosaccharide content of human milk. J Pediatr Gastroenterol Nutr. 2017; 64(5):789-98.
  • 30. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012; 22(9):1147-62.
  • 31. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015; 3(1):13.
  • 32. Kirmiz N, Robinson RC, Shah IM, Barile D, Mills DA. Milk glycans and their interaction with the infant-gut microbiota. Annu Rev Food Sci Technol. 2018; 9:429-50.
  • 33. Plaza-Díaz J, Fontana L, Gil A. Human milk oligosaccharides and immune system development. Nutrients. 2018; 10(8):1038.
  • 34. Austin S, De Castro C, Bénet T, Hou Y, Sun H, Thakkar S, et al. Temporal change of the content of 10 oligosaccharides in the milk of Chinese urban mothers. Nutrients. 2016; 8(6):346.
  • 35. Thurl S, Munzert M, Henker J, Boehm G, Müller-Werner B, Jelinek J, et al. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br J Nutr. 2010; 104(9):1261-71.
  • 36. Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics. 2011; 128(6):1520-31.
  • 37. De Leoz MLA, Gaerlan SC, Strum JS, Dimapasoc LM, Mirmiran M, Tancredi DJ, et al. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res. 2012; 11(9):4662-72.
  • 38. Kunz C, Rudloff S. Compositional analysis and metabolism of human milk oligosaccharides in infants. Intestinal Microbiome: Functional Aspects in Health and Disease. Nestle Nutrition Institute Workshop Series Karger Publishers. 2017; 88:137-48.
  • 39. Ray C, Kerketta JA, Rao S, Patel S, Dutt S, Arora K, et al. Human Milk Oligosaccharides: The Journey Ahead. Int J Pediatr. 2019;2019.
  • 40. Martín-Sosa S, Martín Ma-Js, Hueso P. The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J Nutr. 2002; 132(10):3067-72.
  • 41. Lesman-Movshovich E, Lerrer B, Gilboa-Garber N. Blocking of Pseudomonas aeruginosa lectins by human milk glycans. Can J Microbiol. 2003; 49(3):230-5.
  • 42. Gonia S, Tuepker M, Heisel T, Autran C, Bode L, Gale CA. Human milk oligosaccharides inhibit Candida albicans invasion of human premature intestinal epithelial cells. J Nutr. 2015; 145(9):1992-8.
  • 43. Kulinich A, Liu L. Human milk oligosaccharides: The role in the fine-tuning of innate immune responses. Carbohydr Res. 2016; 432:62-70.
  • 44. Donovan SM, Comstock SS. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann Nutr Metab. 2016; 69(2):41-51.
  • 45. Yu Z-T, Chen C, Newburg DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 2013; 23(11):1281-92.
  • 46. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res. 2015; 77(1-2):229-35.
  • 47. German JB, Freeman SL, Lebrilla CB, Mills DA. Human Milk Oligosaccharides: Evolution, Structures and Bioselectivity as Substrates for Intestinal Bacteria. Personalized Nutrition for the Diverse Needs of Infants and Children. Nestle Nutrition Workshop Series Pediatric Program. 2008; 62:205-22.
  • 48. Lawson MA, O’Neill IJ, Kujawska M, Javvadi SG, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. J Int Soc Microb Ecol. 2020; 14(2):635-48.
  • 49. Wu S, Grimm R, German JB, Lebrilla CB. Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res. 2011; 10(2):856-68.
  • 50. Jantscher-Krenn E, Bode L. Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr. 2012; 64(1):83-99.
  • 51. Wang B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr. 2012; 3(3):465-72.
  • 52. Wang B, McVeagh P, Petocz P, Brand-Miller J. Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am J Clin Nutr. 2003; 78(5):1024-9.
  • 53. Obelitz-Ryom K, Bering SB, Overgaard SH, Eskildsen SF, Ringgaard S, Olesen JL, et al. Bovine Milk Oligosaccharides with Sialyllactose Improves Cognition in Preterm Pigs. Nutrients. 2019; 11(6):1335.
  • 54. Codagnone MG, Stanton C, O’Mahony SM, Dinan TG, Cryan JF. Microbiota and Neurodevelopmental Trajectories: Role of Maternal and Early-Life Nutrition. Ann Nutr Metab. 2019; 74(2):16-27.
  • 55. Tarr AJ, Galley JD, Fisher SE, Chichlowski M, Berg BM, Bailey MT. The prebiotics 3′ Sialyllactose and 6′ Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut–brain axis. Brain Behav Immun. 2015; 50:166-77.
  • 56. Wang HX, Chen Y, Haque Z, de Veer M, Egan G, Wang B. Sialylated milk oligosaccharides alter neurotransmitters and brain metabolites in piglets: an In vivo magnetic resonance spectroscopic (MRS) study. Nutr Neurosci. 2019:1-11.
Year 2021, Volume: 6 Issue: 1, 22 - 33, 17.03.2021

Abstract

References

  • 1. Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr. 2014; 99(3):734-41.
  • 2. Doherty AM, Lodge CJ, Dharmage SC, Dai X, Bode L, Lowe AJ. Human milk oligosaccharides and associations with immune-mediated disease and infection in childhood: A systematic review. Front Pediatrics. 2018; 6:91.
  • 3. Bode L. The functional biology of human milk oligosaccharides. Early Hum Dev. 2015; 91(11):619-22.
  • 4. Ruhaak LR, Stroble C, Underwood MA, Lebrilla CB. Detection of milk oligosaccharides in plasma of infants. Anal Bioanal Chem. 2014; 406(24):5775-84.
  • 5. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr. 2014; 34:143-69.
  • 6. Andreas NJ, Kampmann B, Le-Doare KM. Human breast milk: A review on its composition and bioactivity. Early Hum Dev. 2015; 91(11):629-35.
  • 7. Hanson LA, Korotkova M. The role of breastfeeding in prevention of neonatal infection. Sem Neonatol. 2002; 7(4):275-81.
  • 8. World Health Assembly, 54. Global strategy for infant and young child feeding, the optimal duration of exclusive breastfeeding. Geneva: WHO. 2001.
  • 9. Cacho NT, Lawrence RM. Innate immunity and breast milk. Front Immunol. 2017; 8:584.
  • 10. Mosca F, Giannì ML. Human milk: composition and health benefits. Pediatr Med Chir. 2017; 39(2):155.
  • 11. Anatolitou F. Human milk benefits and breastfeeding. J Pediatr Neonat Ind Med (JPNIM). 2012; 1(1):11-8.
  • 12. Horta BL, Loret de Mola C, Victora CG. Breastfeeding and intelligence: a systematic review and meta‐analysis. Acta Paediatr. 2015; 104:14-9.
  • 13. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013; 60(1):49-74.
  • 14. Koletzko B, Rodriguez-Palmero M, Demmelmair H, Fidler N, Jensen R, Sauerwald T. Physiological aspects of human milk lipids. Early Hum Dev. 2001; 65:3-18.
  • 15. Martin CR, Ling P-R, Blackburn GL. Review of infant feeding: key features of breast milk and infant formula. Nutrients. 2016; 8(5):279.
  • 16. Koletzko B, Mrotzek M, Bremer HJ. Fatty acid composition of mature human milk in Germany. Am J Clin Nutr. 1988; 47(6):954-9.
  • 17. Lonnerdal B. Human milk proteins: key components for the biological activity of human milk. Adv Exp Med Biol. 2004; 554:11-25.
  • 18. Lonnerdal B. Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr. 2003; 77(6):1537-43.
  • 19. Donovan SM. Human Milk Proteins: Composition and Physiological Significance. Human Milk: Composition, Clinical Benefits and Future Opportunities. Nestle Nutrition Institute Workshop Series Karger Publishers. 2019; 90:93-101.
  • 20. Lonnerdal B. Bioactive proteins in breast milk. J Paediatr Child Health. 2013; 49(1):1-7.
  • 21. Gridneva Z, Rea A, Tie WJ, Lai CT, Kugananthan S, Ward LC, et al. Carbohydrates in Human Milk and Body Composition of Term Infants during the First 12 Months of Lactation. Nutrients. 2019; 11(7):1472.
  • 22. Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, Clowers BH, et al. A strategy for annotating the human milk glycome. J Agricult Food Chem. 2006; 54(20):7471-80.
  • 23. Koreti S, Prasad N. Micronutrient content of breast milk. J Evol Med Dent Sci. 2014; 3(7):1633-8.
  • 24. Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr. 2000; 20(1):699-722.
  • 25. Grabarics M, Csernák O, Balogh R, Béni S. Analytical characterization of human milk oligosaccharides–potential applications in pharmaceutical analysis. J Pharm Biomed Anal. 2017; 146:168-78.
  • 26. Ayechu-Muruzabal V, van Stigt AH, Mank M, Willemsen LE, Stahl B, Garssen J, et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front Pediatrics. 2018; 6:239.
  • 27. Kobata A. Structures and application of oligosaccharides in human milk. Proceedings of the Japan Academy, Series B. Physical Biol Sci. 2010; 86(7):731-47.
  • 28. Triantis V, Bode L, Van Neerven R. Immunological effects of human milk oligosaccharides. Front Pediatrics. 2018; 6:190.
  • 29. Kunz C, Meyer C, Collado MC, Geiger L, García-Mantrana I, Bertua-Ríos B, et al. Influence of gestational age, secretor, and lewis blood group status on the oligosaccharide content of human milk. J Pediatr Gastroenterol Nutr. 2017; 64(5):789-98.
  • 30. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012; 22(9):1147-62.
  • 31. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015; 3(1):13.
  • 32. Kirmiz N, Robinson RC, Shah IM, Barile D, Mills DA. Milk glycans and their interaction with the infant-gut microbiota. Annu Rev Food Sci Technol. 2018; 9:429-50.
  • 33. Plaza-Díaz J, Fontana L, Gil A. Human milk oligosaccharides and immune system development. Nutrients. 2018; 10(8):1038.
  • 34. Austin S, De Castro C, Bénet T, Hou Y, Sun H, Thakkar S, et al. Temporal change of the content of 10 oligosaccharides in the milk of Chinese urban mothers. Nutrients. 2016; 8(6):346.
  • 35. Thurl S, Munzert M, Henker J, Boehm G, Müller-Werner B, Jelinek J, et al. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br J Nutr. 2010; 104(9):1261-71.
  • 36. Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics. 2011; 128(6):1520-31.
  • 37. De Leoz MLA, Gaerlan SC, Strum JS, Dimapasoc LM, Mirmiran M, Tancredi DJ, et al. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res. 2012; 11(9):4662-72.
  • 38. Kunz C, Rudloff S. Compositional analysis and metabolism of human milk oligosaccharides in infants. Intestinal Microbiome: Functional Aspects in Health and Disease. Nestle Nutrition Institute Workshop Series Karger Publishers. 2017; 88:137-48.
  • 39. Ray C, Kerketta JA, Rao S, Patel S, Dutt S, Arora K, et al. Human Milk Oligosaccharides: The Journey Ahead. Int J Pediatr. 2019;2019.
  • 40. Martín-Sosa S, Martín Ma-Js, Hueso P. The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J Nutr. 2002; 132(10):3067-72.
  • 41. Lesman-Movshovich E, Lerrer B, Gilboa-Garber N. Blocking of Pseudomonas aeruginosa lectins by human milk glycans. Can J Microbiol. 2003; 49(3):230-5.
  • 42. Gonia S, Tuepker M, Heisel T, Autran C, Bode L, Gale CA. Human milk oligosaccharides inhibit Candida albicans invasion of human premature intestinal epithelial cells. J Nutr. 2015; 145(9):1992-8.
  • 43. Kulinich A, Liu L. Human milk oligosaccharides: The role in the fine-tuning of innate immune responses. Carbohydr Res. 2016; 432:62-70.
  • 44. Donovan SM, Comstock SS. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann Nutr Metab. 2016; 69(2):41-51.
  • 45. Yu Z-T, Chen C, Newburg DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 2013; 23(11):1281-92.
  • 46. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res. 2015; 77(1-2):229-35.
  • 47. German JB, Freeman SL, Lebrilla CB, Mills DA. Human Milk Oligosaccharides: Evolution, Structures and Bioselectivity as Substrates for Intestinal Bacteria. Personalized Nutrition for the Diverse Needs of Infants and Children. Nestle Nutrition Workshop Series Pediatric Program. 2008; 62:205-22.
  • 48. Lawson MA, O’Neill IJ, Kujawska M, Javvadi SG, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. J Int Soc Microb Ecol. 2020; 14(2):635-48.
  • 49. Wu S, Grimm R, German JB, Lebrilla CB. Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res. 2011; 10(2):856-68.
  • 50. Jantscher-Krenn E, Bode L. Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr. 2012; 64(1):83-99.
  • 51. Wang B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr. 2012; 3(3):465-72.
  • 52. Wang B, McVeagh P, Petocz P, Brand-Miller J. Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am J Clin Nutr. 2003; 78(5):1024-9.
  • 53. Obelitz-Ryom K, Bering SB, Overgaard SH, Eskildsen SF, Ringgaard S, Olesen JL, et al. Bovine Milk Oligosaccharides with Sialyllactose Improves Cognition in Preterm Pigs. Nutrients. 2019; 11(6):1335.
  • 54. Codagnone MG, Stanton C, O’Mahony SM, Dinan TG, Cryan JF. Microbiota and Neurodevelopmental Trajectories: Role of Maternal and Early-Life Nutrition. Ann Nutr Metab. 2019; 74(2):16-27.
  • 55. Tarr AJ, Galley JD, Fisher SE, Chichlowski M, Berg BM, Bailey MT. The prebiotics 3′ Sialyllactose and 6′ Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut–brain axis. Brain Behav Immun. 2015; 50:166-77.
  • 56. Wang HX, Chen Y, Haque Z, de Veer M, Egan G, Wang B. Sialylated milk oligosaccharides alter neurotransmitters and brain metabolites in piglets: an In vivo magnetic resonance spectroscopic (MRS) study. Nutr Neurosci. 2019:1-11.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Makaleler
Authors

Yasemin Açar

Emine Yassıbaş

Publication Date March 17, 2021
Submission Date June 2, 2020
Acceptance Date January 28, 2021
Published in Issue Year 2021 Volume: 6 Issue: 1

Cite

APA Açar, Y., & Yassıbaş, E. (2021). ANNE SÜTÜ OLİGOSAKKARİTLERİ VE SAĞLIK ÜZERİNE ETKİLERİ. Gazi Sağlık Bilimleri Dergisi, 6(1), 22-33.
AMA Açar Y, Yassıbaş E. ANNE SÜTÜ OLİGOSAKKARİTLERİ VE SAĞLIK ÜZERİNE ETKİLERİ. Gazi Health Sci. March 2021;6(1):22-33.
Chicago Açar, Yasemin, and Emine Yassıbaş. “ANNE SÜTÜ OLİGOSAKKARİTLERİ VE SAĞLIK ÜZERİNE ETKİLERİ”. Gazi Sağlık Bilimleri Dergisi 6, no. 1 (March 2021): 22-33.
EndNote Açar Y, Yassıbaş E (March 1, 2021) ANNE SÜTÜ OLİGOSAKKARİTLERİ VE SAĞLIK ÜZERİNE ETKİLERİ. Gazi Sağlık Bilimleri Dergisi 6 1 22–33.
IEEE Y. Açar and E. Yassıbaş, “ANNE SÜTÜ OLİGOSAKKARİTLERİ VE SAĞLIK ÜZERİNE ETKİLERİ”, Gazi Health Sci, vol. 6, no. 1, pp. 22–33, 2021.
ISNAD Açar, Yasemin - Yassıbaş, Emine. “ANNE SÜTÜ OLİGOSAKKARİTLERİ VE SAĞLIK ÜZERİNE ETKİLERİ”. Gazi Sağlık Bilimleri Dergisi 6/1 (March 2021), 22-33.
JAMA Açar Y, Yassıbaş E. ANNE SÜTÜ OLİGOSAKKARİTLERİ VE SAĞLIK ÜZERİNE ETKİLERİ. Gazi Health Sci. 2021;6:22–33.
MLA Açar, Yasemin and Emine Yassıbaş. “ANNE SÜTÜ OLİGOSAKKARİTLERİ VE SAĞLIK ÜZERİNE ETKİLERİ”. Gazi Sağlık Bilimleri Dergisi, vol. 6, no. 1, 2021, pp. 22-33.
Vancouver Açar Y, Yassıbaş E. ANNE SÜTÜ OLİGOSAKKARİTLERİ VE SAĞLIK ÜZERİNE ETKİLERİ. Gazi Health Sci. 2021;6(1):22-33.