Review
BibTex RIS Cite

THE EFFECTS OF FATTY ACIDS ON THE DEVELOPMENT OF TYPE 2 DIABETES

Year 2022, Volume: 7 Issue: 2, 57 - 67, 17.08.2022
https://doi.org/10.52881/gsbdergi.996024

Abstract

Type 2 diabetes is a metabolic disease that affects a significant population worldwide and increases the risk of morbidity and mortality. Nutritional habits play an important role in the development of type 2 diabetes along with genetic and environmental factors. In recent years, the effects of fatty acids on the development of type 2 diabetes have been the subject of studies. In addition to the total amount of dietary fat, the fatty acid pattern is thought to play an important role in the risk of developing type 2 diabetes. In this review article, it is aimed to discuss the role of fatty acids on the development of insulin resistance and type 2 diabetes based on the current literature.

References

  • 1. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice. 2017;128:40-50. doi:10.1016/j.diabres.2017.03.024
  • 2. Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice. 2018;138:271-281. doi:10.1016/j.diabres.2018.02.023
  • 3. Ofýsý AB. Dünya Saðlýk Örgütü. Accessed June 8, 2021. http://www.euro.who.int/pubrequest
  • 4. Ley SH, Korat AVA, Sun Q, et al. Contribution of the nurses’ health studies to uncovering risk factors for type 2 diabetes: diet, lifestyle, biomarkers, and genetics. American Journal of Public Health. 2016;106(9):1624-1630. doi:10.2105/AJPH.2016.303314
  • 5. Leech RM, Worsley A, Timperio A, McNaughton SA. Understanding meal patterns: Definitions, methodology and impact on nutrient intake and diet quality. Nutrition Research Reviews. 2015;28(1):1-21. doi:10.1017/S0954422414000262
  • 6. Burch E, Williams LT, Makepeace H, Alston-Knox C, Ball L. How does diet change with a diagnosis of diabetes? Protocol of the 3d longitudinal study. Nutrients. 2019;11(1). doi:10.3390/nu11010158
  • 7. Acosta-Montaño P, García-González V. Effects of dietary fatty acids in pancreatic beta cell metabolism, implications in homeostasis. Nutrients. 2018;10(4):393. doi:10.3390/nu10040393
  • 8. Mahendran Y, Cederberg H, Vangipurapu J, et al. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Diabetes Care. 2013;36(11):3732-3738. doi:10.2337/dc13-0800
  • 9. Spiller S, Blüher M, Hoffmann R. Plasma levels of free fatty acids correlate with type 2 diabetes mellitus. Diabetes, Obesity and Metabolism. 2018;20(11):2661-2669. doi:10.1111/dom.13449
  • 10. Mazidi M, Mikhailidis DP, Sattar N, et al. Association of types of dietary fats and all-cause and cause-specific mortality: A prospective cohort study and meta-analysis of prospective studies with 1,164,029 participants. Clinical Nutrition. 2020;39(12):3677-3686. doi:10.1016/j.clnu.2020.03.028
  • 11. Koska J, Ozias MK, Deer J, et al. A human model of dietary saturated fatty acid induced insulin resistance. Metabolism: Clinical and Experimental. 2016;65(11):1621-1628. doi:10.1016/j.metabol.2016.07.015
  • 12. von Frankenberg AD, Marina A, Song X, Callahan HS, Kratz M, Utzschneider KM. A high-fat, high-saturated fat diet decreases insulin sensitivity without changing intra-abdominal fat in weight-stable overweight and obese adults. European Journal of Nutrition. 2017;56(1):431-443. doi:10.1007/s00394-015-1108-6
  • 13. Rosqvist F, Iggman D, Kullberg J, et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes. 2014;63(7):2356-2368. doi:10.2337/db13-1622
  • 14. Boon J, Hoy AJ, Stark R, et al. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes. 2013;62(2):401-410. doi:10.2337/db12-0686
  • 15. Holland WL, Brozinick JT, Wang LP, et al. Inhibition of Ceramide Synthesis Ameliorates Glucocorticoid-, Saturated-Fat-, and Obesity-Induced Insulin Resistance. Cell Metabolism. 2007;5(3):167-179. doi:10.1016/j.cmet.2007.01.002
  • 16. Xia JY, Holland WL, Kusminski CM, et al. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis. Cell Metabolism. 2015;22(2):266-278. doi:10.1016/j.cmet.2015.06.007
  • 17. Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends in Pharmacological Sciences. 2017;38(7):649-665. doi:10.1016/j.tips.2017.04.004
  • 18. Hotamisligil GS, Davis RJ. Cell signaling and stress responses. Cold Spring Harbor Perspectives in Biology. 2016;8(10). doi:10.1101/cshperspect.a006072
  • 19. Frakes AE, Dillin A. The UPRER: Sensor and Coordinator of Organismal Homeostasis. Molecular Cell. 2017;66(6):761-771. doi:10.1016/j.molcel.2017.05.031
  • 20. Yuzefovych L v., Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA Damage and Dysfunction, and Oxidative Stress Are Associated with Endoplasmic Reticulum Stress, Protein Degradation and Apoptosis in High Fat Diet-Induced Insulin Resistance Mice. Santos J, ed. PLoS ONE. 2013;8(1):e54059. doi:10.1371/journal.pone.0054059
  • 21. I. S. Sobczak A, A. Blindauer C, J. Stewart A. Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients. 2019;11(9):2022. doi:10.3390/nu11092022
  • 22. Schwingshackl L, Lampousi AM, Portillo MP, Romaguera D, Hoffmann G, Boeing H. Olive oil in the prevention and management of type 2 diabetes mellitus: A systematic review and meta-analysis of cohort studies and intervention trials. Nutrition and Diabetes. 2017;7(4). doi:10.1038/nutd.2017.12
  • 23. Chen X, Li L, Liu X, et al. Oleic acid protects saturated fatty acid mediated lipotoxicity in hepatocytes and rat of non-alcoholic steatohepatitis. Life Sciences. 2018;203:291-304. doi:10.1016/j.lfs.2018.04.022
  • 24. Peng G, Li L, Liu Y, et al. Oleate Blocks Palmitate-Induced Abnormal Lipid Distribution, Endoplasmic Reticulum Expansion and Stress, and Insulin Resistance in Skeletal Muscle. Endocrinology. 2011;152(6):2206-2218. doi:10.1210/en.2010-1369
  • 25. Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends in Endocrinology and Metabolism. Published online 2018. doi:10.1016/j.tem.2017.11.009
  • 26. Nardi F, Lipina C, Magill D, et al. Enhanced Insulin Sensitivity Associated with Provision of Mono and Polyunsaturated Fatty Acids in Skeletal Muscle Cells Involves Counter Modulation of PP2A. Eckel J, ed. PLoS ONE. 2014;9(3):e92255. doi:10.1371/journal.pone.0092255
  • 27. Zhuang P, Zhang Y, Mao L, et al. The association between consumption of monounsaturated fats from animal- v. plant-based foods and the risk of type 2 diabetes: A prospective nationwide cohort study. British Journal of Nutrition. 2020;124(1):102-111. doi:10.1017/S0007114520000677
  • 28. Nunes E, Rafacho A. Implications of Palmitoleic Acid (Palmitoleate) On Glucose Homeostasis, Insulin Resistance and Diabetes. Current Drug Targets. 2017;18(6):619-628. doi:10.2174/1389450117666151209120345
  • 29. Tricò D, Mengozzi A, Nesti L, et al. Circulating palmitoleic acid is an independent determinant of insulin sensitivity, beta cell function and glucose tolerance in non-diabetic individuals: a longitudinal analysis. Diabetologia. 2020;63(1):206-218. doi:10.1007/s00125-019-05013-6
  • 30. Liu R, Chen L, Wang Z, et al. Omega-3 polyunsaturated fatty acids prevent obesity by improving tricarboxylic acid cycle homeostasis. Journal of Nutritional Biochemistry. 2021;88:108503. doi:10.1016/j.jnutbio.2020.108503
  • 31. Martins AR, Crisma AR, Masi LN, et al. Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet. Journal of Nutritional Biochemistry. 2018;55:76-88. doi:10.1016/j.jnutbio.2017.11.012
  • 32. Fan R, Kim J, You M, et al. α-Linolenic acid-enriched butter attenuated high fat diet-induced insulin resistance and inflammation by promoting bioconversion of n-3 PUFA and subsequent oxylipin formation. Journal of Nutritional Biochemistry. 2020;76:108285. doi:10.1016/j.jnutbio.2019.108285
  • 33. Zong G, Liu G, Willett WC, et al. Associations between linoleic acid intake and incident type 2 diabetes among U.S. Men and women. Diabetes Care. 2019;42(8):1406-1413. doi:10.2337/dc19-0412
  • 34. Wu JHY, Marklund M, Imamura F, et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. The Lancet Diabetes and Endocrinology. 2017;5(12):965-974. doi:10.1016/S2213-8587(17)30307-8
  • 35. Brown TJ, Brainard J, Song F, Wang X, Abdelhamid A, Hooper L. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: Systematic review and meta-analysis of randomised controlled trials. The BMJ. 2019;366. doi:10.1136/bmj.l4697
  • 36. Chen C, Yang Y, Yu X, Hu S, Shao S. Association between omega-3 fatty acids consumption and the risk of type 2 diabetes: A meta-analysis of cohort studies. Journal of Diabetes Investigation. 2017;8(4):480-488. doi:10.1111/jdi.12614
  • 37. Wallin A, di Giuseppe D, Orsini N, Patel PS, Forouhi NG, Wolk A. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes:Systematic review and meta-analysis of prospective studies. Diabetes Care. 2012;35(4):918-929. doi:10.2337/dc11-1631
  • 38. Kröger J, Schulze MB. Recent insights into the relation of Δ5 desaturase and Δ6 desaturase activity to the development of type 2 diabetes. Current Opinion in Lipidology. 2012;23(1):4-10. doi:10.1097/MOL.0b013e32834d2dc5
  • 39. Chan P-C, Liao M-T, Hsieh P-S. The Dualistic Effect of COX-2-Mediated Signaling in Obesity and Insulin Resistance. International Journal of Molecular Sciences. 2019;20(13):3115. doi:10.3390/ijms20133115
  • 40. Kwon Y. Immuno-Resolving Ability of Resolvins, Protectins, and Maresins Derived from Omega-3 Fatty Acids in Metabolic Syndrome. Molecular Nutrition and Food Research. 2020;64(4). doi:10.1002/mnfr.201900824
  • 41. Li P, Oh DY, Bandyopadhyay G, et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nature Medicine. 2015;21(3):239-247. doi:10.1038/nm.3800
  • 42. Liu HQ, Qiu Y, Mu Y, et al. A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutrition Research. 2013;33(10):849-858. doi:10.1016/j.nutres.2013.07.004
  • 43. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology. 2015;11(10):577-591. doi:10.1038/nrendo.2015.128
  • 44. Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications. 2013;4(1):1-12. doi:10.1038/ncomms2852
  • 45. McNabney SM, Henagan TM. Short chain fatty acids in the colon and peripheral tissues: A focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients. 2017;9(12). doi:10.3390/nu9121348
  • 46. Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213-217. doi:10.1038/nature18309
  • 47. Tirosh A, Calay ES, Tuncman G, et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Science Translational Medicine. 2019;11(489). doi:10.1126/scitranslmed.aav0120
  • 48. Liu B, Sun Y, Snetselaar LG, et al. Association between plasma trans-fatty acid concentrations and diabetes in a nationally representative sample of US adults. Journal of Diabetes. 2018;10(8):653-664. doi:10.1111/1753-0407.12652
  • 49. den Hartigh LJ. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Published online 2019. doi:10.3390/nu11020370
  • 50. Roura-Guiberna A, Hernandez-Aranda J, Ramirez-Flores CJ, et al. Isomers of conjugated linoleic acid induce insulin resistance through a mechanism involving activation of protein kinase Cε in liver cells. Cellular Signalling. 2019;53:281-293. doi:10.1016/j.cellsig.2018.10.013
  • 51. Yore MM, Syed I, Moraes-Vieira PM, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159(2):318-332. doi:10.1016/j.cell.2014.09.035

YAĞ ASİTLERİNİN TİP 2 DİYABET GELİŞİMİ ÜZERİNE ETKİLERİ

Year 2022, Volume: 7 Issue: 2, 57 - 67, 17.08.2022
https://doi.org/10.52881/gsbdergi.996024

Abstract

Tip 2 diyabet, Dünya genelinde önemli bir nüfusu etkileyen, morbidite ve mortalite riskini artıran metabolik bir hastalıktır. Tip 2 diyabetin gelişiminde genetik ve çevresel faktörlerle birlikte beslenme alışkanlıkları da önemli bir rol oynamaktadır. Son yıllarda özellikle yağ asitlerinin tip 2 diyabet gelişimi üzerine etkileri çalışmalara konu olmuştur. Diyetle alınan toplam yağ miktarına ek olarak yağ asidi örüntüsünün de tip 2 diyabetin gelişme riskinde önemli bir rol oynadığı düşünülmektedir. Bu derleme makalede, yağ asitlerinin insülin direnci ve tip 2 diyabet gelişimi üzerindeki rolünün güncel literatüre dayalı olarak tartışılması amaçlanmıştır.

References

  • 1. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice. 2017;128:40-50. doi:10.1016/j.diabres.2017.03.024
  • 2. Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice. 2018;138:271-281. doi:10.1016/j.diabres.2018.02.023
  • 3. Ofýsý AB. Dünya Saðlýk Örgütü. Accessed June 8, 2021. http://www.euro.who.int/pubrequest
  • 4. Ley SH, Korat AVA, Sun Q, et al. Contribution of the nurses’ health studies to uncovering risk factors for type 2 diabetes: diet, lifestyle, biomarkers, and genetics. American Journal of Public Health. 2016;106(9):1624-1630. doi:10.2105/AJPH.2016.303314
  • 5. Leech RM, Worsley A, Timperio A, McNaughton SA. Understanding meal patterns: Definitions, methodology and impact on nutrient intake and diet quality. Nutrition Research Reviews. 2015;28(1):1-21. doi:10.1017/S0954422414000262
  • 6. Burch E, Williams LT, Makepeace H, Alston-Knox C, Ball L. How does diet change with a diagnosis of diabetes? Protocol of the 3d longitudinal study. Nutrients. 2019;11(1). doi:10.3390/nu11010158
  • 7. Acosta-Montaño P, García-González V. Effects of dietary fatty acids in pancreatic beta cell metabolism, implications in homeostasis. Nutrients. 2018;10(4):393. doi:10.3390/nu10040393
  • 8. Mahendran Y, Cederberg H, Vangipurapu J, et al. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Diabetes Care. 2013;36(11):3732-3738. doi:10.2337/dc13-0800
  • 9. Spiller S, Blüher M, Hoffmann R. Plasma levels of free fatty acids correlate with type 2 diabetes mellitus. Diabetes, Obesity and Metabolism. 2018;20(11):2661-2669. doi:10.1111/dom.13449
  • 10. Mazidi M, Mikhailidis DP, Sattar N, et al. Association of types of dietary fats and all-cause and cause-specific mortality: A prospective cohort study and meta-analysis of prospective studies with 1,164,029 participants. Clinical Nutrition. 2020;39(12):3677-3686. doi:10.1016/j.clnu.2020.03.028
  • 11. Koska J, Ozias MK, Deer J, et al. A human model of dietary saturated fatty acid induced insulin resistance. Metabolism: Clinical and Experimental. 2016;65(11):1621-1628. doi:10.1016/j.metabol.2016.07.015
  • 12. von Frankenberg AD, Marina A, Song X, Callahan HS, Kratz M, Utzschneider KM. A high-fat, high-saturated fat diet decreases insulin sensitivity without changing intra-abdominal fat in weight-stable overweight and obese adults. European Journal of Nutrition. 2017;56(1):431-443. doi:10.1007/s00394-015-1108-6
  • 13. Rosqvist F, Iggman D, Kullberg J, et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes. 2014;63(7):2356-2368. doi:10.2337/db13-1622
  • 14. Boon J, Hoy AJ, Stark R, et al. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes. 2013;62(2):401-410. doi:10.2337/db12-0686
  • 15. Holland WL, Brozinick JT, Wang LP, et al. Inhibition of Ceramide Synthesis Ameliorates Glucocorticoid-, Saturated-Fat-, and Obesity-Induced Insulin Resistance. Cell Metabolism. 2007;5(3):167-179. doi:10.1016/j.cmet.2007.01.002
  • 16. Xia JY, Holland WL, Kusminski CM, et al. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis. Cell Metabolism. 2015;22(2):266-278. doi:10.1016/j.cmet.2015.06.007
  • 17. Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends in Pharmacological Sciences. 2017;38(7):649-665. doi:10.1016/j.tips.2017.04.004
  • 18. Hotamisligil GS, Davis RJ. Cell signaling and stress responses. Cold Spring Harbor Perspectives in Biology. 2016;8(10). doi:10.1101/cshperspect.a006072
  • 19. Frakes AE, Dillin A. The UPRER: Sensor and Coordinator of Organismal Homeostasis. Molecular Cell. 2017;66(6):761-771. doi:10.1016/j.molcel.2017.05.031
  • 20. Yuzefovych L v., Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA Damage and Dysfunction, and Oxidative Stress Are Associated with Endoplasmic Reticulum Stress, Protein Degradation and Apoptosis in High Fat Diet-Induced Insulin Resistance Mice. Santos J, ed. PLoS ONE. 2013;8(1):e54059. doi:10.1371/journal.pone.0054059
  • 21. I. S. Sobczak A, A. Blindauer C, J. Stewart A. Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients. 2019;11(9):2022. doi:10.3390/nu11092022
  • 22. Schwingshackl L, Lampousi AM, Portillo MP, Romaguera D, Hoffmann G, Boeing H. Olive oil in the prevention and management of type 2 diabetes mellitus: A systematic review and meta-analysis of cohort studies and intervention trials. Nutrition and Diabetes. 2017;7(4). doi:10.1038/nutd.2017.12
  • 23. Chen X, Li L, Liu X, et al. Oleic acid protects saturated fatty acid mediated lipotoxicity in hepatocytes and rat of non-alcoholic steatohepatitis. Life Sciences. 2018;203:291-304. doi:10.1016/j.lfs.2018.04.022
  • 24. Peng G, Li L, Liu Y, et al. Oleate Blocks Palmitate-Induced Abnormal Lipid Distribution, Endoplasmic Reticulum Expansion and Stress, and Insulin Resistance in Skeletal Muscle. Endocrinology. 2011;152(6):2206-2218. doi:10.1210/en.2010-1369
  • 25. Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends in Endocrinology and Metabolism. Published online 2018. doi:10.1016/j.tem.2017.11.009
  • 26. Nardi F, Lipina C, Magill D, et al. Enhanced Insulin Sensitivity Associated with Provision of Mono and Polyunsaturated Fatty Acids in Skeletal Muscle Cells Involves Counter Modulation of PP2A. Eckel J, ed. PLoS ONE. 2014;9(3):e92255. doi:10.1371/journal.pone.0092255
  • 27. Zhuang P, Zhang Y, Mao L, et al. The association between consumption of monounsaturated fats from animal- v. plant-based foods and the risk of type 2 diabetes: A prospective nationwide cohort study. British Journal of Nutrition. 2020;124(1):102-111. doi:10.1017/S0007114520000677
  • 28. Nunes E, Rafacho A. Implications of Palmitoleic Acid (Palmitoleate) On Glucose Homeostasis, Insulin Resistance and Diabetes. Current Drug Targets. 2017;18(6):619-628. doi:10.2174/1389450117666151209120345
  • 29. Tricò D, Mengozzi A, Nesti L, et al. Circulating palmitoleic acid is an independent determinant of insulin sensitivity, beta cell function and glucose tolerance in non-diabetic individuals: a longitudinal analysis. Diabetologia. 2020;63(1):206-218. doi:10.1007/s00125-019-05013-6
  • 30. Liu R, Chen L, Wang Z, et al. Omega-3 polyunsaturated fatty acids prevent obesity by improving tricarboxylic acid cycle homeostasis. Journal of Nutritional Biochemistry. 2021;88:108503. doi:10.1016/j.jnutbio.2020.108503
  • 31. Martins AR, Crisma AR, Masi LN, et al. Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet. Journal of Nutritional Biochemistry. 2018;55:76-88. doi:10.1016/j.jnutbio.2017.11.012
  • 32. Fan R, Kim J, You M, et al. α-Linolenic acid-enriched butter attenuated high fat diet-induced insulin resistance and inflammation by promoting bioconversion of n-3 PUFA and subsequent oxylipin formation. Journal of Nutritional Biochemistry. 2020;76:108285. doi:10.1016/j.jnutbio.2019.108285
  • 33. Zong G, Liu G, Willett WC, et al. Associations between linoleic acid intake and incident type 2 diabetes among U.S. Men and women. Diabetes Care. 2019;42(8):1406-1413. doi:10.2337/dc19-0412
  • 34. Wu JHY, Marklund M, Imamura F, et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. The Lancet Diabetes and Endocrinology. 2017;5(12):965-974. doi:10.1016/S2213-8587(17)30307-8
  • 35. Brown TJ, Brainard J, Song F, Wang X, Abdelhamid A, Hooper L. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: Systematic review and meta-analysis of randomised controlled trials. The BMJ. 2019;366. doi:10.1136/bmj.l4697
  • 36. Chen C, Yang Y, Yu X, Hu S, Shao S. Association between omega-3 fatty acids consumption and the risk of type 2 diabetes: A meta-analysis of cohort studies. Journal of Diabetes Investigation. 2017;8(4):480-488. doi:10.1111/jdi.12614
  • 37. Wallin A, di Giuseppe D, Orsini N, Patel PS, Forouhi NG, Wolk A. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes:Systematic review and meta-analysis of prospective studies. Diabetes Care. 2012;35(4):918-929. doi:10.2337/dc11-1631
  • 38. Kröger J, Schulze MB. Recent insights into the relation of Δ5 desaturase and Δ6 desaturase activity to the development of type 2 diabetes. Current Opinion in Lipidology. 2012;23(1):4-10. doi:10.1097/MOL.0b013e32834d2dc5
  • 39. Chan P-C, Liao M-T, Hsieh P-S. The Dualistic Effect of COX-2-Mediated Signaling in Obesity and Insulin Resistance. International Journal of Molecular Sciences. 2019;20(13):3115. doi:10.3390/ijms20133115
  • 40. Kwon Y. Immuno-Resolving Ability of Resolvins, Protectins, and Maresins Derived from Omega-3 Fatty Acids in Metabolic Syndrome. Molecular Nutrition and Food Research. 2020;64(4). doi:10.1002/mnfr.201900824
  • 41. Li P, Oh DY, Bandyopadhyay G, et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nature Medicine. 2015;21(3):239-247. doi:10.1038/nm.3800
  • 42. Liu HQ, Qiu Y, Mu Y, et al. A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutrition Research. 2013;33(10):849-858. doi:10.1016/j.nutres.2013.07.004
  • 43. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology. 2015;11(10):577-591. doi:10.1038/nrendo.2015.128
  • 44. Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications. 2013;4(1):1-12. doi:10.1038/ncomms2852
  • 45. McNabney SM, Henagan TM. Short chain fatty acids in the colon and peripheral tissues: A focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients. 2017;9(12). doi:10.3390/nu9121348
  • 46. Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213-217. doi:10.1038/nature18309
  • 47. Tirosh A, Calay ES, Tuncman G, et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Science Translational Medicine. 2019;11(489). doi:10.1126/scitranslmed.aav0120
  • 48. Liu B, Sun Y, Snetselaar LG, et al. Association between plasma trans-fatty acid concentrations and diabetes in a nationally representative sample of US adults. Journal of Diabetes. 2018;10(8):653-664. doi:10.1111/1753-0407.12652
  • 49. den Hartigh LJ. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Published online 2019. doi:10.3390/nu11020370
  • 50. Roura-Guiberna A, Hernandez-Aranda J, Ramirez-Flores CJ, et al. Isomers of conjugated linoleic acid induce insulin resistance through a mechanism involving activation of protein kinase Cε in liver cells. Cellular Signalling. 2019;53:281-293. doi:10.1016/j.cellsig.2018.10.013
  • 51. Yore MM, Syed I, Moraes-Vieira PM, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159(2):318-332. doi:10.1016/j.cell.2014.09.035
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Makaleler
Authors

Caner Özyıldırım 0000-0001-8227-9575

Publication Date August 17, 2022
Submission Date September 16, 2021
Acceptance Date April 25, 2022
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

APA Özyıldırım, C. (2022). YAĞ ASİTLERİNİN TİP 2 DİYABET GELİŞİMİ ÜZERİNE ETKİLERİ. Gazi Sağlık Bilimleri Dergisi, 7(2), 57-67. https://doi.org/10.52881/gsbdergi.996024
AMA Özyıldırım C. YAĞ ASİTLERİNİN TİP 2 DİYABET GELİŞİMİ ÜZERİNE ETKİLERİ. Gazi sağlık bilim. derg. August 2022;7(2):57-67. doi:10.52881/gsbdergi.996024
Chicago Özyıldırım, Caner. “YAĞ ASİTLERİNİN TİP 2 DİYABET GELİŞİMİ ÜZERİNE ETKİLERİ”. Gazi Sağlık Bilimleri Dergisi 7, no. 2 (August 2022): 57-67. https://doi.org/10.52881/gsbdergi.996024.
EndNote Özyıldırım C (August 1, 2022) YAĞ ASİTLERİNİN TİP 2 DİYABET GELİŞİMİ ÜZERİNE ETKİLERİ. Gazi Sağlık Bilimleri Dergisi 7 2 57–67.
IEEE C. Özyıldırım, “YAĞ ASİTLERİNİN TİP 2 DİYABET GELİŞİMİ ÜZERİNE ETKİLERİ”, Gazi sağlık bilim. derg, vol. 7, no. 2, pp. 57–67, 2022, doi: 10.52881/gsbdergi.996024.
ISNAD Özyıldırım, Caner. “YAĞ ASİTLERİNİN TİP 2 DİYABET GELİŞİMİ ÜZERİNE ETKİLERİ”. Gazi Sağlık Bilimleri Dergisi 7/2 (August 2022), 57-67. https://doi.org/10.52881/gsbdergi.996024.
JAMA Özyıldırım C. YAĞ ASİTLERİNİN TİP 2 DİYABET GELİŞİMİ ÜZERİNE ETKİLERİ. Gazi sağlık bilim. derg. 2022;7:57–67.
MLA Özyıldırım, Caner. “YAĞ ASİTLERİNİN TİP 2 DİYABET GELİŞİMİ ÜZERİNE ETKİLERİ”. Gazi Sağlık Bilimleri Dergisi, vol. 7, no. 2, 2022, pp. 57-67, doi:10.52881/gsbdergi.996024.
Vancouver Özyıldırım C. YAĞ ASİTLERİNİN TİP 2 DİYABET GELİŞİMİ ÜZERİNE ETKİLERİ. Gazi sağlık bilim. derg. 2022;7(2):57-6.