Etofenprox’un Genotoksik Etkisinin Drosophila melanogaster’de Değerlendirilmesi
Yıl 2024,
Cilt: 5 Sayı: 1, 21 - 30, 29.05.2024
Selda Öz
,
Serap Kocaoğlu Cenkci
Öz
Tarım ve halk sağlığında yaygın kullanılan piretroid insektisitlerden etofenprox ülkemizde en sık maruz kalınan insektisitlerdendir. İnsektisitlere maruziyet insanlarda ve diğer hedef dışı organizmalarda ciddi boyutlara varabilen olumsuz etkilere yol açabilmektedir. Bu çalışmada etofenprox’un model organizma Drosophila melanogaster üzerinde genotoksik etki potansiyelinin araştırılması amaçlanmıştır. Genotoksik etkinin değerlendirilmesinde somatik mutasyon ve rekombinasyon testi (SMART) kullanılmıştır. SMART analizinde etofenprox’un subletal dozlarına (0,625; 1; 1,25 ve 2,5 ppm) maruz bırakılan transheterozigot larvalardan gelişen ergin bireylerin kanatlarında meydana gelen fenotipik değişiklikler incelenmiştir. Elde edilen veriler, etofenprox’un test edilen tüm dozlarda toplam klon sayısında istatistiksel olarak pozitif artışa neden olarak genotoksisiteyi indüklediğini göstermiştir.
Etik Beyan
Bu çalışma etik kurul izni veya herhangi bir özel izin gerektirmez.
Kaynakça
- EPA. (2023). What is pesticide? URL: http://www.epa.gov/ingredients-used-pesticide-products/basic-information-about-pesticide-ingredients (Erişim tarihi: 01.09.2023).
- Bernardes, M. F. F., Pazin, M., Pereira, L. C., Dorta, D. J. (2015). Impact of pesticides on environmental and human health. Toxicology Studies-Cells, Drugs and Environment, 195-233.
- Warra, A.A., Prasad, M.N.V. (2020). African Perspective of Chemical Usage in Agriculture and Horticulture—Their Impact on Human Health and Environment. Agrochemicals Detection, Treatment and Remediation; Pesticides and Chemical Fertilizers, Chapter 16, 401-416.
- Carvalho, F.P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science & Policy, 9, 685–692.
- FAO (2022). Pesticides Use and Trade 1990–2021 FAOSTAT Analytical Brief Series No. 70. Rome.
- Zhang, W., Jiang, F., Ou, J. (2011). Global pesticide consumption and pollution: With China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(2), 125.
- Özkara, A., Akyıl, D. (2018). Environmental Pollution and Pollutants on the Ecosystem: A Review. Türk Bilimsel Derlemeler Dergisi. 11 (2): 11-17, 2018.
- Gangemi, S., Miozzi, E., Teodoro, M., Briguglio, G., De Luca, A., Alibrando, C., Polito, I., Libra, M. (2016). Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans (Review). Molecular Medicine Reports, 14, 4475–4488. doi:10.3892/mmr.2016.5817.
- Ağırbaşlı, N., Günal, A. Ç., Koçak, G., Dinçel, A. S. (2020). The Sublethal Genotoxic Effects of Environmental Pollutants of Etofenprox on Zebrafish (Danio rerio). Journal of Health Services and Education, 4(1), 14-18.
- de Graaf, L., Boulanger, M., Bureau, M., Bouvier, G., Meryet-Figuiere, M., Tual, S., Lebailly, P., Baldi, I. (2022). Occupational pesticide exposure, cancer and chronic neurological disorders: A systematic review of epidemiological studies in greenspace workers. Environmental Research, 203, 111822.
- Fagundes, T. R., Kawassaki, A. C. B., Concato, V. M., Assolini, J. P., Silva, T. F., Gonçalves, M. D., SA Silva Siqueria E., Sahd, C.S., Inoue, F.S.R., da Silva T.P., de Lima, D.M., Ferreira, M.O., Conchon-Costa, I., Pavenelli, W.R., Panis, C. (2023). Impact of Pesticides on Immune-Endocrine Disorders and Its Relationship to Cancer Development. In Handbook of Cancer and Immunology (pp. 1-30). Cham: Springer International Publishing.
- Hernández, A.F., Menéndez, P. (2016). Linking pesticide exposure with pediatric leukemia: Potential underlying mechanisms. International Journal of Molecular Sciences, 17: 461.
[13] Leso, V., Capitanelli, I., Lops, E.A., Ricciardi, W., Iavicoli, I. (2016). Occupational chemical exposure and diabetes mellitus risk. Toxicology and Industrial Health, 33(3), 222–249.
- Benka-Coker, W., Loftus, C., Karr, C., Magzamen, S. (2019). Characterizing the joint effects of pesticide exposure and criteria ambient air pollutants on pediatric asthma morbidity in an agricultural community. Environmental Epidemiology (Philadelphia, Pa.), 3(3), e046.
- Parvez, S., Gerona, R.R., Proctor, C., Friesen, M., Ashby, J.L., Reiter, J.L., Lui, Z., Winchester, P.D., (2018). Glyphosate exposure in pregnancy and shortened gestational length: A prospective Indiana birth cohort study. Environmental Health, 17(1), 1-12.
- Gascon, M., Sunyer, J., Martínez, D., Guerra, S., Lavi, I., Torrent, M., Vrijheid, M. (2014). Persistent organic pollutants and children's respiratory health: The role of cytokines and inflammatory biomarkers. Environment International, 69, 133-140.
- Liew, Z., von Ehrenstein O.S., Ling, C., Yuan, Y., Meng, Q., Cui, X., Park, A.S., Uldall, P., Olsen, J., Cockburn, M., Ritz, B. (2020). Ambient exposure to agricultural pesticides during pregnancy and risk of cerebral palsy: a population-based study in California. Toxics. 8(3),52.
- Ravula, A.R., Yenugu, S. (2021). Pyrethroid based pesticides–chemical and biological aspects. Critical Reviews in Toxicology, 51, 117–140.
- Rinkevich, F. D., Du, Y., & Dong, K. (2013). Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pesticide Biochemistry and Physiology, 106(3), 93-100.
- Burns, C. J. and Pastoor, T. P. (2018). Pyrethroid epidemiology: A quality-based review. Critical Reviews in Toxicology, 48(4), 297-311.
- Soderlund, D.M. (2012). Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Archives of Toxicology, 86, 165–181.
- Cham, E. Y. K., Tse, J. C. L., Chong, Y. K., Chen, M. L., Wong, O. F., Fung, H. T. (2016). A case of pyrethroid poisoning with clinical presentation mimicking organophosphate poisoning. Hong Kong Journal of Emergency Medicine, 23(2), 47-51.
- Demeneix, B., Leemans, M., Couderq, S. (2020). Pyrethroid exposure: Not so harmless after all. Lancet Diabetes and Endocrinology, 8, 266–268. doi:10.1016/S2213-8587(20)30039-5.
- FAO. (2023). FAO Specifications and Evaluations for Agricultural Pesticides. Etofenprox.https://www.fao.org/pest-and-pesticide-management/guidelines-standards/faowho-joint-meeting-on-pesticide-specifications-jmps/pesticide-specifications/pesticide-specifications-list/en/(Erişim tarihi: 30.09.23)
- Chamberlain, K., Matsuo, N., Kaneko, H., Khambay, BPS. (1998). Pyrethroids. In: Kurihara, N, Miyamoto, J (eds.), Chirality in Agrochemicals. John Wiley, Chinchester, pp 9-84.
- Scott, J.G., Buchon, N. (2019). Drosophila melanogaster as a powerful tool for studying insect toxicology. Pesticide Biochemistry and Physiology, 161, 95–103.
- Mandi, M., Khatun, S., Rajak, P., Mazumdar, A., Roy, S. (2020). Potential risk of organophosphate exposure in male reproductive system of a non-target insect model Drosophila melanogaster. Environmental Toxicology and Pharmacology, 74, 103308.
- Strilbytska, O.M., Semaniuk, U. V., Strutynska, T.R., Burdyliuk, N.I., Tsiumpala, S., Bubalo, V., Lushchak, O. (2022). Herbicide Roundup shows toxic effects in nontarget organism Drosophila. Archives of Insect Biochemistry and Physiology, 110.
- Pandey, U. B., & Nichols, C. D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological Reviews, 63(2), 411-436.
- Reyes-Rodríguez, M. de los Á., Santos-Cruz, L.F., García-Castro, C., Durán-Díaz, Á., Castañeda-Partida, L., Dueñas-García, I.E., Heres-Pulido, M.E., Rodríguez-Mercado, J.J. (2021). Genotoxicity and cytotoxicity evaluation of two thallium compounds using the Drosophila wing somatic mutation and recombination test.
- Anet, A., Olakkaran, S., Kizhakke Purayil, A., Hunasanahally Puttaswamygowda, G. (2019). Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster. Journal of Hazardous Materials. 370, 42–53. doi:10.1016/j.jhazmat.2018.07.050.
- Graf, U., Würgler, F.E., Katz, A.J., Frei, H., Juan, H., Hall, J.V. (1984). Somatic mutation and recombination test in Drosophila melanogaster. Enviromental Mutagenesis, 6 (2), 153-188.
- Graf, U., Abraham, S. K., Guzmán-Rincón, J., Würgler, F. E. (1998). Antigenotoxicity studies in Drosophila melanogaster. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 402(1-2), 203-209.
- Frei, H., Würgler, F.E. (1988). Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result, Mutation Research/Environmental Mutagenesis and Related Subjects, 203 (4), 297-30.
- Boobis, A.R., Ossendorp, B.C., Banasiak, U., Hamey, P.Y., Sebestyen, I., Moretto, A. (2008). Cumulative risk assessment of pesticide residues in food. Toxicology Letters, 180, 137–150.
- Anaduaka, E.G., Uchendu, N.O., Asomadu, R.O., Ezugwu, A.L., Okeke, E.S., Chidike Ezeorba, T.P., (2023). Widespread use of toxic agrochemicals and pesticides for agricultural products storage in Africa and developing countries: Possible panacea for ecotoxicology and health implications. Heliyon, 9, e15173.
- Özpolat Çakar, N., Kutsal, D., Kiran, S. (2020). Tarım çalışanlarında pestisit maruz kalımı ve kronik böbrek hastalığı. Ankara Medical Journal, 20(3), 761-772.
- DeMicco, A., Cooper, K. R., Richardson, J. R., White, L. A. (2010). Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicological Sciences, 113(1), 177-186.
- Saillenfait, A.M., Ndiaye, D., Sabaté, J.P. (2015). Pyrethroids: Exposure and health effects - An update. International Journal of Hygiene and Environmental Health, 218, 281–292.
- Pryce, J., Medley, N., Choi, L. (2022). Indoor residual spraying for preventing malaria in communities using insecticide-treated nets. Cochrane Database of Systematic Reviews, 2022. doi:10.1002/14651858.CD012688.pub3.
- Chrustek, A., Hołyńska-Iwan, I., Dziembowska, I., Bogusiewicz, J., Wróblewski, M., Cwynar, A., Olszewska-Słonina, D. (2018). Current research on the safety of pyrethroids used as insecticides. Medicina (Kaunas, Lithuania), 54(4), 61. doi:10.3390/medicina54040061.
- Bragança, I., Lemos, P. C., Barros, P., Delerue-Matos, C., & Domingues, V. F. (2018). Phytotoxicity of pyrethroid pesticides and its metabolite towards Cucumis sativus. Science of the Total Environment, 619, 685-691.
- Tang, W., Wang, D., Wang, J., Wu, Z., Li, L., Huang, M., Xu, S., Yan, D. (2018). Pyrethroid pesticide residues in the global environment: An overview. Chemosphere, 191, 990–1007. doi:10.1016/j.chemosphere.2017.10.115.
- Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, Birim Faaliyet Raporu. (2019). Ankara.
- WHO, (2020). The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 2019 Edition. Geneva: World Health Organization.
- Oda, S. (2003a). Acute Oral Toxicity Study of Etofenprox in Rats. Gotemba Laboratory, Bozo Research Center Inc., Tokyo, Japan; report No. B-5039, 5 February 2003. Submitted to WHO by Mitsui Chemicals Agro, Inc.
- Oda, S. (2003b). Acute Dermal Toxicity Study of Etofenprox in Rats. Gotemba Laboratory, Bozo Research Center Inc., Tokyo, Japan; report No. B-5040. 5 February 2003. Submitted to WHO by Mitsui Chemicals Agro, Inc.
- Jackson, G.C., Hardy, C.J., Clark, G.C., Gregson, R.L., Lewis, D.J. & Gopinath, C. (1983). MTI-500 Acute Inhalation Toxicity in Rats 4 Hour Exposure. Huntingdon Research Centre Ltd., England; report no.MTC 60/821079, 19 April 1983 Submitted to WHO by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan.
- Harling, R.J., Burford, P. & Heywood, R. (1985) Ethofenprox (MTI-500) Acute limit test of toxicity to dogs following a single oral administration. Huntingdon Research Centre Ltd., England; report no.MTC 101/851185, 24 October 1985. Submitted to WHO by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan.
- Zhang, Z. Y., Yu, X. Y., Wang, D. L., Yan, H. J., & Liu, X. J. (2010). Acute toxicity to zebrafish of two organophosphates and four pyrethroids and their binary mixtures. Pest Management Science: Formerly Pesticide Science, 66(1), 84-89.
- DeLorenzo, M. E., & De Leon, R. G. (2010). Toxicity of the insecticide etofenprox to three life stages of the grass shrimp, Palaemonetes pugio. Archives of Environmental Contamination and Toxicology, 58, 985-990.
- Benli, A. C. K. (2015). The influence of etofenprox on narrow clawed crayfish (Astacus leptodactylus Eschscholtz, 1823): Acute toxicity and sublethal effects on histology, hemolymph parameters, and total hemocyte counts. Environmental Toxicology, 30(8), 887-894.
- Barbee, G. C., Stout, M. J. (2009). Comparative acute toxicity of neonicotinoid and pyrethroid insecticides to non‐target crayfish (Procambarus clarkii) associated with rice–crayfish crop rotations. Pest Management Science: Formerly Pesticide Science, 65(11), 1250-1256.
- Li, H., Cheng, F., Wei, Y., Lydy, M.J., You, J. (2017). Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. Journal of Hazardous Materials., 324: 258-271.
- Bland, S. D., Gupta, R. C., Lasher, M. A., & Canerdy, T. D. (2013). Safety assessment o f etofenprox, s-methoprene, and piperonyl butoxide in dogs topically exposed t o Bio Spot defense. Journal of Veterinary Science & Technology, 4(6):1000148
- Çetinkaya Açar, Ö. (2015). Pestisit Analizleri Eğitim Notu, T.C Gıda Tarım ve Hayvancılık Bakanlığı Ulusal Referans Laboratuvarı Kalıntı/Pestisit Birimi, Ankara, 31ss.
- Schleier, III, J. J., Peterson, R. K. (2012). The joint toxicity of type I, II, and nonester pyrethroid insecticides. Journal of Economic Entomology, 105(1), 85-91.
- Edwards, C.N., Forster, R. (1985) Reverse Mutation in Salmonella typhimurium, Test Substance MTI-500. Life Science Research Ltd, Roma Toxicology Centre, Pomezia, Italy; unpublished report No. 162001-M-06185 (22 August 1985). Submitted to WHO by Mitsui Chemicals Agro, Inc.
- Bootman, J., Hodson-Walker, G. & Dance, C.A. (1985a). In vitro Assessment of the Clastogenic Activity of MTI-500, Ethofenprox, in Cultured Human Peripheral Lymphocytes. Life Science Research Limited, England; report no. 85/MT0017/430, 17 July 1985.Submitted to WHO by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan.
- Bootman, J., Hodson-Walker, G. & Dance, C.A. (1985b). MTI-500, Etofenprox: Assessment of Clastogenic Action on Bone Marrow Erythrocytes in the Micronucleus Test. Life Science Research Limited, England; report no. 85/MT0016/406, 3 July 1985. Submitted to WHO by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan.
- Seeberg, A.H. Forster R. (1985a). Gene mutation in Chinese Hamster V79 cells. Test substance MTI-500. Life Science Research Roma Toxicology Centre, Italy; report no. 162002-M-06985, 22 August 1985. Submitted to WHO by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan.
- Seeberg, A.H. Forster R. (1985b). Unscheduled DNA Synthesis in Human Cells, Cell Line: Hela S3. Test Substance MTI-500. Life Science Research Roma Toxicology Centre, Italy; report no. 162003-M-05785, 30 July 1985. Submitted to WHO by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan.
- Yılmaz, F. (2013). Etofenprox’un Genotoksik Etkilerinin Çin Hamsteri Ovaryum Hücrelerinde Mikronükleus ve Komet Testleri Kullanılarak Araştırılması. Yüksek Lisans Tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü, 73.
- Szabó, B., Lang, Z., Bakonyi, G., Mariën, J., Roelofs, D., van Gestel, C. A., & Seres, A. (2019). Transgenerational and multigenerational stress gene responses to the insecticide etofenprox in Folsomia candida (Collembola). Ecotoxicology and Environmental Safety, 175, 181-191.
- Andrade, H.H.R., Reguly, M.L., Lehmann, M. (2004). Wing Somatic Mutation and Recombination Test (SMART). In: Henderson,D.S.(Ed.), Drosophila Cytogenetics Protocols. Humana Press Inc, Totowa, pp.389–412.
- Mayne, S. T. (2003). Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. The Journal of Nutrition, 133(3), 933S-940S.
- Mercan, U. (2004). Toksikolojide serbest radikallerin önemi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 15(1), 91-96.
- Zepeda-Arce, R., Rojas-García, A.E., Benitez-Trinidad, A., Herrera-Moreno, J.F., Medina-Díaz, I.M., Barrón-Vivanco, B.S., Villegas, G.P., Hernández-Ochoa, I., Sólis Heredia, M. de J., Bernal-Hernández, Y.Y. (2017). Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environmental Toxicology, 32, 1754–1764. doi:10.1002/tox.22398.
- Hojo, Y., Shiraki, A., Tsuchiya, T., Shimamoto, K., Ishii, Y., Suzuki, K., Mitsumori, K. (2012). Liver tumor promoting effect of etofenprox in rats and its possible mechanism of action. Journal of Toxicological Sciences, 37(2):297-306.
- Koike, R., Uchiyama, T., Arimoto-Kobayashi, S., Okamoto, K., & Negishi, T. (2018). Increase of somatic cell mutations in oxidative damage-sensitive drosophila. Genes and Environment, 40(1), 1-8.
- Smukowski Heil, C. (2023). Loss of heterozygosity and its importance in evolution. Journal of Molecular Evolution, 1-9.