Research Article
BibTex RIS Cite
Year 2022, , 631 - 642, 01.06.2022
https://doi.org/10.35378/gujs.815957

Abstract

References

  • [1] Banach, S., “Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales”, Fundamenta Mathematicae, 3: 133-181, (1922).
  • [2] Kadelburg, Z., Radenovic, S., “Fixed point and tripled fixed point theorems under Pata-Type conditions in ordered metric spaces”, International Journal of Analysis and Applications, 6: 113-122, (2014).
  • [3] Reich, S., “Fixed points of contractive functions”, Bollettino Della Unione Matematica Italiana, 5: 26-42, (1972).
  • [4] Cevik, C., Altun, I., Sahin, H., Ozeken, C.C., “Some fixed point theorems for contractive mapping in ordered vector metric spaces”, Journal of Nonlinear Sciences and Applications, 10(4): 1424-1432, (2017).
  • [5] Altun, I. Sahin, H., Turkoglu, D., “Fixed point results for multivalued mappings of Feng-Liu type on M-metric spaces”, Journal of Nonlinear Functional Analysis, 2018: 1-8, (2018).
  • [6] Altun, I., Sahin, H., Turkoglu, D., “Caristi-Type fixed point theorems and some generalizations on M-metric space”, Bulletin of the Malaysian Mathematical Sciences Society, 43: 2647-2657, (2020).
  • [7] Nadler, S. B., “Multivalued contraction mappings”, Pacific Journal of Mathematics, 30(2): 475-488, (1969).
  • [8] Kirk, W. A., Srinivasan, P. S., Veeramani, P., “Fixed points for mappings satisfying cyclical contractive conditions”, Fixed Point Theory, 4: 79-89, (2003).
  • [9] Karapinar, E., Samet, B., “Generalized α-ψ contractive type mappings and related fixed point theorems with applications”, In Abstract and Applied Analysis, Hindawi Limited, (2012).
  • [10] Petrusel, G., “Cyclic representations and periodic points”, Studia University Babes-Bolyai, Math, 50: 107-112, (2005).
  • [11] Basha, S. S., Veeramani, P., “Best approximations and best proximity pairs”, Acta Scientiarum Mathematicarum, 63: 289-300, (1977).
  • [12] Abkar, A., Gabeleh, M., “The existence of best proximity points for multivalued nonself-mappings”, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales.Serie A. Matematicas, 107(2): 319-325, (2013).
  • [13] Altun, I., Aslantas, M., Sahin, H., “Best proximity point results for p-proximal contractions”, Acta Mathematica Hungarica, 162: 393-402, (2020).
  • [14] Basha, S. S., “Extensions of Banach's contraction principle”, Numerical Functional Analysis and Optimization, 31 (5): 569-576, (2010).
  • [15] Sahin, H., Aslantas, M., Altun, I., “Feng-Liu type approach to best proximity point results for multivalued mappings”, Journal of Fixed Point Theory and Applications, 22, (2020).
  • [16] Aslantas, M., “Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1): 483-496, (2021).
  • [17] Işık, H., Aydi, H., “Best proximity problems for new types of Z-proximal contractions with an application”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2): 1405-1417, (2020).
  • [18] Işık, H., Aydi, H., Mlaiki, N., Radenović, S., “Best proximitiy point results for Geraghty type Z-proximal contractions with an application”, Axioms, 8(3): 81, (2019).
  • [19]Işık, H., Sezen, M. S., Vetro, C., “Ψ-Best proximity point theorems and applications to variational inequality problems”, Journal of Fixed Point Theory and Applications, 19(4): 3177-3189, (2017).
  • [20] H. Sahin, “Best proximity point theory on vector metric spaces”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1): 130-142, (2021).
  • [21] Eldred, A. A., Veeramani, P., “Existence and convergence of best proximity points”, Journal of Mathematical Analysis and Applications, 323: 1001-1006, (2006).
  • [22] Matthews, S. G., “Partial metric topology”, Annals of the New York Academy of Sciences-Paper Edition, 728: 183-197, (1994).
  • [23] Abbas, M., Nazir, T. “Fixed point of generalized weakly contractive mappings in ordered partial metric spaces”, Fixed Point Theory Applications, 2012(1): 19, (2012).
  • [24] Altun, I., Sola, F., Simsek, H., “Generalized contractions on partial metric spaces”, Topology and its Applications 157(18): 2778-2785, (2010).
  • [25] Altun, I., Simsek, H., “Some fixed point theorems on dualistic partial metric spaces”, Journal of Advanced Mathematical Studies, 1(1-2): 1-9, (2008).
  • [26] Romaguera, S., “A Kirk type characterization of completeness for partial metric spaces”, Fixed Point Theory and Applications, 2009(1): 493298, (2010).
  • [27] Abdeljawad, T., Alzabut, J., Mukheimer, A. and Zaidan, Y., “Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions”, Journal of Computational analysis and Applications, 15: 678-685, (2013).
  • [28] Aydi, H., Abbas, M.,Vetro, C., “Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces”, Topology and its Applications, 159(14): 3234-3242, (2012).

Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces

Year 2022, , 631 - 642, 01.06.2022
https://doi.org/10.35378/gujs.815957

Abstract

Let ∅≠Ŕ,Ś be subsets of a partial metric space (Ω,ϑ) and Ψ:Ŕ→Ś be a mapping. If Ŕ∩Ś=∅, it cannot have a solution of equation Ψς=ς for some ς∈Ŕ. Hence, it is sensible to investigate if there is a point ἣ satisfying ϑ(ἣ,Ψἣ)=ϑ(Ŕ,Ś) which is called a best proximity point. In this paper, we first introduce a concept of Hausdorff cyclic mapping pair. Then, we revise the definition of 0-boundedly compact on partial metric spaces. After that, we give some best proximity point results for these mappings. Hene, our results combine, generalize and extend many fixed point and best proximity point theorems in the literature as properly. Moreover, a comparative and illustrative example to demonstrate the effectiveness of our results has been presented.

References

  • [1] Banach, S., “Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales”, Fundamenta Mathematicae, 3: 133-181, (1922).
  • [2] Kadelburg, Z., Radenovic, S., “Fixed point and tripled fixed point theorems under Pata-Type conditions in ordered metric spaces”, International Journal of Analysis and Applications, 6: 113-122, (2014).
  • [3] Reich, S., “Fixed points of contractive functions”, Bollettino Della Unione Matematica Italiana, 5: 26-42, (1972).
  • [4] Cevik, C., Altun, I., Sahin, H., Ozeken, C.C., “Some fixed point theorems for contractive mapping in ordered vector metric spaces”, Journal of Nonlinear Sciences and Applications, 10(4): 1424-1432, (2017).
  • [5] Altun, I. Sahin, H., Turkoglu, D., “Fixed point results for multivalued mappings of Feng-Liu type on M-metric spaces”, Journal of Nonlinear Functional Analysis, 2018: 1-8, (2018).
  • [6] Altun, I., Sahin, H., Turkoglu, D., “Caristi-Type fixed point theorems and some generalizations on M-metric space”, Bulletin of the Malaysian Mathematical Sciences Society, 43: 2647-2657, (2020).
  • [7] Nadler, S. B., “Multivalued contraction mappings”, Pacific Journal of Mathematics, 30(2): 475-488, (1969).
  • [8] Kirk, W. A., Srinivasan, P. S., Veeramani, P., “Fixed points for mappings satisfying cyclical contractive conditions”, Fixed Point Theory, 4: 79-89, (2003).
  • [9] Karapinar, E., Samet, B., “Generalized α-ψ contractive type mappings and related fixed point theorems with applications”, In Abstract and Applied Analysis, Hindawi Limited, (2012).
  • [10] Petrusel, G., “Cyclic representations and periodic points”, Studia University Babes-Bolyai, Math, 50: 107-112, (2005).
  • [11] Basha, S. S., Veeramani, P., “Best approximations and best proximity pairs”, Acta Scientiarum Mathematicarum, 63: 289-300, (1977).
  • [12] Abkar, A., Gabeleh, M., “The existence of best proximity points for multivalued nonself-mappings”, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales.Serie A. Matematicas, 107(2): 319-325, (2013).
  • [13] Altun, I., Aslantas, M., Sahin, H., “Best proximity point results for p-proximal contractions”, Acta Mathematica Hungarica, 162: 393-402, (2020).
  • [14] Basha, S. S., “Extensions of Banach's contraction principle”, Numerical Functional Analysis and Optimization, 31 (5): 569-576, (2010).
  • [15] Sahin, H., Aslantas, M., Altun, I., “Feng-Liu type approach to best proximity point results for multivalued mappings”, Journal of Fixed Point Theory and Applications, 22, (2020).
  • [16] Aslantas, M., “Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1): 483-496, (2021).
  • [17] Işık, H., Aydi, H., “Best proximity problems for new types of Z-proximal contractions with an application”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2): 1405-1417, (2020).
  • [18] Işık, H., Aydi, H., Mlaiki, N., Radenović, S., “Best proximitiy point results for Geraghty type Z-proximal contractions with an application”, Axioms, 8(3): 81, (2019).
  • [19]Işık, H., Sezen, M. S., Vetro, C., “Ψ-Best proximity point theorems and applications to variational inequality problems”, Journal of Fixed Point Theory and Applications, 19(4): 3177-3189, (2017).
  • [20] H. Sahin, “Best proximity point theory on vector metric spaces”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1): 130-142, (2021).
  • [21] Eldred, A. A., Veeramani, P., “Existence and convergence of best proximity points”, Journal of Mathematical Analysis and Applications, 323: 1001-1006, (2006).
  • [22] Matthews, S. G., “Partial metric topology”, Annals of the New York Academy of Sciences-Paper Edition, 728: 183-197, (1994).
  • [23] Abbas, M., Nazir, T. “Fixed point of generalized weakly contractive mappings in ordered partial metric spaces”, Fixed Point Theory Applications, 2012(1): 19, (2012).
  • [24] Altun, I., Sola, F., Simsek, H., “Generalized contractions on partial metric spaces”, Topology and its Applications 157(18): 2778-2785, (2010).
  • [25] Altun, I., Simsek, H., “Some fixed point theorems on dualistic partial metric spaces”, Journal of Advanced Mathematical Studies, 1(1-2): 1-9, (2008).
  • [26] Romaguera, S., “A Kirk type characterization of completeness for partial metric spaces”, Fixed Point Theory and Applications, 2009(1): 493298, (2010).
  • [27] Abdeljawad, T., Alzabut, J., Mukheimer, A. and Zaidan, Y., “Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions”, Journal of Computational analysis and Applications, 15: 678-685, (2013).
  • [28] Aydi, H., Abbas, M.,Vetro, C., “Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces”, Topology and its Applications, 159(14): 3234-3242, (2012).
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Mustafa Aslantaş 0000-0003-4338-3518

Publication Date June 1, 2022
Published in Issue Year 2022

Cite

APA Aslantaş, M. (2022). Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces. Gazi University Journal of Science, 35(2), 631-642. https://doi.org/10.35378/gujs.815957
AMA Aslantaş M. Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces. Gazi University Journal of Science. June 2022;35(2):631-642. doi:10.35378/gujs.815957
Chicago Aslantaş, Mustafa. “Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces”. Gazi University Journal of Science 35, no. 2 (June 2022): 631-42. https://doi.org/10.35378/gujs.815957.
EndNote Aslantaş M (June 1, 2022) Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces. Gazi University Journal of Science 35 2 631–642.
IEEE M. Aslantaş, “Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces”, Gazi University Journal of Science, vol. 35, no. 2, pp. 631–642, 2022, doi: 10.35378/gujs.815957.
ISNAD Aslantaş, Mustafa. “Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces”. Gazi University Journal of Science 35/2 (June 2022), 631-642. https://doi.org/10.35378/gujs.815957.
JAMA Aslantaş M. Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces. Gazi University Journal of Science. 2022;35:631–642.
MLA Aslantaş, Mustafa. “Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces”. Gazi University Journal of Science, vol. 35, no. 2, 2022, pp. 631-42, doi:10.35378/gujs.815957.
Vancouver Aslantaş M. Best Proximity Point Results For Multivalued Cyclic Mappings On Partial Metric Spaces. Gazi University Journal of Science. 2022;35(2):631-42.