BibTex RIS Cite

On the Dynamics of the Recursive Sequence

Year 2010, Volume: 23 Issue: 1, 53 - 59, 08.03.2010
https://izlik.org/JA69HY32GM

Abstract

Our aim in this paper is to investigate the local stability of the positive solutions of the difference equation

yn+1= [(α-yn)/ (βyn-1)] − [(γ-yn-1)/ βyn ] ,  n=0,1,2,...,

where the initial conditions  y−1 ,  y0 are arbitrary positive real numbers such that  yn ≠ 0 for n= −1,0,1,...,  , α, β, γ ε (0,∞)  and α > γ. Furthermore we investigate the periodic nature of the mentioned difference equation.

Key Words: Difference Equations, Local Stability, Period-two Solutions.

 

References

  • Amleh, A.M., Grove, E.A., Ladas, G., “On the Recursive Sequencex n 1 + = α + n 1”, Journal x − xn of Mathematical Analysis and Applications, 233: 798 (1999).
  • El-Owaidy, H.M., Ahmed, A.M., Mousa, M.S., “On asymptotic behavior of the difference equationx n 1 + = α + n x and Computations, 147: 163-167 (2004).
  • DeVault, R., Kosmala, W., Ladas, G., Schultz, S.W., “Global Behavior ofy n 1 + = n n k qy+ y − Nonlinear Analysis, 47: 4743-4751 (2001).
  • He, W.S., Li, W.T., “Attractivity in a Nonlinear Delay Mathematics, E-Notes, 4: 48-53 (2004). Applied
  • Yan, X.X., Li, W.T., “Dynamic behavior of a recursive sequence”, Applied Mathematics and Computation, 157: 713-727 (2004).
  • Gibbons, C.H., Kulenović, M.R.S., Ladas, G., Voulov, H.D., “On the Trichotomy Character of xn 1= α + β ( xn+ γ xn 1) /(A+ x )”, Journal of −) /(A+ n + Difference Equations and Applications, 8 (1): 75- (2002).

Year 2010, Volume: 23 Issue: 1, 53 - 59, 08.03.2010
https://izlik.org/JA69HY32GM

Abstract

References

  • Amleh, A.M., Grove, E.A., Ladas, G., “On the Recursive Sequencex n 1 + = α + n 1”, Journal x − xn of Mathematical Analysis and Applications, 233: 798 (1999).
  • El-Owaidy, H.M., Ahmed, A.M., Mousa, M.S., “On asymptotic behavior of the difference equationx n 1 + = α + n x and Computations, 147: 163-167 (2004).
  • DeVault, R., Kosmala, W., Ladas, G., Schultz, S.W., “Global Behavior ofy n 1 + = n n k qy+ y − Nonlinear Analysis, 47: 4743-4751 (2001).
  • He, W.S., Li, W.T., “Attractivity in a Nonlinear Delay Mathematics, E-Notes, 4: 48-53 (2004). Applied
  • Yan, X.X., Li, W.T., “Dynamic behavior of a recursive sequence”, Applied Mathematics and Computation, 157: 713-727 (2004).
  • Gibbons, C.H., Kulenović, M.R.S., Ladas, G., Voulov, H.D., “On the Trichotomy Character of xn 1= α + β ( xn+ γ xn 1) /(A+ x )”, Journal of −) /(A+ n + Difference Equations and Applications, 8 (1): 75- (2002).
There are 6 citations in total.

Details

Primary Language English
Authors

Saime Zengin This is me

İlhan Öztürk

Fatma Bozkurt This is me

Publication Date March 8, 2010
IZ https://izlik.org/JA69HY32GM
Published in Issue Year 2010 Volume: 23 Issue: 1

Cite

APA Zengin, S., Öztürk, İ., & Bozkurt, F. (2010). On the Dynamics of the Recursive Sequence. Gazi University Journal of Science, 23(1), 53-59. https://izlik.org/JA69HY32GM
AMA 1.Zengin S, Öztürk İ, Bozkurt F. On the Dynamics of the Recursive Sequence. Gazi University Journal of Science. 2010;23(1):53-59. https://izlik.org/JA69HY32GM
Chicago Zengin, Saime, İlhan Öztürk, and Fatma Bozkurt. 2010. “On the Dynamics of the Recursive Sequence”. Gazi University Journal of Science 23 (1): 53-59. https://izlik.org/JA69HY32GM.
EndNote Zengin S, Öztürk İ, Bozkurt F (March 1, 2010) On the Dynamics of the Recursive Sequence. Gazi University Journal of Science 23 1 53–59.
IEEE [1]S. Zengin, İ. Öztürk, and F. Bozkurt, “On the Dynamics of the Recursive Sequence”, Gazi University Journal of Science, vol. 23, no. 1, pp. 53–59, Mar. 2010, [Online]. Available: https://izlik.org/JA69HY32GM
ISNAD Zengin, Saime - Öztürk, İlhan - Bozkurt, Fatma. “On the Dynamics of the Recursive Sequence”. Gazi University Journal of Science 23/1 (March 1, 2010): 53-59. https://izlik.org/JA69HY32GM.
JAMA 1.Zengin S, Öztürk İ, Bozkurt F. On the Dynamics of the Recursive Sequence. Gazi University Journal of Science. 2010;23:53–59.
MLA Zengin, Saime, et al. “On the Dynamics of the Recursive Sequence”. Gazi University Journal of Science, vol. 23, no. 1, Mar. 2010, pp. 53-59, https://izlik.org/JA69HY32GM.
Vancouver 1.Zengin S, Öztürk İ, Bozkurt F. On the Dynamics of the Recursive Sequence. Gazi University Journal of Science [Internet]. 2010 Mar. 1;23(1):53-9. Available from: https://izlik.org/JA69HY32GM