Huseynov, A. and Bairamov, E., “On Expansions in Eigenfunctions for Second Order Dynamic Equations on Time Scales”, Nonlinear Dynamics and System Theory, 9(1):77-88, (2009).
Agarwal, R.P., Bohner, M. and Wong, P.J.Y., “Sturm-Liouville Eigenvalue Problems on Time Scales”, Appl. Math. Comput., 99:153-166, (1999).
Anderson, D.R., Guseinov, G.Sh. and Hoffacker, J., “Higher-order Self-adjoint Boundary Value Problems on Time Scales”, J. Comput. Appl. Math., 194:309-342, (2006).
Atici, F.M. and Guseinov, G.Sh., “On Green’s Functions and Positive Solutions for Boundary Value Problems on Time Scales”, J. Comput. Appl. Math., 141:75-99, (2002).
Bohner, M. and Peterson, A., “Dynamics Equations on Time Scales: An Introduction with Applications”, Birkhauser, Boston, (2001).
Bohner, M. and Peterson, A., “Advances in Dynamics Equations on Time Scales”, Birkhauser, Boston, (2003).
Chyan, C.J., Davis, J.M., Henderson, J. and Yin, W.K.C., “Eigenvalue Comparisons for Differential Equations on a Measure Chain Electron”, J. Differential Equations, 7pp, (1998).
Guseinov, G.Sh., “Eigenfunction Expansions for a Sturm-Liouville Problem on Time Scales”, International Journal of Difference Equations, 2:93-104, (2007).
Add To My Library
SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE
Year 2016,
Volume: 29 Issue: 2, 467 - 472, 21.06.2016
In this paper we consider the operator L generated in 𝐿∇2 [𝑎, 𝑏] by the boundary problem−[𝑦∆(𝑡)]∇ + [𝜆 + 𝑞(𝑡)]2𝑦(𝑡) = 0, 𝑡 ∈ [𝑎, 𝑏],𝑦(𝑎) − 𝑘𝑦∆(𝑎) = 0, 𝑦(𝑏) + 𝐾𝑦∆(𝑏) = 0 where 𝑞(𝑡) is partial continuous, 𝑞(𝑡) ≥ 0, 𝑘 ≥ 0,𝐾 ≥ 0. In this paper, spectral properties of Schrodinger problem on finite time scale is examined and the formula of convergent expansion is obtained which is form of series in terms of the eigenfunctions in 𝐿∇2 [𝑎, 𝑏] space.
Huseynov, A. and Bairamov, E., “On Expansions in Eigenfunctions for Second Order Dynamic Equations on Time Scales”, Nonlinear Dynamics and System Theory, 9(1):77-88, (2009).
Agarwal, R.P., Bohner, M. and Wong, P.J.Y., “Sturm-Liouville Eigenvalue Problems on Time Scales”, Appl. Math. Comput., 99:153-166, (1999).
Anderson, D.R., Guseinov, G.Sh. and Hoffacker, J., “Higher-order Self-adjoint Boundary Value Problems on Time Scales”, J. Comput. Appl. Math., 194:309-342, (2006).
Atici, F.M. and Guseinov, G.Sh., “On Green’s Functions and Positive Solutions for Boundary Value Problems on Time Scales”, J. Comput. Appl. Math., 141:75-99, (2002).
Bohner, M. and Peterson, A., “Dynamics Equations on Time Scales: An Introduction with Applications”, Birkhauser, Boston, (2001).
Bohner, M. and Peterson, A., “Advances in Dynamics Equations on Time Scales”, Birkhauser, Boston, (2003).
Chyan, C.J., Davis, J.M., Henderson, J. and Yin, W.K.C., “Eigenvalue Comparisons for Differential Equations on a Measure Chain Electron”, J. Differential Equations, 7pp, (1998).
Guseinov, G.Sh., “Eigenfunction Expansions for a Sturm-Liouville Problem on Time Scales”, International Journal of Difference Equations, 2:93-104, (2007).
Kır Arpat, E., & Terzi, H. (2016). SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE. Gazi University Journal of Science, 29(2), 467-472.
AMA
Kır Arpat E, Terzi H. SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE. Gazi University Journal of Science. June 2016;29(2):467-472.
Chicago
Kır Arpat, Esra, and Hatice Terzi. “SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE”. Gazi University Journal of Science 29, no. 2 (June 2016): 467-72.
EndNote
Kır Arpat E, Terzi H (June 1, 2016) SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE. Gazi University Journal of Science 29 2 467–472.
IEEE
E. Kır Arpat and H. Terzi, “SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE”, Gazi University Journal of Science, vol. 29, no. 2, pp. 467–472, 2016.
ISNAD
Kır Arpat, Esra - Terzi, Hatice. “SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE”. Gazi University Journal of Science 29/2 (June2016), 467-472.
JAMA
Kır Arpat E, Terzi H. SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE. Gazi University Journal of Science. 2016;29:467–472.
MLA
Kır Arpat, Esra and Hatice Terzi. “SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE”. Gazi University Journal of Science, vol. 29, no. 2, 2016, pp. 467-72.
Vancouver
Kır Arpat E, Terzi H. SPECTRAL PROPERTIES OF SCHRODINGER OPERATOR WITH A GENERAL BOUNDARY CONDITIONS ON FINITE TIME SCALE. Gazi University Journal of Science. 2016;29(2):467-72.