Research Article
BibTex RIS Cite
Year 2016, Volume: 29 Issue: 3, 675 - 679, 30.09.2016

Abstract

References

  • M. Aigner, Combinatorial Theory, Springer-Verlag, 1979.
  • I. Akkuş, The Lehmer matrix with recursive factorial entries, Kuwait J. Sci, 42 (2015), no. 2, 34–41.
  • B.V.R. Bhat, On greatest common divisor matrices and their applications, Linear Algebra Appl. 158 (1991) 77-97.
  • R. Bhatia, Min matrices and Mean matrices, Math. Intelligencer 33, no.2 (2011) 22-28.
  • E. Kılıç, P. Stanica, The Lehmer matrix and its recursive analogue, J. Combinat. Math and Combinat. Computing 74 (2010) 193-207.
  • I. Korkee, P. Haukkanen, On meet and join matrices associated with incidence functions, Linear Algebra Appl. 372 (2003) 127-153.
  • D. H. Lehmer, Problem E710, Amer. Math. Monthly, 53 (1946) p.97.
  • M. Marcus, Basic Theorems in Matrix Theory, Nat. Bur. Standarts Appl. Math. Ser 57 (1960) 21-24.
  • M. Mattila, On the eigenvalues of combined meet and join matrices, Linear Algebra Appl. 466 (2015) 1-20.
  • M. Mattila, P. Haukkanen, Studying the various properties of MIN AND MAX matrices –elementary vs. more advanced methods, Spec. Matrices 4 (2016), Art. 10.
  • M. Newman, J. Todd, The evaluation of matrix inversion programs, J. Society Industrial and Appl. Math. 6 (1958) 466-476.
  • L. F. Shampine, The condition of certain matrices, J Res. Natl. Inst. Stan. B Mathematics and Mathematical Physics 69B no.4 (1965) 333-334.
  • D. M. Smiley and M. F. Smiley, and J. Williamson, Amer. Math. Monthly, 53 (1946) 534-535.

A LATTICE-THEORETIC GENERALIZATION OF THE LEHMER MATRIX

Year 2016, Volume: 29 Issue: 3, 675 - 679, 30.09.2016

Abstract

In this paper, we present a lattice-theoretic generalization of the Lehmer matrix. We obtain some certain formulae for the determinant and the entries of the inverse of this new generalization by using lattice-theoretic tools. These formulae are generalization of formulae for the determinant and the inverse of the classical Lehmer matrix and most of its generalizations presented in the literature.

References

  • M. Aigner, Combinatorial Theory, Springer-Verlag, 1979.
  • I. Akkuş, The Lehmer matrix with recursive factorial entries, Kuwait J. Sci, 42 (2015), no. 2, 34–41.
  • B.V.R. Bhat, On greatest common divisor matrices and their applications, Linear Algebra Appl. 158 (1991) 77-97.
  • R. Bhatia, Min matrices and Mean matrices, Math. Intelligencer 33, no.2 (2011) 22-28.
  • E. Kılıç, P. Stanica, The Lehmer matrix and its recursive analogue, J. Combinat. Math and Combinat. Computing 74 (2010) 193-207.
  • I. Korkee, P. Haukkanen, On meet and join matrices associated with incidence functions, Linear Algebra Appl. 372 (2003) 127-153.
  • D. H. Lehmer, Problem E710, Amer. Math. Monthly, 53 (1946) p.97.
  • M. Marcus, Basic Theorems in Matrix Theory, Nat. Bur. Standarts Appl. Math. Ser 57 (1960) 21-24.
  • M. Mattila, On the eigenvalues of combined meet and join matrices, Linear Algebra Appl. 466 (2015) 1-20.
  • M. Mattila, P. Haukkanen, Studying the various properties of MIN AND MAX matrices –elementary vs. more advanced methods, Spec. Matrices 4 (2016), Art. 10.
  • M. Newman, J. Todd, The evaluation of matrix inversion programs, J. Society Industrial and Appl. Math. 6 (1958) 466-476.
  • L. F. Shampine, The condition of certain matrices, J Res. Natl. Inst. Stan. B Mathematics and Mathematical Physics 69B no.4 (1965) 333-334.
  • D. M. Smiley and M. F. Smiley, and J. Williamson, Amer. Math. Monthly, 53 (1946) 534-535.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Ercan Altınışık

Fatih Yağcı This is me

Mehmet Yıldız This is me

Publication Date September 30, 2016
Published in Issue Year 2016 Volume: 29 Issue: 3

Cite

APA Altınışık, E., Yağcı, F., & Yıldız, M. (2016). A LATTICE-THEORETIC GENERALIZATION OF THE LEHMER MATRIX. Gazi University Journal of Science, 29(3), 675-679.
AMA Altınışık E, Yağcı F, Yıldız M. A LATTICE-THEORETIC GENERALIZATION OF THE LEHMER MATRIX. Gazi University Journal of Science. September 2016;29(3):675-679.
Chicago Altınışık, Ercan, Fatih Yağcı, and Mehmet Yıldız. “A LATTICE-THEORETIC GENERALIZATION OF THE LEHMER MATRIX”. Gazi University Journal of Science 29, no. 3 (September 2016): 675-79.
EndNote Altınışık E, Yağcı F, Yıldız M (September 1, 2016) A LATTICE-THEORETIC GENERALIZATION OF THE LEHMER MATRIX. Gazi University Journal of Science 29 3 675–679.
IEEE E. Altınışık, F. Yağcı, and M. Yıldız, “A LATTICE-THEORETIC GENERALIZATION OF THE LEHMER MATRIX”, Gazi University Journal of Science, vol. 29, no. 3, pp. 675–679, 2016.
ISNAD Altınışık, Ercan et al. “A LATTICE-THEORETIC GENERALIZATION OF THE LEHMER MATRIX”. Gazi University Journal of Science 29/3 (September 2016), 675-679.
JAMA Altınışık E, Yağcı F, Yıldız M. A LATTICE-THEORETIC GENERALIZATION OF THE LEHMER MATRIX. Gazi University Journal of Science. 2016;29:675–679.
MLA Altınışık, Ercan et al. “A LATTICE-THEORETIC GENERALIZATION OF THE LEHMER MATRIX”. Gazi University Journal of Science, vol. 29, no. 3, 2016, pp. 675-9.
Vancouver Altınışık E, Yağcı F, Yıldız M. A LATTICE-THEORETIC GENERALIZATION OF THE LEHMER MATRIX. Gazi University Journal of Science. 2016;29(3):675-9.