BibTex RIS Cite

Riemann Zeta Matrix Function

Year 2015, Volume: 28 Issue: 4, 683 - 688, 16.12.2015

Abstract

In this study, obtaining the matrix analog of the Euler's reflection formula for the classical gamma function we expand the domain of the gamma matrix function and give a infinite product expansion of sinπxP.  Furthermore we define Riemann zeta matrix function and evaluate some other matrix integrals. We prove a functional equation for Riemann zeta matrix function.

References

  • R. Aktaş, B. Çekim, and R. Şahin, The Matrix Version Polynomials, Miskolc Mathematical Notes 13 (2) (2012) 197-208. Humbert
  • R. Aktaş, B. Çekim and A. Çevik, Extended Jacobi matrix polynomials, Utilitas Mathematica, 92, 47- 64, 2013.
  • A. Altın and B. Çekim, Some properties associated with Mathematica, 88, 171-181, 2012. polynomials, Utilitas
  • A. Altın and B. Çekim, Some miscellaneous properties for Gegenbauer matrix polynomials, Utilitas Mathematica, 92, 377-387, 2013.
  • S. Varma, B. Çekim, and F. Taşdelen, On Konhauser matrix polynomials, Ars Combinatoria 100 (2011) 193-204.
  • E. Defez and L. Jódar, Chebyshev matrix polynomials and second order matrix differential equations, Utilitas Math. 61 (2002) 107-123.
  • E. Defez and L. Jódar, Jacobi Matrix Differential Equation, Polynomial Solutions, and Their Properties, Computers and Math. with Appl., 48 (2004) 789-803.
  • E. Defez, A Rodrigues-type formula for Gegenbauer matrix polynomials, Appl. Math. Lett. 26 (2013) 899–903.
  • N. Dunford and J. Schwartz, Linear Operators, Vol. I, Interscience, New York, 1963.
  • L. Jódar, R. Company and E. Navarro, Laguerre matrix polynomials and systems of second order differential equations, Appl. Numer. Math. 15 (1994) 53-63.
  • L. Jódar and R. Company, Hermite matrix polynomials and second order matrix differential equations, J. Approx. Theory Appl. 12 (2) (1996) 20-30.
  • L. Jódar, J.C. Cortés, Some properties of gamma and beta functions, Appl. Math. Lett. 11 (1) (1998) 89-93.
  • L. Jódar and J.C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Maths., 99 (1998) 205-217.
  • L. Jódar and J. Sastre: The growth of Laguerre matrix polynomials on bounded intervals. Appl. Math. Lett. 13 (2000) 21-26.
  • L. Kargin and V. Kurt, Some relations on Hermite matrix Computational Applications, Mathematical and Computational Applications, 18 (3) (2013) 323- 329. Mathematical and
Year 2015, Volume: 28 Issue: 4, 683 - 688, 16.12.2015

Abstract

References

  • R. Aktaş, B. Çekim, and R. Şahin, The Matrix Version Polynomials, Miskolc Mathematical Notes 13 (2) (2012) 197-208. Humbert
  • R. Aktaş, B. Çekim and A. Çevik, Extended Jacobi matrix polynomials, Utilitas Mathematica, 92, 47- 64, 2013.
  • A. Altın and B. Çekim, Some properties associated with Mathematica, 88, 171-181, 2012. polynomials, Utilitas
  • A. Altın and B. Çekim, Some miscellaneous properties for Gegenbauer matrix polynomials, Utilitas Mathematica, 92, 377-387, 2013.
  • S. Varma, B. Çekim, and F. Taşdelen, On Konhauser matrix polynomials, Ars Combinatoria 100 (2011) 193-204.
  • E. Defez and L. Jódar, Chebyshev matrix polynomials and second order matrix differential equations, Utilitas Math. 61 (2002) 107-123.
  • E. Defez and L. Jódar, Jacobi Matrix Differential Equation, Polynomial Solutions, and Their Properties, Computers and Math. with Appl., 48 (2004) 789-803.
  • E. Defez, A Rodrigues-type formula for Gegenbauer matrix polynomials, Appl. Math. Lett. 26 (2013) 899–903.
  • N. Dunford and J. Schwartz, Linear Operators, Vol. I, Interscience, New York, 1963.
  • L. Jódar, R. Company and E. Navarro, Laguerre matrix polynomials and systems of second order differential equations, Appl. Numer. Math. 15 (1994) 53-63.
  • L. Jódar and R. Company, Hermite matrix polynomials and second order matrix differential equations, J. Approx. Theory Appl. 12 (2) (1996) 20-30.
  • L. Jódar, J.C. Cortés, Some properties of gamma and beta functions, Appl. Math. Lett. 11 (1) (1998) 89-93.
  • L. Jódar and J.C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Maths., 99 (1998) 205-217.
  • L. Jódar and J. Sastre: The growth of Laguerre matrix polynomials on bounded intervals. Appl. Math. Lett. 13 (2000) 21-26.
  • L. Kargin and V. Kurt, Some relations on Hermite matrix Computational Applications, Mathematical and Computational Applications, 18 (3) (2013) 323- 329. Mathematical and
There are 15 citations in total.

Details

Journal Section Mathematics
Authors

Levent Kargın

Veli Kurt

Publication Date December 16, 2015
Published in Issue Year 2015 Volume: 28 Issue: 4

Cite

APA Kargın, L., & Kurt, V. (2015). Riemann Zeta Matrix Function. Gazi University Journal of Science, 28(4), 683-688.
AMA Kargın L, Kurt V. Riemann Zeta Matrix Function. Gazi University Journal of Science. December 2015;28(4):683-688.
Chicago Kargın, Levent, and Veli Kurt. “Riemann Zeta Matrix Function”. Gazi University Journal of Science 28, no. 4 (December 2015): 683-88.
EndNote Kargın L, Kurt V (December 1, 2015) Riemann Zeta Matrix Function. Gazi University Journal of Science 28 4 683–688.
IEEE L. Kargın and V. Kurt, “Riemann Zeta Matrix Function”, Gazi University Journal of Science, vol. 28, no. 4, pp. 683–688, 2015.
ISNAD Kargın, Levent - Kurt, Veli. “Riemann Zeta Matrix Function”. Gazi University Journal of Science 28/4 (December 2015), 683-688.
JAMA Kargın L, Kurt V. Riemann Zeta Matrix Function. Gazi University Journal of Science. 2015;28:683–688.
MLA Kargın, Levent and Veli Kurt. “Riemann Zeta Matrix Function”. Gazi University Journal of Science, vol. 28, no. 4, 2015, pp. 683-8.
Vancouver Kargın L, Kurt V. Riemann Zeta Matrix Function. Gazi University Journal of Science. 2015;28(4):683-8.