Research Article
BibTex RIS Cite
Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1469645

Abstract

References

  • [1] Maruf, H., Sam, P., Marko, H., Malcolm, P., “Calculating breakage parameters of a batch vertical stirred mill”, Minerals Engineering, 111: 229-237, (2017), DOI: https://doi.org/10.1016/j.mineng.2017.06.024
  • [2] Jankovic, A., “Fine grinding in the Australian Minerals Industry”, Journal of Mining and Metallurgy, 51-61, (2000).
  • [3] Hoyer, D., “Fine grinding with the tower mill: A comparison with a ball mill”, Mintek No, C336M, (1984).
  • [4] Rosa, A., Oliveira, P., Donda, J. D., “Comparing ball and vertical mills performance-an industrial case study, In: IMPC Proceedings”, Comminution Processes, 8: 44-51, (2014).
  • [5] Jankovic, A., “Variables affecting the fine grinding of minerals using stirred mills”, Minerals Engineering, 16: 337-345, (2003).
  • [6] Danielle, R., Erik, S., Patrick, T., Hugh, M., “Predicting the product particle size distribution from a laboratory vertical stirred mill”, Minerals Engineering, 129: 85-92, (2018). DOI: https://doi.org/10.1016/j.mineng.2018.09.016
  • [7] Stief, D., Lawruk, W., Wilson, L., “Tower mill and its application to fine grinding”, Mining Metallurgy&Exploration, 4: 45-50, (1987). DOI: https://doi.org/10.1007/BF03402674
  • [8] Roitto, I., Lehto, H., Paz, A., Astholm, M., “Stirred milling technology-A new concept in fine grinding”, Perth WA, (2013).
  • [9] Hasan, M. M., “Process modelling of gravity induced stirred mills. Ph. D. Thesis”, University of Queensland, Brisbane, Australia, (2016).
  • [10] Priscila, M. E., Douglas, B. M., Roberto Galéryand Luís, C. R. M., “Industrial vertical stirred mills screw liner wear profile compared to discrete element method simulations, Minerals, (2021). DOI: https://doi.org/10.3390/min11040397
  • [11] Shi, F., Morrison, R., Cervellin, A., Burns, F., Musa, F., “Comparison of energy efficiency between ball mills and stirred mills in coarse grinding”, Minerals Engineering, 22: 673-680, (2009). DOI: https://doi.org/10.1016/j.mineng.2008.12.002
  • [12] Cleary, P.W., Sinnott, M., Morrison, R., “Analysis of stirred mill performance using DEM simulation: Part 2-Coherent flow structures, liner stress and wear, mixing and transport”, Minerals Engineering, 19: 1551-1572, (2006). DOI: https://doi.org/10.1016/j.mineng.2006.08.013
  • [13] Oliveira, A.L.R., Rodriguez, V.A., Carvalho, R.M., Powell, M.S., Tavares, L.M., “Mechanistic modeling and simulation of a batch vertical stirred millAuthor links open overlay panel”, Minerals Engineering, 156:1-12 106487, (2020). DOI: https://doi.org/10.1016/j.mineng.2020.106487
  • [14] İnternet: Eirich, Brochure: EIRICH Tower Mill-Vertical Agitated Media Mill, Available online: https://www.eirich.com/fileadmin/user_upload/Eirich_Bilder/1.Produkte_Verfahren/2.Mahltechnik/5.TowerMill/TM1843_3_en.pdf (Accessed on 26 March 2024), (2018).
  • [15] Alım, YD., “Conveyor selection and design”, Ankara: SEGEM, (1986).
  • [16] İnternet: Metso, Blog: When to change vertimill™ liners and how to do it safely!, Available online: https://www.metso.com/blog/mining/blog-when-to-change-vertimill-liners-and-how-to-do-it-safely/ (Accessed on 26.03.2024).
  • [17] Daraio, D., Villoria, J., Ingram, A., Stitt, E.H., Marigo, M., “Investigating grinding media dynamics inside a vertical stirred mill using the discrete element method: Effect of impeller arm length”, Powder Technology, 364: 1049-1061, (2020). DOI: https://doi.org/10.1016/j.powtec.2019.09.038
  • [18] Jain, A.B., “Development of mathematical models to analyze and predict the weld bead geometry in submerged arc welding of low carbon alloy steel”, International Journal on Emerging Trends in Mechanical & Production Enginee, 2(1): 2581-4486, (2018).
  • [19] Choudhary, A., Kumar, M., & Unune, D. R. (2019). Experimental investigation and optimization of weld bead characteristics during submerged arc welding of AISI 1023 steel. Defence Technology, 15(1), 72–82, (2019). https://doi.org/10.1016/j.dt.2018.08.004
  • [20] Vedrtnam, V.S., Singh G., Kumar, A., “Optimizing submerged arc welding using response surface methodology, regression analysis, and genetic algorithm”, Defence Technology, 14(3): 204-212, (2018). DOI: https://doi.org/10.1016/j.dt.2018.01.008
  • [21] Abohusina, A., “Determining the optimum welding parameters on the weldability of mild steel using submerged arc welding process”, (MSc). Department of Mechanical Engineering and Energies, School of Engineering and Applied Sciences, Libyan Academy for Post Graduate Studies, Janzur, Libya, (2018).
  • [22] Reddy, K.S., “Optimization & prediction of welding parameters and bead geometry in submerged arc welding”, International Journal of Applied Engineering Research and Development (IJAERD), 3(3): 1-6, (2013).
  • [23] Avcı, T., “Spiral kaynaklı boru üretiminde kaynak otomasyonu”, Yüksek Lisans Tezi, Yıdız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, (2008).
  • [24] Romina, C., David, R.I., Francesco, G., “Correction to: Submerged arc welding process: a numerical investigation of temperatures, displacements, and residual stresses in ASTM A516 Gr70 corner joined samples”, The International Journal of Advanced Manufacturing Technology, 129: 3769, (2023). DOI: https://doi.org/10.1007/s00170-023-12617-1
  • [25] Anık, S., “Welding technology II submerged arc welding technique”, Gedik Kaynak Sanayi Ticaret Anonim Şirketi, İstanbul, (1998).
  • [26] Külahlı, E., “Welding Science”, Oerlikon Yayını, İstanbul, (1988).
  • [27] Kim, Y., Hwang, K.K., Kim, J.H., “Fracture behavior of heat-affected zone in low alloy steels”, Journal of Nuclear Materials, 299(2): 132-139, (2001). DOI: https://doi.org/10.1016/S0022-3115(01)00688-2
  • [28] Sharma, P., Mohal, S., “Parametric Optimization of Submerged Arc Welding Process Parameters by Response Surface Methodology”, Materialstoday Proceedings, 24(2): 673-682, (2020). DOI: https://doi.org/10.1016/j.matpr.2020.04.321
  • [29] Esteves, P.M., Douglas, B.M., Galéry, R., Machado, L.C.R., “Industrial Vertical Stirred Mills Screw Liner Wear Profile Compared to Discrete Element Method Simulations”, Minerals, 11(4): 397, (2021). DOI: https://doi.org/10.3390/min11040397
  • [30] Kumar, A., Sahu, R., Tripathy, S.K., “Energy-efficient advanced ultrafine grinding of particles using stirred mills”, A Review Energies, 16: 5277, (2023). DOI: https://doi.org/10.3390/en16145277
  • [31] Akay, A.A., “Joining of materials with different properties by submerged arc welding method and destructive and non-destructive examination of the joints”, Karabük Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Karabük, (2012).
  • [32] Zhang, M., Han Y., Jia C., et al “Improving the microstructures and mechanical properties with nano-Al2O3 treated wire in underwater submerged arc welding”, Journal of Manufacturing Processes, 74: 40-51, (2022). DOI: https://doi.org/10.1016/j.jmapro.2021.11.056
  • [33] Edwin Raja Dhas, J., Anton Savio Lewise, K., Laxmi, G., “Submerged arc welding process parameter prediction using predictive modeling techniques”, Matertoday Proceedings, 64: 402-409, (2022). DOI: https://doi.org/10.1016/j.matpr.2022.04.757
  • [34] Benedetti, M., Fontanari, V., Santus, C., “Crack growth resistance of MAG butt-welded joints of S355JR construction steel”, Engineering Fracture Mechanics, 108: 305-315, (2013).
  • [35] İnternet: CEMA, “Screw conveyors for bulk materials”, https://cemanet.org/wp-content/uploads/2019/06/EC-2019-Bulk-Handling-Section-Meeting-Agenda-set.pdf (Accessed on 26 March 2024).
  • [36] Forcade, M., “Screw conveyor 10”, Goodman Conveyor Company, (1999).
  • [37] Alışverişçi, M., “Belt conveyors”, İstanbul, (1985).
  • [38] Nogay, M.N., “Screw conveyors design criteria”, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Makine Müh. Böl. Yüksek Lisans Tezi, İstanbul, (2007).
  • [39] Seshagiri, S., Krishna Moorthi, M., “Electrode extruder using screw conveyor”, https://journals.pen2print.org/index.php/ijr/article/view/2126
  • [40] Mcgrath, JT., Chandel, RS., Orr, RF., Gianetto, JA., “Microstructure/Mechanical Property Relationships in Thick-Section C-Mn Narrow-Groove Welds”, Weld Journal, 67: 196-201, (1988).
  • [41] Miyamoto, G., Karube, Y., Furuhara, T., “Formation of grain boundary ferrite in eutectoid and hypereutectoid pearlitic steels”, Acta Materialia, 103: 370-381, ISSN 1359-6454, (2016), https://doi.org/10.1016/j.actamat.2015.10.032
  • [42] Song, HY., Evans, GM., Babu, SS., “Effect of microstructural heterogeneities on scatter of toughness in multi-pass weld metal of C-Mn steels”, Science and Technology of Welding and Joining, 19(5): 376-384, (2014). DOI: https://doi.org/10.1179/1362171814Y.0000000194
  • [43] Gürol, U., Çoban, O., Coşar, İ.C., Koçak, M., “Effect of the notch location on the Charpy-V toughness results for robotic flux-cored arc welded multipass joints”, Materials Testing, 64(9): 1278-1289, (2022). DOI: https://doi.org/10.1515/mt-2022-0113
  • [44] Maksuti, R., “Impact of the acicular ferrite on the Charpy V-notch toughness of submerged arc weld metal deposits”, International Journal of Scientific & Engineering Research, 7(8): 1149-1155, (2016).
  • [45] Akkaş, N., Onar, V., Varol, F., “Microstructure Analysis of Resistance Spot Welding of S235JR(Cu) Steel Sheets Used in Rail System Vehicles”, 3rd International Congress of Vocational and Technical Sciences, Gaziantep, 1591-1599, (2018).
  • [46] Çetinkaya, C., Akay, A., Arabacı, U., Fındık, T., “Effect of primer coating applied to S235JR material on submerged arc weldability”, Journal of Polytechnic, 25(3): 1335-1348, (2022). DOI: http://doi.org/10.2339/politeknik.1119093
  • [47] Varola, A., Bozana, MS., Çoband, O., Gürola, U., “The influence of filler wire on microstructure and mechanical properties is submerged arc welding of S355J2 structural steel”, Journal of Innovative Engineering and Natural Science, 4(2): 426-438, (2024). DOI: http://doi.org/10.61112/jiens.1415708
  • [48] Gook, S., Midik, A., Biegler, M., Gumenyuk, A., Rethmeier, M., “Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding”, Journal of Manufacturing and Materials Processing, 6(4): 84, (2022). DOI: https://doi.org/10.3390/jmmp6040084
  • [49] Üstündag, Ö., Avilov, V., Gumenyuk, A., Rethmeier, M., “Full penetration hybrid laser arc welding of up to 28 mm thick S355 plates using electromagnetic weld pool support”, Beam Technologies and Laser Application IOP Publishing IOP Conf. Series: Journal of Physics: Conference Series 1109 012015, (2018). DOI: https://doi.org/10.1088/1742-6596/1109/1/012015
  • [50] Paz, A., Zhmarin, E., Polske, H., “Recent Developments In Coarse Grinding Using Vertical Stirred Mills”, Swiss Tower Mills Minerals AG, Comminution 23 Draft Papers, Switzerland, (2023).
  • [51] Paz, A., Ypelaan, C., T., Ryan, M., McIness., “The Application of Ultra Fine Grinding for Sunrise Dam Gold Mine, Paper presented in Millops”, Mill Operators Conference, Brisbane, Queensland, Australia, (2021).
  • [52] Paz, A., Ghattas, G., Loro, S., Belke, B., “Fine Grinding Implementation at the Cracow Gold Processing Plant”, Paper presented in Metplant 2019, Perth, Western Australia, (2019).
  • [53] Sailender, M., Suresh, R., Reddy, GC., Venkatesh, S., “Prediction and comparison of the dilution and heat affected zone in submerged arc welding (SAW) of low carbon alloy steel joints”, Measurement, 150: 107084, ISSN 0263-2241, (2020). DOI: https://doi.org/10.1016/j.measurement.2019.107084
  • [54] Mazzinghy, D., Schneider, C., Alves, V., Galery, R., “Vertical agitated media mill scale-up and simulation”, Minerals Engineering, 73, 69-76, (2015).
  • [55] Mcgrath, JT., Chandel, RS., Orr, RF., Gianetto, JA., “Microstructure/Mechanical Property Relationships in Thick-Section C-Mn Narrow-Groove Welds”, Weld Journal, 67: 196-201, (1988).
  • [56] Miyamoto, G., Karube, Y., Furuhara, T., “Formation of grain boundary ferrite in eutectoid and hypereutectoid pearlitic steels”, Acta Materialia, 103: 370-381, ISSN 1359-6454, (2016). DOI: https://doi.org/10.1016/j.actamat.2015.10.032.
  • [57] Edwin Raja Dhas, J., Anton Savio Lewise, K., Laxmi, G., “Submerged arc welding process parameter prediction using predictive modeling techniques”, Materialstoday: Proceedings, 64(1): 402-409, (2022). DOI: https://doi.org/10.1016/j.matpr.2022.04.757
  • [58] Kaluç, E., “Melting based welding methods”, Makine Mühendisleri Odası Kocaeli Şubesi, Kaynak Teknolojisi El Kitabı Cilt 1 Yayın No:356, Kocaeli, (2004).
  • [59] Sarfudeen, M., Muthukumaran, S., “Effect of cold wire addition on improvement in productivity by submerged arc welding in wind turbine tower fabrication”, Materialstoday: Proceedings, 27(3): 2699-2702, (2020). DOI: https://doi.org/10.1016/j.matpr.2019.12.185
  • [60] Byeong, C.G., “Effect of Post-Weld Heat Treatment on the Fatigue Behavior of Medium-Strength Carbon Steel Weldments”, Metals, 11(11): 1700, (2021). DOI: https://doi.org/10.3390/met11111700
  • [61] Wieczorska, A., Domżalski, R., “The influence of submerged arc welding conditions on the properties of S355JR structural steel joints”, International Journal of Mechanical Engineering and Technology (IJMET), 12(12):19-29, (2021). DOI: https://doi.org/10.17605/OSF.IO/E32PV
  • [62] Wieczorska, A., Labuda, W., “Analysis of the process of qualifying the welding technology of S355JR structural steel using the submerged arc welding method”, Journal of Achievements in Materials and Manufacturing Engineering, 118(1): 18-27, (2023). DOI: https://doi.org/10.5604/01.3001.0053.7287
  • [63] Wieczorska, A., Abramczyk N., “Developing technology for the welding of steam turbine steering diaphragms using the submerged arc welding method”, Journal of KONBiN, 52(3): 233-245, (2022). DOI: https://doi.org/10.2478/jok-2022-0035
  • [64] Quan, C., Jiang, Y., Xinghui, L., Jingli, T., “Bensheng Huang Effect of the groove type when considering a thermometallurgical-mechanical model of the welding residual stress and deformation in an S355JR-316L dissimilar welded joint”, Journal of Manufacturing Processes, 45: 290-303, (2019). DOI: https://doi.org/10.1016/j.jmapro.2019.07.011
  • [65] Balakrishnan, M., Leitão, C., Craveiro, D., Rodrigues, D.M., Santiago, Silva, A., L.S. and Subramanian, C., “Post fire tensile properties of S355 J2 structural steel welded connections for construction industrial applications”, Metallurgical Research & Technology, 119:511, (2022). DOI: https://doi.org/10.1051/metal/2022056
  • [66] İrsel, G., “Study of the microstructure and mechanical property relationships of shielded metal arc and TIG welded S235JR steel joints”, Materials Science and Engineering: A, 830:142320, (2022). DOI: https://doi.org/10.1016/j.msea.2021.142320
  • [67] Şık, A., Önder, M., “Comparison between mechanical properties and joint performance of AA 2024-O aluminium alloy welded by friction stir welding and TIG processes”, Kovove Material, 50:131-137, (2012). DOI: https://doi.org/10.4149/km_2012_2_131

Vertical Stirred Mill (VSM) Welding Machine Design

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1469645

Abstract

Vertical stirred mills are widely used in the mining industry because they are more efficient than traditional drum mills. Vertical agitation grinders are used in secondary, regrinding, and fine grinding applications in the mining industry because of their energy efficiency, cost savings and small footprint. The solid welding of the mixer leaves to the body plays an important role in terms of wear, maintenance planning, and operating costs. The grinder must be resistant to the strains during mixing and maintain its rigidity. In vertical mixer grinders, it is difficult to weld the screw leaves to the shaft in a helical manner. In this study, a Screw Welding Machine (WSM) was designed to weld the vertical stirred grinder leaves to the body to meet this difficulty. In order to perform welds between adjacent leaves and corners, using a submerged arc welding machine, a welding bench has been designed. Designed bench enable to connect seven different sizes of vertical mixer grinders to WSM. Designed WSM compansate deformations caused bey weld induced heat by changing part position and opposite side weld application. The designed bench remains stationary during welding procedure. The weld seam qualities were investigated by examining the weld seams made with the designed machine (spectral analysis, hardness measurement, notch impact resistance, macro examination, and metallography examination).

Supporting Institution

Birikim Mühendislik ve Endüstriyel Yüklenim A.Ş. Tasarım Merkezi ve Gazi Teknoloji Transfer Ofisi

Thanks

Birikim Mühendislik ve Endüstriyel Yüklenim A.Ş. Tasarım Merkezi ve Gazi Teknoloji Transfer Ofisine teşekkür ederiz.

References

  • [1] Maruf, H., Sam, P., Marko, H., Malcolm, P., “Calculating breakage parameters of a batch vertical stirred mill”, Minerals Engineering, 111: 229-237, (2017), DOI: https://doi.org/10.1016/j.mineng.2017.06.024
  • [2] Jankovic, A., “Fine grinding in the Australian Minerals Industry”, Journal of Mining and Metallurgy, 51-61, (2000).
  • [3] Hoyer, D., “Fine grinding with the tower mill: A comparison with a ball mill”, Mintek No, C336M, (1984).
  • [4] Rosa, A., Oliveira, P., Donda, J. D., “Comparing ball and vertical mills performance-an industrial case study, In: IMPC Proceedings”, Comminution Processes, 8: 44-51, (2014).
  • [5] Jankovic, A., “Variables affecting the fine grinding of minerals using stirred mills”, Minerals Engineering, 16: 337-345, (2003).
  • [6] Danielle, R., Erik, S., Patrick, T., Hugh, M., “Predicting the product particle size distribution from a laboratory vertical stirred mill”, Minerals Engineering, 129: 85-92, (2018). DOI: https://doi.org/10.1016/j.mineng.2018.09.016
  • [7] Stief, D., Lawruk, W., Wilson, L., “Tower mill and its application to fine grinding”, Mining Metallurgy&Exploration, 4: 45-50, (1987). DOI: https://doi.org/10.1007/BF03402674
  • [8] Roitto, I., Lehto, H., Paz, A., Astholm, M., “Stirred milling technology-A new concept in fine grinding”, Perth WA, (2013).
  • [9] Hasan, M. M., “Process modelling of gravity induced stirred mills. Ph. D. Thesis”, University of Queensland, Brisbane, Australia, (2016).
  • [10] Priscila, M. E., Douglas, B. M., Roberto Galéryand Luís, C. R. M., “Industrial vertical stirred mills screw liner wear profile compared to discrete element method simulations, Minerals, (2021). DOI: https://doi.org/10.3390/min11040397
  • [11] Shi, F., Morrison, R., Cervellin, A., Burns, F., Musa, F., “Comparison of energy efficiency between ball mills and stirred mills in coarse grinding”, Minerals Engineering, 22: 673-680, (2009). DOI: https://doi.org/10.1016/j.mineng.2008.12.002
  • [12] Cleary, P.W., Sinnott, M., Morrison, R., “Analysis of stirred mill performance using DEM simulation: Part 2-Coherent flow structures, liner stress and wear, mixing and transport”, Minerals Engineering, 19: 1551-1572, (2006). DOI: https://doi.org/10.1016/j.mineng.2006.08.013
  • [13] Oliveira, A.L.R., Rodriguez, V.A., Carvalho, R.M., Powell, M.S., Tavares, L.M., “Mechanistic modeling and simulation of a batch vertical stirred millAuthor links open overlay panel”, Minerals Engineering, 156:1-12 106487, (2020). DOI: https://doi.org/10.1016/j.mineng.2020.106487
  • [14] İnternet: Eirich, Brochure: EIRICH Tower Mill-Vertical Agitated Media Mill, Available online: https://www.eirich.com/fileadmin/user_upload/Eirich_Bilder/1.Produkte_Verfahren/2.Mahltechnik/5.TowerMill/TM1843_3_en.pdf (Accessed on 26 March 2024), (2018).
  • [15] Alım, YD., “Conveyor selection and design”, Ankara: SEGEM, (1986).
  • [16] İnternet: Metso, Blog: When to change vertimill™ liners and how to do it safely!, Available online: https://www.metso.com/blog/mining/blog-when-to-change-vertimill-liners-and-how-to-do-it-safely/ (Accessed on 26.03.2024).
  • [17] Daraio, D., Villoria, J., Ingram, A., Stitt, E.H., Marigo, M., “Investigating grinding media dynamics inside a vertical stirred mill using the discrete element method: Effect of impeller arm length”, Powder Technology, 364: 1049-1061, (2020). DOI: https://doi.org/10.1016/j.powtec.2019.09.038
  • [18] Jain, A.B., “Development of mathematical models to analyze and predict the weld bead geometry in submerged arc welding of low carbon alloy steel”, International Journal on Emerging Trends in Mechanical & Production Enginee, 2(1): 2581-4486, (2018).
  • [19] Choudhary, A., Kumar, M., & Unune, D. R. (2019). Experimental investigation and optimization of weld bead characteristics during submerged arc welding of AISI 1023 steel. Defence Technology, 15(1), 72–82, (2019). https://doi.org/10.1016/j.dt.2018.08.004
  • [20] Vedrtnam, V.S., Singh G., Kumar, A., “Optimizing submerged arc welding using response surface methodology, regression analysis, and genetic algorithm”, Defence Technology, 14(3): 204-212, (2018). DOI: https://doi.org/10.1016/j.dt.2018.01.008
  • [21] Abohusina, A., “Determining the optimum welding parameters on the weldability of mild steel using submerged arc welding process”, (MSc). Department of Mechanical Engineering and Energies, School of Engineering and Applied Sciences, Libyan Academy for Post Graduate Studies, Janzur, Libya, (2018).
  • [22] Reddy, K.S., “Optimization & prediction of welding parameters and bead geometry in submerged arc welding”, International Journal of Applied Engineering Research and Development (IJAERD), 3(3): 1-6, (2013).
  • [23] Avcı, T., “Spiral kaynaklı boru üretiminde kaynak otomasyonu”, Yüksek Lisans Tezi, Yıdız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, (2008).
  • [24] Romina, C., David, R.I., Francesco, G., “Correction to: Submerged arc welding process: a numerical investigation of temperatures, displacements, and residual stresses in ASTM A516 Gr70 corner joined samples”, The International Journal of Advanced Manufacturing Technology, 129: 3769, (2023). DOI: https://doi.org/10.1007/s00170-023-12617-1
  • [25] Anık, S., “Welding technology II submerged arc welding technique”, Gedik Kaynak Sanayi Ticaret Anonim Şirketi, İstanbul, (1998).
  • [26] Külahlı, E., “Welding Science”, Oerlikon Yayını, İstanbul, (1988).
  • [27] Kim, Y., Hwang, K.K., Kim, J.H., “Fracture behavior of heat-affected zone in low alloy steels”, Journal of Nuclear Materials, 299(2): 132-139, (2001). DOI: https://doi.org/10.1016/S0022-3115(01)00688-2
  • [28] Sharma, P., Mohal, S., “Parametric Optimization of Submerged Arc Welding Process Parameters by Response Surface Methodology”, Materialstoday Proceedings, 24(2): 673-682, (2020). DOI: https://doi.org/10.1016/j.matpr.2020.04.321
  • [29] Esteves, P.M., Douglas, B.M., Galéry, R., Machado, L.C.R., “Industrial Vertical Stirred Mills Screw Liner Wear Profile Compared to Discrete Element Method Simulations”, Minerals, 11(4): 397, (2021). DOI: https://doi.org/10.3390/min11040397
  • [30] Kumar, A., Sahu, R., Tripathy, S.K., “Energy-efficient advanced ultrafine grinding of particles using stirred mills”, A Review Energies, 16: 5277, (2023). DOI: https://doi.org/10.3390/en16145277
  • [31] Akay, A.A., “Joining of materials with different properties by submerged arc welding method and destructive and non-destructive examination of the joints”, Karabük Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Karabük, (2012).
  • [32] Zhang, M., Han Y., Jia C., et al “Improving the microstructures and mechanical properties with nano-Al2O3 treated wire in underwater submerged arc welding”, Journal of Manufacturing Processes, 74: 40-51, (2022). DOI: https://doi.org/10.1016/j.jmapro.2021.11.056
  • [33] Edwin Raja Dhas, J., Anton Savio Lewise, K., Laxmi, G., “Submerged arc welding process parameter prediction using predictive modeling techniques”, Matertoday Proceedings, 64: 402-409, (2022). DOI: https://doi.org/10.1016/j.matpr.2022.04.757
  • [34] Benedetti, M., Fontanari, V., Santus, C., “Crack growth resistance of MAG butt-welded joints of S355JR construction steel”, Engineering Fracture Mechanics, 108: 305-315, (2013).
  • [35] İnternet: CEMA, “Screw conveyors for bulk materials”, https://cemanet.org/wp-content/uploads/2019/06/EC-2019-Bulk-Handling-Section-Meeting-Agenda-set.pdf (Accessed on 26 March 2024).
  • [36] Forcade, M., “Screw conveyor 10”, Goodman Conveyor Company, (1999).
  • [37] Alışverişçi, M., “Belt conveyors”, İstanbul, (1985).
  • [38] Nogay, M.N., “Screw conveyors design criteria”, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Makine Müh. Böl. Yüksek Lisans Tezi, İstanbul, (2007).
  • [39] Seshagiri, S., Krishna Moorthi, M., “Electrode extruder using screw conveyor”, https://journals.pen2print.org/index.php/ijr/article/view/2126
  • [40] Mcgrath, JT., Chandel, RS., Orr, RF., Gianetto, JA., “Microstructure/Mechanical Property Relationships in Thick-Section C-Mn Narrow-Groove Welds”, Weld Journal, 67: 196-201, (1988).
  • [41] Miyamoto, G., Karube, Y., Furuhara, T., “Formation of grain boundary ferrite in eutectoid and hypereutectoid pearlitic steels”, Acta Materialia, 103: 370-381, ISSN 1359-6454, (2016), https://doi.org/10.1016/j.actamat.2015.10.032
  • [42] Song, HY., Evans, GM., Babu, SS., “Effect of microstructural heterogeneities on scatter of toughness in multi-pass weld metal of C-Mn steels”, Science and Technology of Welding and Joining, 19(5): 376-384, (2014). DOI: https://doi.org/10.1179/1362171814Y.0000000194
  • [43] Gürol, U., Çoban, O., Coşar, İ.C., Koçak, M., “Effect of the notch location on the Charpy-V toughness results for robotic flux-cored arc welded multipass joints”, Materials Testing, 64(9): 1278-1289, (2022). DOI: https://doi.org/10.1515/mt-2022-0113
  • [44] Maksuti, R., “Impact of the acicular ferrite on the Charpy V-notch toughness of submerged arc weld metal deposits”, International Journal of Scientific & Engineering Research, 7(8): 1149-1155, (2016).
  • [45] Akkaş, N., Onar, V., Varol, F., “Microstructure Analysis of Resistance Spot Welding of S235JR(Cu) Steel Sheets Used in Rail System Vehicles”, 3rd International Congress of Vocational and Technical Sciences, Gaziantep, 1591-1599, (2018).
  • [46] Çetinkaya, C., Akay, A., Arabacı, U., Fındık, T., “Effect of primer coating applied to S235JR material on submerged arc weldability”, Journal of Polytechnic, 25(3): 1335-1348, (2022). DOI: http://doi.org/10.2339/politeknik.1119093
  • [47] Varola, A., Bozana, MS., Çoband, O., Gürola, U., “The influence of filler wire on microstructure and mechanical properties is submerged arc welding of S355J2 structural steel”, Journal of Innovative Engineering and Natural Science, 4(2): 426-438, (2024). DOI: http://doi.org/10.61112/jiens.1415708
  • [48] Gook, S., Midik, A., Biegler, M., Gumenyuk, A., Rethmeier, M., “Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding”, Journal of Manufacturing and Materials Processing, 6(4): 84, (2022). DOI: https://doi.org/10.3390/jmmp6040084
  • [49] Üstündag, Ö., Avilov, V., Gumenyuk, A., Rethmeier, M., “Full penetration hybrid laser arc welding of up to 28 mm thick S355 plates using electromagnetic weld pool support”, Beam Technologies and Laser Application IOP Publishing IOP Conf. Series: Journal of Physics: Conference Series 1109 012015, (2018). DOI: https://doi.org/10.1088/1742-6596/1109/1/012015
  • [50] Paz, A., Zhmarin, E., Polske, H., “Recent Developments In Coarse Grinding Using Vertical Stirred Mills”, Swiss Tower Mills Minerals AG, Comminution 23 Draft Papers, Switzerland, (2023).
  • [51] Paz, A., Ypelaan, C., T., Ryan, M., McIness., “The Application of Ultra Fine Grinding for Sunrise Dam Gold Mine, Paper presented in Millops”, Mill Operators Conference, Brisbane, Queensland, Australia, (2021).
  • [52] Paz, A., Ghattas, G., Loro, S., Belke, B., “Fine Grinding Implementation at the Cracow Gold Processing Plant”, Paper presented in Metplant 2019, Perth, Western Australia, (2019).
  • [53] Sailender, M., Suresh, R., Reddy, GC., Venkatesh, S., “Prediction and comparison of the dilution and heat affected zone in submerged arc welding (SAW) of low carbon alloy steel joints”, Measurement, 150: 107084, ISSN 0263-2241, (2020). DOI: https://doi.org/10.1016/j.measurement.2019.107084
  • [54] Mazzinghy, D., Schneider, C., Alves, V., Galery, R., “Vertical agitated media mill scale-up and simulation”, Minerals Engineering, 73, 69-76, (2015).
  • [55] Mcgrath, JT., Chandel, RS., Orr, RF., Gianetto, JA., “Microstructure/Mechanical Property Relationships in Thick-Section C-Mn Narrow-Groove Welds”, Weld Journal, 67: 196-201, (1988).
  • [56] Miyamoto, G., Karube, Y., Furuhara, T., “Formation of grain boundary ferrite in eutectoid and hypereutectoid pearlitic steels”, Acta Materialia, 103: 370-381, ISSN 1359-6454, (2016). DOI: https://doi.org/10.1016/j.actamat.2015.10.032.
  • [57] Edwin Raja Dhas, J., Anton Savio Lewise, K., Laxmi, G., “Submerged arc welding process parameter prediction using predictive modeling techniques”, Materialstoday: Proceedings, 64(1): 402-409, (2022). DOI: https://doi.org/10.1016/j.matpr.2022.04.757
  • [58] Kaluç, E., “Melting based welding methods”, Makine Mühendisleri Odası Kocaeli Şubesi, Kaynak Teknolojisi El Kitabı Cilt 1 Yayın No:356, Kocaeli, (2004).
  • [59] Sarfudeen, M., Muthukumaran, S., “Effect of cold wire addition on improvement in productivity by submerged arc welding in wind turbine tower fabrication”, Materialstoday: Proceedings, 27(3): 2699-2702, (2020). DOI: https://doi.org/10.1016/j.matpr.2019.12.185
  • [60] Byeong, C.G., “Effect of Post-Weld Heat Treatment on the Fatigue Behavior of Medium-Strength Carbon Steel Weldments”, Metals, 11(11): 1700, (2021). DOI: https://doi.org/10.3390/met11111700
  • [61] Wieczorska, A., Domżalski, R., “The influence of submerged arc welding conditions on the properties of S355JR structural steel joints”, International Journal of Mechanical Engineering and Technology (IJMET), 12(12):19-29, (2021). DOI: https://doi.org/10.17605/OSF.IO/E32PV
  • [62] Wieczorska, A., Labuda, W., “Analysis of the process of qualifying the welding technology of S355JR structural steel using the submerged arc welding method”, Journal of Achievements in Materials and Manufacturing Engineering, 118(1): 18-27, (2023). DOI: https://doi.org/10.5604/01.3001.0053.7287
  • [63] Wieczorska, A., Abramczyk N., “Developing technology for the welding of steam turbine steering diaphragms using the submerged arc welding method”, Journal of KONBiN, 52(3): 233-245, (2022). DOI: https://doi.org/10.2478/jok-2022-0035
  • [64] Quan, C., Jiang, Y., Xinghui, L., Jingli, T., “Bensheng Huang Effect of the groove type when considering a thermometallurgical-mechanical model of the welding residual stress and deformation in an S355JR-316L dissimilar welded joint”, Journal of Manufacturing Processes, 45: 290-303, (2019). DOI: https://doi.org/10.1016/j.jmapro.2019.07.011
  • [65] Balakrishnan, M., Leitão, C., Craveiro, D., Rodrigues, D.M., Santiago, Silva, A., L.S. and Subramanian, C., “Post fire tensile properties of S355 J2 structural steel welded connections for construction industrial applications”, Metallurgical Research & Technology, 119:511, (2022). DOI: https://doi.org/10.1051/metal/2022056
  • [66] İrsel, G., “Study of the microstructure and mechanical property relationships of shielded metal arc and TIG welded S235JR steel joints”, Materials Science and Engineering: A, 830:142320, (2022). DOI: https://doi.org/10.1016/j.msea.2021.142320
  • [67] Şık, A., Önder, M., “Comparison between mechanical properties and joint performance of AA 2024-O aluminium alloy welded by friction stir welding and TIG processes”, Kovove Material, 50:131-137, (2012). DOI: https://doi.org/10.4149/km_2012_2_131
There are 67 citations in total.

Details

Primary Language English
Subjects Resource Technologies, Machine Design and Machine Equipment
Journal Section Research Article
Authors

Aydın Şık 0000-0002-8977-9094

Ali Akay 0000-0003-3700-0779

Early Pub Date March 8, 2025
Publication Date
Submission Date April 17, 2024
Acceptance Date January 15, 2025
Published in Issue Year 2025 Early View

Cite

APA Şık, A., & Akay, A. (2025). Vertical Stirred Mill (VSM) Welding Machine Design. Gazi University Journal of Science1-1. https://doi.org/10.35378/gujs.1469645
AMA Şık A, Akay A. Vertical Stirred Mill (VSM) Welding Machine Design. Gazi University Journal of Science. Published online March 1, 2025:1-1. doi:10.35378/gujs.1469645
Chicago Şık, Aydın, and Ali Akay. “Vertical Stirred Mill (VSM) Welding Machine Design”. Gazi University Journal of Science, March (March 2025), 1-1. https://doi.org/10.35378/gujs.1469645.
EndNote Şık A, Akay A (March 1, 2025) Vertical Stirred Mill (VSM) Welding Machine Design. Gazi University Journal of Science 1–1.
IEEE A. Şık and A. Akay, “Vertical Stirred Mill (VSM) Welding Machine Design”, Gazi University Journal of Science, pp. 1–1, March 2025, doi: 10.35378/gujs.1469645.
ISNAD Şık, Aydın - Akay, Ali. “Vertical Stirred Mill (VSM) Welding Machine Design”. Gazi University Journal of Science. March 2025. 1-1. https://doi.org/10.35378/gujs.1469645.
JAMA Şık A, Akay A. Vertical Stirred Mill (VSM) Welding Machine Design. Gazi University Journal of Science. 2025;:1–1.
MLA Şık, Aydın and Ali Akay. “Vertical Stirred Mill (VSM) Welding Machine Design”. Gazi University Journal of Science, 2025, pp. 1-1, doi:10.35378/gujs.1469645.
Vancouver Şık A, Akay A. Vertical Stirred Mill (VSM) Welding Machine Design. Gazi University Journal of Science. 2025:1-.