Research Article
BibTex RIS Cite

Year 2025, Volume: 38 Issue: 3, 1143 - 1157, 01.09.2025
https://doi.org/10.35378/gujs.1517336

Abstract

References

  • [1] Lubis, M., Wijaya, S., Ginting, M.H.S., and Harahap, M.B., “Effect of cogon grass powder (Imperata cylindrica L. Beauv) composition and particle size on physical and mechanical properties of unsaturated polyester resin particle board products”, AIP Conference Proceedings, 2267: 020055, (2020). DOI: https://doi.org/10.1063/5.0016031
  • [2] Internet: Statistics of Forestry Production 2021, In BPS-Statistics Indonesia, https://www.bps.go.id/id/publication/2022/07/29/e6e4600abae56ef5d4507463/statistik-produksi-kehutanan-2021.html, (2022).
  • [3] Yani, A., Indrasari, N., Wicaksono, B.R., Rudiana, E., Hakim, E.H.N., Jannah, M., Zet, L., Purwanti, F.I., Putri, F.A., Novantia, Rizqi, A., Calista, P., and Palupi, H., Statistics of Forestry Production 2022, BPS-Statistics Indonesia, Jakarta, (2023).
  • [4] Jumaidin, R., Khiruddin, M.A.K., Saidi, Z.A.S., Salit, M.S., and Ilyas, R.A., “Effect of cogon grass on the thermal, mechanical, and biodegradation properties of thermoplastic cassava starch biocomposite”, International Journal of Biological Macromolecules, 146: 746–755, (2020). DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.011
  • [5] Ramsey, C.L., Jose, S., Miller, D.L., Cox, J., Portier, K.M., Shilling, D.G., and Merritt, S., “Cogongrass [Imperata cylindrica (L.) Beauv.] response to herbicides and disking on a cutover site and in a mid-rotation pine plantation in southern USA”, Forest Ecology and Management, 179(1–3): 195–207, (2003). DOI: https://doi.org/10.1016/S0378-1127(02)00515-7
  • [6] Jung, Y.K., Shin, D., “Imperata cylindrica: A review of phytochemistry, pharmacology, and industrial applications”, Molecules, 26: 1454, (2021). DOI: https://doi.org/10.3390/molecules26051454
  • [7] Kow, K.W., Yusoff, R., Aziz, A.R.A., and Abdullah, E.C., “Characterisation of bio-silica synthesized from cogon grass (Imperata cylindrica)”, Powder Technology, 254: 206–213, (2014). DOI: https://doi.org/10.1016/j.powtec.2014.01.018
  • [8] Mensah, P., Govina, J., Asante, J.O.O., Seidu, H., Junior, F.R., Paula, E.A.D.O., Pedrosa, T.D., and Melo, R.R.D., “Durability and resistance of eco-friendly particleboards produced from agroforestry residues”, Revista Materia, 28(2), (2023). DOI: https://doi.org/10.1590/1517-7076-rmat-2023-0027
  • [9] Farooq, A., Patoary, M.K., Zhang, M., Mussana, H., Li, M., Naeem, M.A., Mushtaq, M., Farooq, A., and Liu, L., “Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials”, International Journal of Biological Macromolecules, 154: 1050–1073, (2020). DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.163
  • [10] Kassim, A.S.M., Aripin, A.M., Ishak, N., Hairom, N.H.H., Fauzi, N.A., Razali, N.F., and Zainulabidin, M. H., “Potential of cogon grass (Imperata cylindrica) as an alternative fibre in paper-based industry”, ARPN Journal of Engineering and Applied Sciences, 11(4): 2681–2686, (2016).
  • [11] Yusof, Y.M., Othman, S. A., “A review on the use of natural fibres of cogon grass mixed with concrete for radiation shielding materials”, Journal of Nuclear and Related Technologies, 18(2): 23–31, (2021).
  • [12] MacDonald, G.E., “Cogongrass (Imperata cylindrica)–Biology, Ecology, and Management”, Critical Reviews in Plant Sciences, 23(5): 367–380, (2010). DOI: https://doi.org/10.1080/07352680490505114
  • [13] Xuan, T.D., Toyama, T., Fukuta, M., Khanh, T.D., and Tawata, S., “Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L.) Beauv.)”, Journal of Agricultural and Food Chemistry, 57(20): 9448–9453, (2009). DOI: https://doi.org/10.1021/jf902310j
  • [14] Minogue, P.J., Brodbeck, B.V., and Miller, J.H., “Biology and control of cogongrass (Imperata cylindrica) in Southern Forests”, EDIS, 2018(2): 1–6, (2018). DOI: https://doi.org/10.32473/edis-fr411-2018
  • [15] Kassim, A.S.M., Aripin, A.M., Ishak, N., and Zainulabidin, M.H., “Cogon grass as an alternative fibre for pulp and paper-based industry: On chemical and surface morphological properties”, Applied Mechanics and Materials, 773–774(2015): 1242–1245, (2015). DOI: https://doi.org/10.4028/www.scientific.net/AMM.773-774.1242
  • [16] Syamani, F.A., Kusumah, S.S., Astri, L., Prasetio, K.W., Wibowo, E.S., and Subyakto, “Effect of pre-drying time and citric acid content on imperata cylindrical particleboards properties”, IOP Conference Series: Earth and Environmental Science, 209: 1–11, (2018). DOI: https://doi.org/10.1088/1755-1315/209/1/012034
  • [17] Ruksakulpiwat, C., Wanasut, W., Singkum, A., and Ruksakulpiwat, Y., “Cogon grass fiber-epoxidized natural rubber composites”, Advance Materials Research, 747: 375–378, (2013). DOI: https://doi.org/10.4028/www.scientific.net/AMR.747.375
  • [18] Kongkaew, P., Praneekrit, P., Rudchapo, T., and Khampui, K., “Mechanical and physical properties of water hyacinth and cogon grass fiber reinforced epoxy resin composites”, Journal of Physics: Conference Series, 2145: 012036, (2021). DOI: https://doi.org/10.1088/1742-6596/2145/1/012036
  • [19] Pedzik, M., Auriga, R., Kristak, L., Antov, P., and Rogozinkski, T., “Physical and mechanical properties of particleboard produced with addition of walnut (Juglans regia L.) wood residues”, Materials, 15: 1280, (2022). DOI: https://doi.org/10.3390/ma15041280
  • [20] Faria, D.F., Guimaraes, J.C.O., Protasio, T.D.P., Mendes, L.M., and Junior, J.B.G., “Conventional low-density particleboards produced with particles from Mauritia flexuosa and Eucalyptus Spp. Wood”, Clean Technologies and Environmental Policy, 24(9): 1–11, (2008). DOI: https://doi.org/10.21203/rs.3.rs-980174/v1
  • [21] Lee, S.H., Lum, W.C., Boon, J.G., Kristak, L., Antov, P., Pedzik, M., Rogozinski, T., Taghiyari, H.R., Lubis, M.A.R., Fatriasari, W., Yadav, S.M., Chotikum, A., and Pizzi, A., “Particleboard from agricultural biomass and recycled wood waste: a review”, Journal of Materials Research and Technology, 20: 4630–4658, (2022). DOI: https://doi.org/10.1016/j.jmrt.2022.08.166
  • [22] Som, S.N.M., Baharuddin, M.N.M., Zain, N.M., and Shaari, M.R., “The making of particleboard from palm oil fiber and dust wood with epoxy as a resin”, International Journal of Recent Technology and Engineering, 8(4): 11016–11019, (2019). DOI: https://doi.org/10.35940/ijrte.D5420.118419
  • [23] Verma, C., Olansunkanmi, L.O., Akpan, E.D., Quraishi, M.A., Dagdag, O., Gouri, M.E., Sherif, E.D., and Ebenso, E.E., “Epoxy resins as anticorrosive polymeric materials: A review”, Reactive and Functional Polymers, 156: 10741, (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104741
  • [24] Paluvai, N.R., Mohanty, S., and Nayak, S.K., “Synthesis and modifications of epoxy composites: A Review”, Polymer-Plastics Technology and Engineering, 53(16): 1723–1758, (2014). https://doi.org/10.1080/03602559.2014.919658
  • [25] Gibson, G., “Epoxy resins”, Brydson’s Plastics Materials, 773–797, (2017).
  • [26] Lubis, M.R., Maimun, T., Kardi, J., and Masra, R.B., “Characterizing particleboard made of oil palm empty fruit bunch using central composite design”, Makara Journal of Science, 22(1): 17–28, (2018). DOI: https://doi.org/10.7454/mss.v22i1.6988
  • [27] Boruszewski, P., Borysiuk, P., Maminski, M., and Czechowska, J., “Mat compression measurements during low-density particleboard manufacturing”, Bioresources, 11(3): 6909–6919, (2016). DOI: https://doi.org/10.15376/biores.11.3.6909-6919
  • [28] Sotannde, O., “Evaluation of cement-bonded particle board produced from afzelia Africana wood residues”, Journal of Engineering Science and Technology, 7(6): 732–743, (2012).
  • [29] Laemlaksakul, V., “Physical and mechanical properties of particleboard from bamboo waste”, International Journal of Materials and Metallurgical Engineering, 4(4): 276–280, (2010). DOI: https://doi.org/10.5281/zenodo.1074531
  • [30] Astari, L., Sudarmanto, and Akbar, F., “Characteristics of particleboards made from agricultural wastes”, IOP Conference Series: Earth and Environmental Science, 359: 012014, (2019). DOI: https://doi.org/10.1088/1755-1315/359/1/012014
  • [31] Mirski, R., Dziurka, D., and Banaszak, A., “Properties of particleboards produced from various lignocellulosic particles”, Bioresources, 13(4): 7758–7765, (2018). DOI: https://doi.org/10.15376/biores.13.4.7758-7765
  • [32] Lubis, M.R., Razi, F., Salsabilla, T., Kausar, and Husein, F.R., “Adhesive-particle ratio and avocado seed filler on the characteristics of particleboard made from oil palm oil empty fruit bunches”, Alchemy Jurnal Penelitian Kimia, 20(1): 70–81, (2024). DOI: https://doi.org/10.20961/alchemy.20.1.76881.70-81
  • [33] Hamdan, M.H.M., Siregar, J.P., Cionita, T., Jaafar, J., Efriyohadi, A., Junid, R., and Kholil, A., “Water absorption behaviour on the mechanical properties of woven hybrid reinforced polyester composites”, The International Journal of Advanced Manufacturing Technology, 104: 1075–1086, (2019). DOI: https://doi.org/10.1007/s00170-019-03976-9

Sustainable Particleboards from Invasive Cogon Grass using Epoxy Resin: A Greener Alternative to Wood-Based Panels

Year 2025, Volume: 38 Issue: 3, 1143 - 1157, 01.09.2025
https://doi.org/10.35378/gujs.1517336

Abstract

This study explores cogon grass (Imperata cylindrica), an invasive species, as a sustainable raw material for particleboard production. Epoxy resin was used as a binder, with methanol added to enhance processing and mechanical performance. The effects of particle size (<60 mesh and >60 mesh), five methanol concentrations (1.5%–3.5%), and binder-to-particle ratios (1.4:1 to 2.2:1) were evaluated. Boards were pressed at 25°C for 15 minutes. Physical and mechanical properties were analyzed, including density, moisture content, thickness swelling, tensile strength, yield strength, and modulus of elasticity derived from tensile testing. Results showed densities ranging from 0.568 to 0.942 g/cm3, moisture content below 6.6%, and zero thickness swelling after 24-hour immersion. The best mechanical results reached 11.96 MPa for tensile strength and 125.82 MPa for yield strength, with a maximum modulus of elasticity of 190.09 MPa. While MOE values were derived from tensile testing and not flexural analysis as required by SNI 03-2105-2006, results indicate cogon grass particleboards are promising for indoor use.

Thanks

We are grateful to the technical staffs at the Process Technology Laboratory for their assistance with the experimental setup and data collection. Special thanks to Kausar and Fezi Risky Husein for unwavering support and meticulous attention to detail during the testing phases.

References

  • [1] Lubis, M., Wijaya, S., Ginting, M.H.S., and Harahap, M.B., “Effect of cogon grass powder (Imperata cylindrica L. Beauv) composition and particle size on physical and mechanical properties of unsaturated polyester resin particle board products”, AIP Conference Proceedings, 2267: 020055, (2020). DOI: https://doi.org/10.1063/5.0016031
  • [2] Internet: Statistics of Forestry Production 2021, In BPS-Statistics Indonesia, https://www.bps.go.id/id/publication/2022/07/29/e6e4600abae56ef5d4507463/statistik-produksi-kehutanan-2021.html, (2022).
  • [3] Yani, A., Indrasari, N., Wicaksono, B.R., Rudiana, E., Hakim, E.H.N., Jannah, M., Zet, L., Purwanti, F.I., Putri, F.A., Novantia, Rizqi, A., Calista, P., and Palupi, H., Statistics of Forestry Production 2022, BPS-Statistics Indonesia, Jakarta, (2023).
  • [4] Jumaidin, R., Khiruddin, M.A.K., Saidi, Z.A.S., Salit, M.S., and Ilyas, R.A., “Effect of cogon grass on the thermal, mechanical, and biodegradation properties of thermoplastic cassava starch biocomposite”, International Journal of Biological Macromolecules, 146: 746–755, (2020). DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.011
  • [5] Ramsey, C.L., Jose, S., Miller, D.L., Cox, J., Portier, K.M., Shilling, D.G., and Merritt, S., “Cogongrass [Imperata cylindrica (L.) Beauv.] response to herbicides and disking on a cutover site and in a mid-rotation pine plantation in southern USA”, Forest Ecology and Management, 179(1–3): 195–207, (2003). DOI: https://doi.org/10.1016/S0378-1127(02)00515-7
  • [6] Jung, Y.K., Shin, D., “Imperata cylindrica: A review of phytochemistry, pharmacology, and industrial applications”, Molecules, 26: 1454, (2021). DOI: https://doi.org/10.3390/molecules26051454
  • [7] Kow, K.W., Yusoff, R., Aziz, A.R.A., and Abdullah, E.C., “Characterisation of bio-silica synthesized from cogon grass (Imperata cylindrica)”, Powder Technology, 254: 206–213, (2014). DOI: https://doi.org/10.1016/j.powtec.2014.01.018
  • [8] Mensah, P., Govina, J., Asante, J.O.O., Seidu, H., Junior, F.R., Paula, E.A.D.O., Pedrosa, T.D., and Melo, R.R.D., “Durability and resistance of eco-friendly particleboards produced from agroforestry residues”, Revista Materia, 28(2), (2023). DOI: https://doi.org/10.1590/1517-7076-rmat-2023-0027
  • [9] Farooq, A., Patoary, M.K., Zhang, M., Mussana, H., Li, M., Naeem, M.A., Mushtaq, M., Farooq, A., and Liu, L., “Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials”, International Journal of Biological Macromolecules, 154: 1050–1073, (2020). DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.163
  • [10] Kassim, A.S.M., Aripin, A.M., Ishak, N., Hairom, N.H.H., Fauzi, N.A., Razali, N.F., and Zainulabidin, M. H., “Potential of cogon grass (Imperata cylindrica) as an alternative fibre in paper-based industry”, ARPN Journal of Engineering and Applied Sciences, 11(4): 2681–2686, (2016).
  • [11] Yusof, Y.M., Othman, S. A., “A review on the use of natural fibres of cogon grass mixed with concrete for radiation shielding materials”, Journal of Nuclear and Related Technologies, 18(2): 23–31, (2021).
  • [12] MacDonald, G.E., “Cogongrass (Imperata cylindrica)–Biology, Ecology, and Management”, Critical Reviews in Plant Sciences, 23(5): 367–380, (2010). DOI: https://doi.org/10.1080/07352680490505114
  • [13] Xuan, T.D., Toyama, T., Fukuta, M., Khanh, T.D., and Tawata, S., “Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L.) Beauv.)”, Journal of Agricultural and Food Chemistry, 57(20): 9448–9453, (2009). DOI: https://doi.org/10.1021/jf902310j
  • [14] Minogue, P.J., Brodbeck, B.V., and Miller, J.H., “Biology and control of cogongrass (Imperata cylindrica) in Southern Forests”, EDIS, 2018(2): 1–6, (2018). DOI: https://doi.org/10.32473/edis-fr411-2018
  • [15] Kassim, A.S.M., Aripin, A.M., Ishak, N., and Zainulabidin, M.H., “Cogon grass as an alternative fibre for pulp and paper-based industry: On chemical and surface morphological properties”, Applied Mechanics and Materials, 773–774(2015): 1242–1245, (2015). DOI: https://doi.org/10.4028/www.scientific.net/AMM.773-774.1242
  • [16] Syamani, F.A., Kusumah, S.S., Astri, L., Prasetio, K.W., Wibowo, E.S., and Subyakto, “Effect of pre-drying time and citric acid content on imperata cylindrical particleboards properties”, IOP Conference Series: Earth and Environmental Science, 209: 1–11, (2018). DOI: https://doi.org/10.1088/1755-1315/209/1/012034
  • [17] Ruksakulpiwat, C., Wanasut, W., Singkum, A., and Ruksakulpiwat, Y., “Cogon grass fiber-epoxidized natural rubber composites”, Advance Materials Research, 747: 375–378, (2013). DOI: https://doi.org/10.4028/www.scientific.net/AMR.747.375
  • [18] Kongkaew, P., Praneekrit, P., Rudchapo, T., and Khampui, K., “Mechanical and physical properties of water hyacinth and cogon grass fiber reinforced epoxy resin composites”, Journal of Physics: Conference Series, 2145: 012036, (2021). DOI: https://doi.org/10.1088/1742-6596/2145/1/012036
  • [19] Pedzik, M., Auriga, R., Kristak, L., Antov, P., and Rogozinkski, T., “Physical and mechanical properties of particleboard produced with addition of walnut (Juglans regia L.) wood residues”, Materials, 15: 1280, (2022). DOI: https://doi.org/10.3390/ma15041280
  • [20] Faria, D.F., Guimaraes, J.C.O., Protasio, T.D.P., Mendes, L.M., and Junior, J.B.G., “Conventional low-density particleboards produced with particles from Mauritia flexuosa and Eucalyptus Spp. Wood”, Clean Technologies and Environmental Policy, 24(9): 1–11, (2008). DOI: https://doi.org/10.21203/rs.3.rs-980174/v1
  • [21] Lee, S.H., Lum, W.C., Boon, J.G., Kristak, L., Antov, P., Pedzik, M., Rogozinski, T., Taghiyari, H.R., Lubis, M.A.R., Fatriasari, W., Yadav, S.M., Chotikum, A., and Pizzi, A., “Particleboard from agricultural biomass and recycled wood waste: a review”, Journal of Materials Research and Technology, 20: 4630–4658, (2022). DOI: https://doi.org/10.1016/j.jmrt.2022.08.166
  • [22] Som, S.N.M., Baharuddin, M.N.M., Zain, N.M., and Shaari, M.R., “The making of particleboard from palm oil fiber and dust wood with epoxy as a resin”, International Journal of Recent Technology and Engineering, 8(4): 11016–11019, (2019). DOI: https://doi.org/10.35940/ijrte.D5420.118419
  • [23] Verma, C., Olansunkanmi, L.O., Akpan, E.D., Quraishi, M.A., Dagdag, O., Gouri, M.E., Sherif, E.D., and Ebenso, E.E., “Epoxy resins as anticorrosive polymeric materials: A review”, Reactive and Functional Polymers, 156: 10741, (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104741
  • [24] Paluvai, N.R., Mohanty, S., and Nayak, S.K., “Synthesis and modifications of epoxy composites: A Review”, Polymer-Plastics Technology and Engineering, 53(16): 1723–1758, (2014). https://doi.org/10.1080/03602559.2014.919658
  • [25] Gibson, G., “Epoxy resins”, Brydson’s Plastics Materials, 773–797, (2017).
  • [26] Lubis, M.R., Maimun, T., Kardi, J., and Masra, R.B., “Characterizing particleboard made of oil palm empty fruit bunch using central composite design”, Makara Journal of Science, 22(1): 17–28, (2018). DOI: https://doi.org/10.7454/mss.v22i1.6988
  • [27] Boruszewski, P., Borysiuk, P., Maminski, M., and Czechowska, J., “Mat compression measurements during low-density particleboard manufacturing”, Bioresources, 11(3): 6909–6919, (2016). DOI: https://doi.org/10.15376/biores.11.3.6909-6919
  • [28] Sotannde, O., “Evaluation of cement-bonded particle board produced from afzelia Africana wood residues”, Journal of Engineering Science and Technology, 7(6): 732–743, (2012).
  • [29] Laemlaksakul, V., “Physical and mechanical properties of particleboard from bamboo waste”, International Journal of Materials and Metallurgical Engineering, 4(4): 276–280, (2010). DOI: https://doi.org/10.5281/zenodo.1074531
  • [30] Astari, L., Sudarmanto, and Akbar, F., “Characteristics of particleboards made from agricultural wastes”, IOP Conference Series: Earth and Environmental Science, 359: 012014, (2019). DOI: https://doi.org/10.1088/1755-1315/359/1/012014
  • [31] Mirski, R., Dziurka, D., and Banaszak, A., “Properties of particleboards produced from various lignocellulosic particles”, Bioresources, 13(4): 7758–7765, (2018). DOI: https://doi.org/10.15376/biores.13.4.7758-7765
  • [32] Lubis, M.R., Razi, F., Salsabilla, T., Kausar, and Husein, F.R., “Adhesive-particle ratio and avocado seed filler on the characteristics of particleboard made from oil palm oil empty fruit bunches”, Alchemy Jurnal Penelitian Kimia, 20(1): 70–81, (2024). DOI: https://doi.org/10.20961/alchemy.20.1.76881.70-81
  • [33] Hamdan, M.H.M., Siregar, J.P., Cionita, T., Jaafar, J., Efriyohadi, A., Junid, R., and Kholil, A., “Water absorption behaviour on the mechanical properties of woven hybrid reinforced polyester composites”, The International Journal of Advanced Manufacturing Technology, 104: 1075–1086, (2019). DOI: https://doi.org/10.1007/s00170-019-03976-9
There are 33 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Chemical Engineering
Authors

Mirna Lubis 0000-0001-9454-4049

Umi Fathanah 0009-0006-1019-324X

Nayla Atina 0000-0003-4883-0858

Zahratul Aina 0009-0004-6695-2546

Early Pub Date July 29, 2025
Publication Date September 1, 2025
Submission Date July 16, 2024
Acceptance Date June 12, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA Lubis, M., Fathanah, U., Atina, N., Aina, Z. (2025). Sustainable Particleboards from Invasive Cogon Grass using Epoxy Resin: A Greener Alternative to Wood-Based Panels. Gazi University Journal of Science, 38(3), 1143-1157. https://doi.org/10.35378/gujs.1517336
AMA Lubis M, Fathanah U, Atina N, Aina Z. Sustainable Particleboards from Invasive Cogon Grass using Epoxy Resin: A Greener Alternative to Wood-Based Panels. Gazi University Journal of Science. September 2025;38(3):1143-1157. doi:10.35378/gujs.1517336
Chicago Lubis, Mirna, Umi Fathanah, Nayla Atina, and Zahratul Aina. “Sustainable Particleboards from Invasive Cogon Grass Using Epoxy Resin: A Greener Alternative to Wood-Based Panels”. Gazi University Journal of Science 38, no. 3 (September 2025): 1143-57. https://doi.org/10.35378/gujs.1517336.
EndNote Lubis M, Fathanah U, Atina N, Aina Z (September 1, 2025) Sustainable Particleboards from Invasive Cogon Grass using Epoxy Resin: A Greener Alternative to Wood-Based Panels. Gazi University Journal of Science 38 3 1143–1157.
IEEE M. Lubis, U. Fathanah, N. Atina, and Z. Aina, “Sustainable Particleboards from Invasive Cogon Grass using Epoxy Resin: A Greener Alternative to Wood-Based Panels”, Gazi University Journal of Science, vol. 38, no. 3, pp. 1143–1157, 2025, doi: 10.35378/gujs.1517336.
ISNAD Lubis, Mirna et al. “Sustainable Particleboards from Invasive Cogon Grass Using Epoxy Resin: A Greener Alternative to Wood-Based Panels”. Gazi University Journal of Science 38/3 (September2025), 1143-1157. https://doi.org/10.35378/gujs.1517336.
JAMA Lubis M, Fathanah U, Atina N, Aina Z. Sustainable Particleboards from Invasive Cogon Grass using Epoxy Resin: A Greener Alternative to Wood-Based Panels. Gazi University Journal of Science. 2025;38:1143–1157.
MLA Lubis, Mirna et al. “Sustainable Particleboards from Invasive Cogon Grass Using Epoxy Resin: A Greener Alternative to Wood-Based Panels”. Gazi University Journal of Science, vol. 38, no. 3, 2025, pp. 1143-57, doi:10.35378/gujs.1517336.
Vancouver Lubis M, Fathanah U, Atina N, Aina Z. Sustainable Particleboards from Invasive Cogon Grass using Epoxy Resin: A Greener Alternative to Wood-Based Panels. Gazi University Journal of Science. 2025;38(3):1143-57.