Research Article
BibTex RIS Cite
Year 2021, Volume: 34 Issue: 3, 879 - 897, 01.09.2021
https://doi.org/10.35378/gujs.743444

Abstract

References

  • Yazici, B., & Yolacan, S., “A comparison of various tests of normality”, Journal of Statistical Computation and Simulation, 77(2):175-183, (2007).
  • Romao, X., Delgado, R., Costa, A., “An empirical power comparison of univariate goodness-of-fit tests for normality”, Journal of Statistical Computation and Simulation, 80(5):545-591, (2010).
  • Dudewicz, E., & Van Der Meulen, E., “Entropy-based tests of uniformity”, Journal of the American Statistical Association, 76(376):967-974, (1981).
  • Crzcgorzewski, P., & Wirczorkowski, R., “Entropy-based goodness-of-fit test for exponentiality”, Communications in Statistics-Theory and Methods, 28(5):1183-1202, (1999).
  • Choi, B., & Kim, K., “Testing goodness-of-fit for Laplace distribution based on maximum entropy”, Statistics, 40(6):517-531, (2006).
  • Mahdizadeh, M., & Zamanzade, E., “New goodness of fit tests for the Cauchy distribution”, Journal of Applied Statistics, 44(6):1106-1121, (2017).
  • Dhumal, B., & Shirke, D., “A modified one-sample test for goodness-of-fit”, Journal of Statistical Computation and Simulation, 85(2):422-429, (2015).
  • Gibbons, J., & Chakraborti, S. “Nonparametric statistical inference”. Springer, (2011).
  • Bain, L., & Engelhardt, M. “Introduction to probability and mathematical statistics”. Brooks/Cole, (1987).
  • Stephens, M., “EDF statistics for goodness of fit and some comparisons”, Journal of the American statistical Association, 69(347):730-737, (1974).
  • Cramér, H., “On the composition of elementary errors”, Scandinavian Actuarial Journal, 11(1):13-74, (1928).
  • Von Mises, R., “Wahrscheinlichkeitsrechnung und Ihre Anwendung in der Statistik und Theoretischen Physik”, F. Deuticke, 6:13-74, (1931).
  • Anderson, T., & Darling, D., “Asymptotic theory of certain goodness of fit criteria based on stochastic processes”, The annals of mathematical statistics, 23(2):193-212, (1952).
  • Darling, D., “The kolmogorov-smirnov, cramer-von mises tests”, The Annals of Mathematical Statistics, 28(4):823-838, (1957).
  • Stephens, M., “Use of the Kolmogorov-Smirnov, Cramér-Von Mises and related statistics without extensive tables”, Journal of the Royal Statistical Society. Series B (Methodological), 32(1):115-122, (1970).
  • Noughabi, H., & Arghami, N., “Monte Carlo comparison of seven normality tests”, Journal of Statistical Computation and Simulation, 81(8):965-972, (2011).
  • Farrell, P., & Rogers-Stewart, K., “Comprehensive study of tests for normality and symmetry: extending the Spiegelhalter test”, Journal of Statistical Computation and Simulation, 76(9):803-816, (2006).
  • Anderson, T., & Darling, D., “A test of goodness of fit”, Journal of the American statistical association, 49(268): 765-769, (1954).
  • Dodge, Y. “The Oxford dictionary of statistical terms”. Oxford University Press on Demand, (2006).
  • Jammalamadaka, S. R., & Gupta, A. S. “Topics in Circular Statistics”. London: World Scientific Publishing Co. Pte. Ltd., (2001).
  • Ben Sada, A. “Cramer-von Mises test for goodness-of-fit of a single sample”. Retrieved Apr 18, 2018, from MATLAB Central File Exchange, (2015).
  • Devore, J. “Probability and Statistics for Engineering and the Sciences”. Cengage Learning, (2015).
  • Ramachandran, K., & Tsokos, C. “Mathematical statistics with applications in R”. Elsevier, (2014).
  • Onyper, S., Thacher, P., Gilbert, J., Gradess, S., “Class start times, sleep, and academic performance in college: A path analysis”, Chronobiology International, 29(3):318-335, (2012).

A New Goodness-of-Fit Test: Free Chi-Square (FCS)

Year 2021, Volume: 34 Issue: 3, 879 - 897, 01.09.2021
https://doi.org/10.35378/gujs.743444

Abstract

This paper presents a new goodness-of-fit technique for testing the assumption of univariate distributions which is based on the theoretical distribution function of the hypothesized distribution. The existing methods are examined in two different categories: binning and binning-free. The most widely known binning test is the Chi-square test. The Kolmogorov-Smirnov, the Cramer-von Mises and the Anderson-Darling goodness-of-fit tests come to the forefront as the binning-free tests. When tests are evaluated in terms of distributions, it is examined in two different classes: the not distribution-free tests and the distribution-free tests. The desired goodness-of-fit test method for a researcher should be binning-free, distribution-free, more sensitivity, easy to use and fast. In this study, a test method is proposed which provides almost all the options that a researcher would want. The Monte-Carlo simulation methods are used to demonstrate the success of the proposed method. In these simulations, the normality test was applied for symmetric distributions whereas the lognormality test was applied for non-symmetric distributions. The proposed test method has demonstrated superiority in many aspects compared to other selected test methods on both simulations and three different real-life datasets.

References

  • Yazici, B., & Yolacan, S., “A comparison of various tests of normality”, Journal of Statistical Computation and Simulation, 77(2):175-183, (2007).
  • Romao, X., Delgado, R., Costa, A., “An empirical power comparison of univariate goodness-of-fit tests for normality”, Journal of Statistical Computation and Simulation, 80(5):545-591, (2010).
  • Dudewicz, E., & Van Der Meulen, E., “Entropy-based tests of uniformity”, Journal of the American Statistical Association, 76(376):967-974, (1981).
  • Crzcgorzewski, P., & Wirczorkowski, R., “Entropy-based goodness-of-fit test for exponentiality”, Communications in Statistics-Theory and Methods, 28(5):1183-1202, (1999).
  • Choi, B., & Kim, K., “Testing goodness-of-fit for Laplace distribution based on maximum entropy”, Statistics, 40(6):517-531, (2006).
  • Mahdizadeh, M., & Zamanzade, E., “New goodness of fit tests for the Cauchy distribution”, Journal of Applied Statistics, 44(6):1106-1121, (2017).
  • Dhumal, B., & Shirke, D., “A modified one-sample test for goodness-of-fit”, Journal of Statistical Computation and Simulation, 85(2):422-429, (2015).
  • Gibbons, J., & Chakraborti, S. “Nonparametric statistical inference”. Springer, (2011).
  • Bain, L., & Engelhardt, M. “Introduction to probability and mathematical statistics”. Brooks/Cole, (1987).
  • Stephens, M., “EDF statistics for goodness of fit and some comparisons”, Journal of the American statistical Association, 69(347):730-737, (1974).
  • Cramér, H., “On the composition of elementary errors”, Scandinavian Actuarial Journal, 11(1):13-74, (1928).
  • Von Mises, R., “Wahrscheinlichkeitsrechnung und Ihre Anwendung in der Statistik und Theoretischen Physik”, F. Deuticke, 6:13-74, (1931).
  • Anderson, T., & Darling, D., “Asymptotic theory of certain goodness of fit criteria based on stochastic processes”, The annals of mathematical statistics, 23(2):193-212, (1952).
  • Darling, D., “The kolmogorov-smirnov, cramer-von mises tests”, The Annals of Mathematical Statistics, 28(4):823-838, (1957).
  • Stephens, M., “Use of the Kolmogorov-Smirnov, Cramér-Von Mises and related statistics without extensive tables”, Journal of the Royal Statistical Society. Series B (Methodological), 32(1):115-122, (1970).
  • Noughabi, H., & Arghami, N., “Monte Carlo comparison of seven normality tests”, Journal of Statistical Computation and Simulation, 81(8):965-972, (2011).
  • Farrell, P., & Rogers-Stewart, K., “Comprehensive study of tests for normality and symmetry: extending the Spiegelhalter test”, Journal of Statistical Computation and Simulation, 76(9):803-816, (2006).
  • Anderson, T., & Darling, D., “A test of goodness of fit”, Journal of the American statistical association, 49(268): 765-769, (1954).
  • Dodge, Y. “The Oxford dictionary of statistical terms”. Oxford University Press on Demand, (2006).
  • Jammalamadaka, S. R., & Gupta, A. S. “Topics in Circular Statistics”. London: World Scientific Publishing Co. Pte. Ltd., (2001).
  • Ben Sada, A. “Cramer-von Mises test for goodness-of-fit of a single sample”. Retrieved Apr 18, 2018, from MATLAB Central File Exchange, (2015).
  • Devore, J. “Probability and Statistics for Engineering and the Sciences”. Cengage Learning, (2015).
  • Ramachandran, K., & Tsokos, C. “Mathematical statistics with applications in R”. Elsevier, (2014).
  • Onyper, S., Thacher, P., Gilbert, J., Gradess, S., “Class start times, sleep, and academic performance in college: A path analysis”, Chronobiology International, 29(3):318-335, (2012).
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Statistics
Authors

Özge Tezel 0000-0003-2815-686X

Buğra Kaan Tiryaki 0000-0003-0995-7389

Eda Özkul 0000-0002-9840-8818

Orhan Kesemen 0000-0002-5160-1178

Publication Date September 1, 2021
Published in Issue Year 2021 Volume: 34 Issue: 3

Cite

APA Tezel, Ö., Tiryaki, B. K., Özkul, E., Kesemen, O. (2021). A New Goodness-of-Fit Test: Free Chi-Square (FCS). Gazi University Journal of Science, 34(3), 879-897. https://doi.org/10.35378/gujs.743444
AMA Tezel Ö, Tiryaki BK, Özkul E, Kesemen O. A New Goodness-of-Fit Test: Free Chi-Square (FCS). Gazi University Journal of Science. September 2021;34(3):879-897. doi:10.35378/gujs.743444
Chicago Tezel, Özge, Buğra Kaan Tiryaki, Eda Özkul, and Orhan Kesemen. “A New Goodness-of-Fit Test: Free Chi-Square (FCS)”. Gazi University Journal of Science 34, no. 3 (September 2021): 879-97. https://doi.org/10.35378/gujs.743444.
EndNote Tezel Ö, Tiryaki BK, Özkul E, Kesemen O (September 1, 2021) A New Goodness-of-Fit Test: Free Chi-Square (FCS). Gazi University Journal of Science 34 3 879–897.
IEEE Ö. Tezel, B. K. Tiryaki, E. Özkul, and O. Kesemen, “A New Goodness-of-Fit Test: Free Chi-Square (FCS)”, Gazi University Journal of Science, vol. 34, no. 3, pp. 879–897, 2021, doi: 10.35378/gujs.743444.
ISNAD Tezel, Özge et al. “A New Goodness-of-Fit Test: Free Chi-Square (FCS)”. Gazi University Journal of Science 34/3 (September 2021), 879-897. https://doi.org/10.35378/gujs.743444.
JAMA Tezel Ö, Tiryaki BK, Özkul E, Kesemen O. A New Goodness-of-Fit Test: Free Chi-Square (FCS). Gazi University Journal of Science. 2021;34:879–897.
MLA Tezel, Özge et al. “A New Goodness-of-Fit Test: Free Chi-Square (FCS)”. Gazi University Journal of Science, vol. 34, no. 3, 2021, pp. 879-97, doi:10.35378/gujs.743444.
Vancouver Tezel Ö, Tiryaki BK, Özkul E, Kesemen O. A New Goodness-of-Fit Test: Free Chi-Square (FCS). Gazi University Journal of Science. 2021;34(3):879-97.