Year 2023,
Volume: 36 Issue: 1, 80 - 94, 01.03.2023
Akshaykumar Naregalkar
,
Subbulekshmi D
References
- [1] Folgheraiter, M., “A combined b-spline neural network and ARX model for online identification of non-linear dynamic actuation systems”, Neurocomputing, 175: 433-442, (2016).
- [2] Schoukens, J., Ljung, L., “Nonlinear system identification: A user-oriented road map”, IEEE Control Systems Magazine, 39(6): 28-99, (2019).
- [3] Quachio, R., Garcia, C., “MPC relevant identification method for Hammerstein and wiener models”, Journal of Process Control, 80: 78-88, (2019).
- [4] Lawrynczuk, M., Soffker, D., “Wiener structures for modeling and nonlinear predictive control of proton exchange membrane fuel cell”, Nonlinear Dynamics, 95(2): 1639-1660, (2019).
- [5] Aggoune, L., Chetouani, Y., “Modeling of a distillation column based on NARMAX and Hammerstein models”, International Journal of Modeling, Simulation, and Scientific Computing, 08(03): 1-14, (2017).
- [6] Huang, L., Hu, Y., Zhao, Y., Li, Y., “Modeling and Control of IPMC actuators based on LSSVM-NARX paradigm”, Mathematics, 7(8): 741, (2019).
- [7] Porkuian, O., Morkun, V., Morkun, N., Serdyuk, O., “Predictive control of the iron ore beneficiation process based on the Hammerstein hybrid model”, Acta Mechanica et Automatica, 13(4): 262- 270, (2019).
- [8] Brouri, A., Rabyi, T., Ouannou, A., “Identification of nonlinear systems having hard function”, Advances in Systems Science and Applications, 19(1): 61-74, (2019).
- [9] Schoukens, M., Tiels, K., “Identification of block-oriented nonlinear systems starting from linear approximations: A survey”, Automatica, 85: 272- 292, (2017).
- [10] Ozer, S., Zorlu, H., “System identification application using Hammerstein model”, Sadhana, 41(6):
597-605, (2016).
- [11] Gomez, J. C., Baeyens, E., “Identification of block-oriented nonlinear systems using orthonormal
Bases”, Journal of Process Control, 14(6): 685-697, (2004).
- [12] Reddy, R., Saha, P., “Modeling and control of nonlinear resonating processes: Part-I system
Identification using orthogonal basis function”, International Journal of Dynamics and Control,
5(4): 1222-1236, (2017).
- [13] Tang, Y., Li, Z., Guan, X., “Identification of nonlinear system using extreme learning machine
Based Hammerstein model”, Communications in Nonlinear Science and Numerical Simulation,
19(9): 3171-3183, (2014).
- [14] Mao, Y., Ding, F., “A novel parameter separation based identification algorithm for Hammerstein
Systems”, Applied Mathematics Letters, 60: 21-27, (2016).
- [15] Zhang, S., Wang, D., Liu, F., “Separate block-based parameter estimation method for Hammerstein
Systems”, Royal Society open science, 5(6): 172-194, (2018).
- [16] Yoon, Y., Brahma, A., “Nonlinear System Identification of Variable Oil Pump for Model-Based
Controls and Diagnostics”, SAE Technical Paper, 2021-01-0392, (2021).
- [17] Nejati, A., Safarinejadian, B., “Novel identification algorithms for Hammerstein systems in ill-
conditioned situations”, Systems Science & Control Engineering, 9(1): 52-60, (2021).
- [18] Mzyk, G., Hasiewicz, Z., Mielcarek, P., “Kernel Identification of Non-Linear Systems with General
Structure”, Algorithms 13(328): 1-6, (2020).
- [19] Ma, J., Ding, F., Xiong, W., Yang, E., “Combined state and parameter estimation for:
Hammerstein systems with time delay using the kalian filtering”, International Journal of Adaptive
Control and Signal Processing, 31(8): 1139-1151, (2017).
- [20] Rayouf, Z., Ghorbel, C., Braiek, N.B., “Identification and nonlinear PID control of Hammerstein
Model using polynomial structures”, International Journal of Advanced Computer Science and
Applications, 8(4): 488-493, (2017).
- [21] Schmidt, C.A., Biagiola, S.I., Cousseau, J.E., Figueroa, J.L., “Volterra-type models for non-linear
systems identification”, Applied Mathematical Modelling, 38(9): 2414- 2421, (2014).
- [22] Razavi, R., Sabaghmoghadam, A., Bemani, A., Baghban, A., Chau, K.W., Salwana, “Oxide-based
Nanofluids”, Engineering Applications of Computational Fluid Mechanics, 13(1): 560-578, (2019).
- [23] Goethals, I., Pelckmans, K., Suykens, J. A. K., De Moor, B., “Subspace identification of
Hammerstein systems using least squares support vector machines”, IEEE Transactions on
Automatic Control, 50(10): 1509-1519, (2005).
- [24] Suykens, J.A.K., Vandewalle, J., “Least squares support vector machine classifiers”, Neural
Processing Letters, 9(3): 293-300, (1999).
- [25] Naregalkar, A., Subbulekshmi, D., “A novel LSSVM-L Hammerstein model structure for system
Identification and nonlinear model predictive control of CSTR servo and regulatory control”,
Chemical Product and Process Modeling, 000010151520210020, (2021).
- [26] Suykens, J.A.K., “Support vector machines and kernel-based learning for dynamical systems
Modeling”, IFAC Proceedings, 42(10): 1029-1037, (2009).
- [27] Henson, M. A., Seborg, D. E., “Adaptive nonlinear control of a pH neutralization process”, IEEE
Transactions on Control Systems Technology, 2(3): 16-182, (1994).
- [28] Bartys, M., Hryniewicki, B., “The Trade-off between the controller effort and control quality on
example of An Electro-Pneumatic final control element”, International Journal of Dynamics and
Control, 8(23): 1-21, (2019).
- [29] Skogestad, S., “Simple analytic rules for model reduction and PID controller tuning”, Journal of
Process Control, 13: 291–309, (2003).
- [30] Zisis, K., Bechlioulis, C. P., Rovithakis, G. A., “Control Enabling Adaptive Nonlinear System
Identification”, IEEE Transactions on Automatic Control, (2021).
Least Square Support Vector Machines Laguerre Hammerstein Model Identification and Non-linear Model Predictive Controller Design for pH Neutralization Process
Year 2023,
Volume: 36 Issue: 1, 80 - 94, 01.03.2023
Akshaykumar Naregalkar
,
Subbulekshmi D
Abstract
The ability to describe the nonlinear process dynamics is an essential feature of the Hammerstein model that paved more research and application studies in system identification and control. Using the Hammerstein model, this study shows an alternative approach to identify and control the highly nonlinear pH neutralization process. This Hammerstein model called Laguerre Least Square Support Vector Machines (LLSSVM) models the static nonlinearity with LSSVM and the linear part with Laguerre filter. The identified LLSSVM Hammerstein model performance evaluation with Mean Squared Error (MSE) and Variance Accounted For (VAF) is better than the Linear Laguerre model. We apply the identified LLSSVM Hammerstein model to implement a Nonlinear Model Predictive Controller (NMPC) to control the pH neutralization process. Then evaluated NMPC performance in terms of Integral Squared Error (ISE), Integral Absolute Error (IAE), and Total Variation (TV) and Control Effort (CE) parameters to verify its effectiveness in set-point tracking and disturbance rejection problems. The comparison of the NMPC with the Linear Laguerre Model-based Predictive Controller (LMPC) shows better performance of the NMPC than the LMPC. Results show that the LLSSVM Hammerstein model replicates the pH neutralization process well than the Linear Laguerre model. Also, the identified LLSSVM Hammerstein model provides an efficient NMPC than the LMPC for the pH neutralization process.
References
- [1] Folgheraiter, M., “A combined b-spline neural network and ARX model for online identification of non-linear dynamic actuation systems”, Neurocomputing, 175: 433-442, (2016).
- [2] Schoukens, J., Ljung, L., “Nonlinear system identification: A user-oriented road map”, IEEE Control Systems Magazine, 39(6): 28-99, (2019).
- [3] Quachio, R., Garcia, C., “MPC relevant identification method for Hammerstein and wiener models”, Journal of Process Control, 80: 78-88, (2019).
- [4] Lawrynczuk, M., Soffker, D., “Wiener structures for modeling and nonlinear predictive control of proton exchange membrane fuel cell”, Nonlinear Dynamics, 95(2): 1639-1660, (2019).
- [5] Aggoune, L., Chetouani, Y., “Modeling of a distillation column based on NARMAX and Hammerstein models”, International Journal of Modeling, Simulation, and Scientific Computing, 08(03): 1-14, (2017).
- [6] Huang, L., Hu, Y., Zhao, Y., Li, Y., “Modeling and Control of IPMC actuators based on LSSVM-NARX paradigm”, Mathematics, 7(8): 741, (2019).
- [7] Porkuian, O., Morkun, V., Morkun, N., Serdyuk, O., “Predictive control of the iron ore beneficiation process based on the Hammerstein hybrid model”, Acta Mechanica et Automatica, 13(4): 262- 270, (2019).
- [8] Brouri, A., Rabyi, T., Ouannou, A., “Identification of nonlinear systems having hard function”, Advances in Systems Science and Applications, 19(1): 61-74, (2019).
- [9] Schoukens, M., Tiels, K., “Identification of block-oriented nonlinear systems starting from linear approximations: A survey”, Automatica, 85: 272- 292, (2017).
- [10] Ozer, S., Zorlu, H., “System identification application using Hammerstein model”, Sadhana, 41(6):
597-605, (2016).
- [11] Gomez, J. C., Baeyens, E., “Identification of block-oriented nonlinear systems using orthonormal
Bases”, Journal of Process Control, 14(6): 685-697, (2004).
- [12] Reddy, R., Saha, P., “Modeling and control of nonlinear resonating processes: Part-I system
Identification using orthogonal basis function”, International Journal of Dynamics and Control,
5(4): 1222-1236, (2017).
- [13] Tang, Y., Li, Z., Guan, X., “Identification of nonlinear system using extreme learning machine
Based Hammerstein model”, Communications in Nonlinear Science and Numerical Simulation,
19(9): 3171-3183, (2014).
- [14] Mao, Y., Ding, F., “A novel parameter separation based identification algorithm for Hammerstein
Systems”, Applied Mathematics Letters, 60: 21-27, (2016).
- [15] Zhang, S., Wang, D., Liu, F., “Separate block-based parameter estimation method for Hammerstein
Systems”, Royal Society open science, 5(6): 172-194, (2018).
- [16] Yoon, Y., Brahma, A., “Nonlinear System Identification of Variable Oil Pump for Model-Based
Controls and Diagnostics”, SAE Technical Paper, 2021-01-0392, (2021).
- [17] Nejati, A., Safarinejadian, B., “Novel identification algorithms for Hammerstein systems in ill-
conditioned situations”, Systems Science & Control Engineering, 9(1): 52-60, (2021).
- [18] Mzyk, G., Hasiewicz, Z., Mielcarek, P., “Kernel Identification of Non-Linear Systems with General
Structure”, Algorithms 13(328): 1-6, (2020).
- [19] Ma, J., Ding, F., Xiong, W., Yang, E., “Combined state and parameter estimation for:
Hammerstein systems with time delay using the kalian filtering”, International Journal of Adaptive
Control and Signal Processing, 31(8): 1139-1151, (2017).
- [20] Rayouf, Z., Ghorbel, C., Braiek, N.B., “Identification and nonlinear PID control of Hammerstein
Model using polynomial structures”, International Journal of Advanced Computer Science and
Applications, 8(4): 488-493, (2017).
- [21] Schmidt, C.A., Biagiola, S.I., Cousseau, J.E., Figueroa, J.L., “Volterra-type models for non-linear
systems identification”, Applied Mathematical Modelling, 38(9): 2414- 2421, (2014).
- [22] Razavi, R., Sabaghmoghadam, A., Bemani, A., Baghban, A., Chau, K.W., Salwana, “Oxide-based
Nanofluids”, Engineering Applications of Computational Fluid Mechanics, 13(1): 560-578, (2019).
- [23] Goethals, I., Pelckmans, K., Suykens, J. A. K., De Moor, B., “Subspace identification of
Hammerstein systems using least squares support vector machines”, IEEE Transactions on
Automatic Control, 50(10): 1509-1519, (2005).
- [24] Suykens, J.A.K., Vandewalle, J., “Least squares support vector machine classifiers”, Neural
Processing Letters, 9(3): 293-300, (1999).
- [25] Naregalkar, A., Subbulekshmi, D., “A novel LSSVM-L Hammerstein model structure for system
Identification and nonlinear model predictive control of CSTR servo and regulatory control”,
Chemical Product and Process Modeling, 000010151520210020, (2021).
- [26] Suykens, J.A.K., “Support vector machines and kernel-based learning for dynamical systems
Modeling”, IFAC Proceedings, 42(10): 1029-1037, (2009).
- [27] Henson, M. A., Seborg, D. E., “Adaptive nonlinear control of a pH neutralization process”, IEEE
Transactions on Control Systems Technology, 2(3): 16-182, (1994).
- [28] Bartys, M., Hryniewicki, B., “The Trade-off between the controller effort and control quality on
example of An Electro-Pneumatic final control element”, International Journal of Dynamics and
Control, 8(23): 1-21, (2019).
- [29] Skogestad, S., “Simple analytic rules for model reduction and PID controller tuning”, Journal of
Process Control, 13: 291–309, (2003).
- [30] Zisis, K., Bechlioulis, C. P., Rovithakis, G. A., “Control Enabling Adaptive Nonlinear System
Identification”, IEEE Transactions on Automatic Control, (2021).