BibTex RIS Cite

On the Dynamics of the Recursive Sequence

Year 2010, Volume: 23 Issue: 1, 53 - 59, 08.03.2010

Abstract

Our aim in this paper is to investigate the local stability of the positive solutions of the difference equation

yn+1= [(α-yn)/ (βyn-1)] − [(γ-yn-1)/ βyn ] ,  n=0,1,2,...,

where the initial conditions  y−1 ,  y0 are arbitrary positive real numbers such that  yn ≠ 0 for n= −1,0,1,...,  , α, β, γ ε (0,∞)  and α > γ. Furthermore we investigate the periodic nature of the mentioned difference equation.

Key Words: Difference Equations, Local Stability, Period-two Solutions.

 

References

  • Amleh, A.M., Grove, E.A., Ladas, G., “On the Recursive Sequencex n 1 + = α + n 1”, Journal x − xn of Mathematical Analysis and Applications, 233: 798 (1999).
  • El-Owaidy, H.M., Ahmed, A.M., Mousa, M.S., “On asymptotic behavior of the difference equationx n 1 + = α + n x and Computations, 147: 163-167 (2004).
  • DeVault, R., Kosmala, W., Ladas, G., Schultz, S.W., “Global Behavior ofy n 1 + = n n k qy+ y − Nonlinear Analysis, 47: 4743-4751 (2001).
  • He, W.S., Li, W.T., “Attractivity in a Nonlinear Delay Mathematics, E-Notes, 4: 48-53 (2004). Applied
  • Yan, X.X., Li, W.T., “Dynamic behavior of a recursive sequence”, Applied Mathematics and Computation, 157: 713-727 (2004).
  • Gibbons, C.H., Kulenović, M.R.S., Ladas, G., Voulov, H.D., “On the Trichotomy Character of xn 1= α + β ( xn+ γ xn 1) /(A+ x )”, Journal of −) /(A+ n + Difference Equations and Applications, 8 (1): 75- (2002).
Year 2010, Volume: 23 Issue: 1, 53 - 59, 08.03.2010

Abstract

References

  • Amleh, A.M., Grove, E.A., Ladas, G., “On the Recursive Sequencex n 1 + = α + n 1”, Journal x − xn of Mathematical Analysis and Applications, 233: 798 (1999).
  • El-Owaidy, H.M., Ahmed, A.M., Mousa, M.S., “On asymptotic behavior of the difference equationx n 1 + = α + n x and Computations, 147: 163-167 (2004).
  • DeVault, R., Kosmala, W., Ladas, G., Schultz, S.W., “Global Behavior ofy n 1 + = n n k qy+ y − Nonlinear Analysis, 47: 4743-4751 (2001).
  • He, W.S., Li, W.T., “Attractivity in a Nonlinear Delay Mathematics, E-Notes, 4: 48-53 (2004). Applied
  • Yan, X.X., Li, W.T., “Dynamic behavior of a recursive sequence”, Applied Mathematics and Computation, 157: 713-727 (2004).
  • Gibbons, C.H., Kulenović, M.R.S., Ladas, G., Voulov, H.D., “On the Trichotomy Character of xn 1= α + β ( xn+ γ xn 1) /(A+ x )”, Journal of −) /(A+ n + Difference Equations and Applications, 8 (1): 75- (2002).
There are 6 citations in total.

Details

Primary Language English
Journal Section Mathematics
Authors

Saime Zengin This is me

İlhan Öztürk

Fatma Bozkurt This is me

Publication Date March 8, 2010
Published in Issue Year 2010 Volume: 23 Issue: 1

Cite

APA Zengin, S., Öztürk, İ., & Bozkurt, F. (2010). On the Dynamics of the Recursive Sequence. Gazi University Journal of Science, 23(1), 53-59.
AMA Zengin S, Öztürk İ, Bozkurt F. On the Dynamics of the Recursive Sequence. Gazi University Journal of Science. March 2010;23(1):53-59.
Chicago Zengin, Saime, İlhan Öztürk, and Fatma Bozkurt. “On the Dynamics of the Recursive Sequence”. Gazi University Journal of Science 23, no. 1 (March 2010): 53-59.
EndNote Zengin S, Öztürk İ, Bozkurt F (March 1, 2010) On the Dynamics of the Recursive Sequence. Gazi University Journal of Science 23 1 53–59.
IEEE S. Zengin, İ. Öztürk, and F. Bozkurt, “On the Dynamics of the Recursive Sequence”, Gazi University Journal of Science, vol. 23, no. 1, pp. 53–59, 2010.
ISNAD Zengin, Saime et al. “On the Dynamics of the Recursive Sequence”. Gazi University Journal of Science 23/1 (March 2010), 53-59.
JAMA Zengin S, Öztürk İ, Bozkurt F. On the Dynamics of the Recursive Sequence. Gazi University Journal of Science. 2010;23:53–59.
MLA Zengin, Saime et al. “On the Dynamics of the Recursive Sequence”. Gazi University Journal of Science, vol. 23, no. 1, 2010, pp. 53-59.
Vancouver Zengin S, Öztürk İ, Bozkurt F. On the Dynamics of the Recursive Sequence. Gazi University Journal of Science. 2010;23(1):53-9.