G. M. Mittag-Leffler, Sur la nouvelle function C. R. Acad. Sci. Paris, 137 (1903). ,
A. Wiman, Uber den fundamentalsatz in der theorie der funktionen ( ), Acta Math., 29 (1905), 191-201.
J. A. Fridy, On statistical convergence, Analysis. 5 (1985), 301-313.
H. Fast, Sur la convergence statisque, Colloq. Math., 2 (1951), 241-244.
A. R. Freedmanand J. J. Sember, Densities and summability, Pac. J. Math., 95 (1981), 293-305.
E. Kolk, Matrix summability of statistically convergent sequences, Analysis, 13 (1-2) (1993), 77
H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Am. Math. Soc., 347 (5) (1995), 1811-1819.
M. A. Özarslan and H. Aktuğlu, approximation of generalized Szász-Mirakjan-Beta operators, Appl. Math. Lett., 24 (11) (2011), 1785- 17 -statistical
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptique, Colloq. Math., 2 (1951), 73
O. Duman and C. Orhan, Rates of -statistical convergence of positive linear operators, Appl. Math. Lett. 18 (12) (2005), 1339-1344.
O. Duman and C. Orhan, Rates of -statistical convergence of operators in the space of locally integrable functions, Appl. Math. Lett. 21 (5) (2008), 431-4 M. A. Özarslan,
In this paper, we study Mittag-Leffler operators. We establish moments of these operators and estimate convergence results with the help of classical modulus of continuity. Also we give A-statistical convergence property of the operators D_{n}^{(β)}.
G. M. Mittag-Leffler, Sur la nouvelle function C. R. Acad. Sci. Paris, 137 (1903). ,
A. Wiman, Uber den fundamentalsatz in der theorie der funktionen ( ), Acta Math., 29 (1905), 191-201.
J. A. Fridy, On statistical convergence, Analysis. 5 (1985), 301-313.
H. Fast, Sur la convergence statisque, Colloq. Math., 2 (1951), 241-244.
A. R. Freedmanand J. J. Sember, Densities and summability, Pac. J. Math., 95 (1981), 293-305.
E. Kolk, Matrix summability of statistically convergent sequences, Analysis, 13 (1-2) (1993), 77
H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Am. Math. Soc., 347 (5) (1995), 1811-1819.
M. A. Özarslan and H. Aktuğlu, approximation of generalized Szász-Mirakjan-Beta operators, Appl. Math. Lett., 24 (11) (2011), 1785- 17 -statistical
H. Steinhaus, Sur la convergence ordinaire et la convergence asymptique, Colloq. Math., 2 (1951), 73
O. Duman and C. Orhan, Rates of -statistical convergence of positive linear operators, Appl. Math. Lett. 18 (12) (2005), 1339-1344.
O. Duman and C. Orhan, Rates of -statistical convergence of operators in the space of locally integrable functions, Appl. Math. Lett. 21 (5) (2008), 431-4 M. A. Özarslan,
Icoz, G., & Cekim, B. (2015). Durrmeyer-Type Generalization of Mittag-Leffler Operators. Gazi University Journal of Science, 28(2), 259-263.
AMA
Icoz G, Cekim B. Durrmeyer-Type Generalization of Mittag-Leffler Operators. Gazi University Journal of Science. June 2015;28(2):259-263.
Chicago
Icoz, Gurhan, and Bayram Cekim. “Durrmeyer-Type Generalization of Mittag-Leffler Operators”. Gazi University Journal of Science 28, no. 2 (June 2015): 259-63.
EndNote
Icoz G, Cekim B (June 1, 2015) Durrmeyer-Type Generalization of Mittag-Leffler Operators. Gazi University Journal of Science 28 2 259–263.
IEEE
G. Icoz and B. Cekim, “Durrmeyer-Type Generalization of Mittag-Leffler Operators”, Gazi University Journal of Science, vol. 28, no. 2, pp. 259–263, 2015.
ISNAD
Icoz, Gurhan - Cekim, Bayram. “Durrmeyer-Type Generalization of Mittag-Leffler Operators”. Gazi University Journal of Science 28/2 (June 2015), 259-263.
JAMA
Icoz G, Cekim B. Durrmeyer-Type Generalization of Mittag-Leffler Operators. Gazi University Journal of Science. 2015;28:259–263.
MLA
Icoz, Gurhan and Bayram Cekim. “Durrmeyer-Type Generalization of Mittag-Leffler Operators”. Gazi University Journal of Science, vol. 28, no. 2, 2015, pp. 259-63.
Vancouver
Icoz G, Cekim B. Durrmeyer-Type Generalization of Mittag-Leffler Operators. Gazi University Journal of Science. 2015;28(2):259-63.