Investigation of the Microstructure and Mechanical Properties of an Al/SiC/ZrO2 Hybrid Composite by Spark Plasma Sintering Technique
Year 2024,
Volume: 37 Issue: 3, 1461 - 1478, 01.09.2024
Kalaimani M
,
Shaafi Tajudeen
Abstract
Nowadays, aluminum hybrid composite material usage is increasing as a result of a wide range of industrial applications. In the current study, the microstructure and mechanical properties of the Al/SiC/ZrO2 hybrid composite are analyzed using the spark plasma sintering process. In this paper, the weight percentages of primary and secondary reinforcement of SiC and ZrO2 were taken as 5% and 5%, 10% and 15% respectively, for fabrication purposes. The aluminum composite material reinforced with 5% w/w of SiC particles was compared with the aluminum hybrid composite material reinforced with SiC and ZrO2 nanoparticles. The test results show a uniform distribution of the reinforcements due to the fine densification of all the samples. The yield strength, elongation, hardness and compressive strength were decreased by 38%, 1.1% and increased by 32%, 12% respectively in the S4 hybrid composite material when reinforcement particles are added to the composite material, resulting in it being distinctive from the S1 sample.
Ultimately, the presence of ZrO2 reinforcements improves the microstructure, microhardness, yield strength, elongation, and compression strength of the aluminum hybrid composite.
Supporting Institution
Saveetha School of Engineering, Saveetha Instittue of Medical and Technical Sciences, Chennai
Thanks
we are very much thankful to our institution for completing the this research article
References
- [1] Singla, M., Dwivedi, D. D., Singh, L., Chawla, V., “Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite”, Journal of Minerals and Materials Characterization and Engineering, 8(06): 455, (2009).
- [2] Chatterjee, A., Sen, S., Paul, S., Ghosh, K., Ghosh, M., Sutradhar, G., “Fabrication and Characterization of Silicon Carbide and Graphite Reinforced Aluminium Matrix Composite”, Journal of The Institution of Engineers (India): Series D, 104(2): 587-601, (2023).
- [3] Chak, V., Chattopadhyay, H., Dora, T. L., “A Review on Fabrication Methods, Reinforcements and Mechanical Properties of Aluminum Matrix Composites”, Journal of Manufacturing Processes, 56: 1059-74, (2020).
- [4] Mondal, S., “Aluminum or its alloy matrix hybrid nanocomposites”, Metals and Materials International, 27: 2188-2204, (2021).
- [5] Ramnath, B. V., Elanchezhian, C., Annamalai, R. M., Aravind, S., Atreya, T. S. A., Vignesh, V., Subramanian, C., “Aluminium Metal Matrix Composites–A Review”, Reviews on Advanced Materials Science, 38(5): 55-60, (2014).
- [6] Bodunrin, M. O., Alaneme, K. K., Chown, L. H., “Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics”, Journal of materials research and technology, 4(4): 434-445, (2015).
- [7] Lakshmikanthan, A., Angadi, S., Malik, V., Saxena, K. K., Prakash, C., Dixit, S., Mohammed, K. A., “Mechanical and tribological properties of aluminum-based metal-matrix composites”, Materials, 15(17): 6111, (2022).
- [8] Mavhungu, S. T., Akinlabi, E. T., Onitiri, M. A., Varachia, F. M., “Aluminum Matrix Composites for Industrial Use: Advances and Trends”, Procedia Manufacturing, 7: 178-182, (2017).
- [9] Kumar, A., Arafath, M. Y., Gupta, P., Kumar, D., Hussain, C. M., Jamwal, A., “Microstructural and mechano-tribological behavior of Al reinforced SiC-TiC hybrid metal matrix composite”, Materials Today: Proceedings, 21: 1417-1420, (2020).
- [10] Muley, A. V., Aravindan, S., Singh, I. P., “Nano and Hybrid Aluminum Based Metal Matrix Composites: An Overview”, Manufacturing Review, 2:15, (2015).
- [11] Chandel, R., Sharma, N., Bansal, S. A., “A Review on Recent Developments of Aluminum-Based Hybrid Composites for Automotive Applications”, Emergent Materials, 4(5): 1243-1257, (2021).
- [12] Inegbenebor, A. O., Bolu, C. A., Babalola, P. O., Inegbenebor, A. I., Fayomi, O. S. I., “Aluminum silicon carbide particulate metal matrix composite development via stir casting processing”, Silicon, 10: 343-347, (2018).
- [13] Zhang, L., Wang, Z., Li, Q., Wu, J., Shi, G., Qi, F., Zhou, X., “Microtopography and Mechanical Properties of Vacuum Hot Pressing Al/B4C Composites”, Ceramics International, 44(3): 3048-3055, (2018).
- [14] Veeravalli, R. R., Nallu, R., Mohiuddin, S. M. M., “Mechanical and Tribological Properties of AA7075–TiC Metal Matrix Composites Under Heat Treated (T6) and Cast Conditions”, Journal of Materials research and Technology, 5(4): 377-383, (2016).
- [15] Sharma, P., Dwivedi, S. P., Sharma, R., Dabra, V., Sharma, N., “Microstructural and mechanical behavior of aluminium alloy reinforced with TiC”, Materials Today: Proceedings, 25: 934-937. (2020).
- [16] Reddy, M. P., Ubaid, F., Shakoor, R. A., Parande, G., Manakari, V., Mohamed, A. M. A., Gupta, M., “Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process”, Materials Science and Engineering: A, 696: 60-69, (2017).
- [17] Kutzhanov, M. K., Matveev, A. T., Narzulloev, U. U., Kuptsov, K. A., Sheveyko, A. N., Shtansky, D. V., “Microwave plasma-produced Al/Al2O3 microparticles as precursors for high-temperature high-strength composites”, Journal of Alloys and Compounds, 972: 172879, (2024).
- [18] Aktaş, S., Anıl Diler, E., “Effect of ZrO2 Nanoparticles and Mechanical Milling on Microstructure and Mechanical Properties of Al–ZrO2 Nanocomposites”, Journal of Engineering Materials and Technology, 143(4): 041002, (2021).
- [19] Abdo, H. S., Seikh, A. H., “Correlation of Microstructure with Compression Behaviour of Al5083/ZrC Nanocomposites Fabricated Through Spark Plasma Sintering”, Transactions of the Indian Institute of Metals, 75(9): 2273-2280, (2022).
- [20] Kumar, C. A. V., Rajadurai, J. S., “Influence of Rutile (TiO2) Content on Wear and Microhardness Characteristics of Aluminium-Based Hybrid Composites Synthesized by Powder Metallurgy”, Transactions of Nonferrous Metals Society of China, 26(1): 63-73, (2016).
- [21] Chen, Y., Chung, D. D. L., “In Situ Al-TiB Composite Obtained by Stir Casting”, Journal of Materials Science, 31: 311-315, (1996).
- [22] Meena, K. L., Alakesh Manna., S. S. Banwait., “An analysis of mechanical properties of the developed Al/SiC-MMC’s”, American Journal of Mechanical Engineering, 1(1): 14-19, (2013).
- [23] Karvanis, K., Fasnakis, D., Maropoulos, A., Papanikolaou, S., “Production and Mechanical Properties of Al-SiC Metal Matrix Composites”, In IOP Conference Series: Materials Science and Engineering, 161, 012070, (2016).
- [24] Surya, M. S., Nilesh, T. V., “Synthesis and Mechanical Behaviour of (Al/SiC) Functionally Graded Material using Powder Metallurgy Technique”, Materials Today: Proceedings, 18: 3501-3506, (2019).
- [25] Raghuvaran, P., Baskaran, J., Aagash, C., Ganesh, A., Krishna, S. G., “Evaluation of Mechanical Properties of Al7075-SiC Composites Fabricated Through Stir Casting Technique”, Materials Today: Proceedings, 45: 1914-1918, (2021).
- [26] Rajasekaran, A., Pugazhenthi, R., “Study of Mechanical Properties of Stir Casted Al7075/SiCp Composites After Thermomechanical Treatment”, Materials Today: Proceedings, 22: 766-771, (2020).
- [27] Şimşek, İ., Şimşek, D., Özyürek, D., “The Effect of Different Sliding Speeds on Wear Behavior of ZrO2 Reinforcement Aluminium Matrix Composite Materials”, International Advanced Researches and Engineering Journal, 4(1): 1-7, (2020).
- [28] Abdizadeh, H., Baghchesara, M. A., “Investigation on Mechanical Properties and Fracture Behavior of A356 Aluminum Alloy Based ZrO2 Particle Reinforced Metal-Matrix Composites”, Ceramics International, 39(2): 2045-2050, (2013).
- [29] Dhandapani, C., “Characteristics on Heat Treatment of AA6063 Aluminum Extrusion Based ZrO2 Molecule Reinforced MMC”, International Journal of Advanced Scientific Research and Management (IJASRM) 3(10): 108-113, (2018).
- [30] Kumar, N., Irfan, G., “A Review on Tribological Behaviour and Mechanical Properties of Al/ZrO2 Metal Matrix Nano Composites”, Materials Today: Proceedings, 38: 2649-2657, (2021).
- [31] James, S. J., Ganesan, M., Santhamoorthy, P., Kuppan, P., “Development of Hybrid Aluminium Metal Matrix Composite and Study of Property”, Materials Today: Proceedings, 5(5): 13048-13054, (2018).
- [32] Arif, S., Alam, M. T., Ansari, A. H., Siddiqui, M. A., Mohsin, M., “Study of Mechanical and Tribological Behaviour of Al/SiC/ZrO2 Hybrid Composites Fabricated Through Powder Metallurgy Technique”, Materials Research Express, 4(7): 076511, (2017).
- [33] Khan, A., Abdelrazeq, M. W., Mattli, M. R., Yusuf, M. M., Alashraf, A., Matli, P. R., Shakoor, R. A., “Structural and Mechanical Properties of Al-SiC-ZrO2 Nanocomposites Fabricated by Microwave Sintering Technique”, Crystals, 10(10): 904, (2020).
- [34] Hu, Z. Y., Zhang, Z. H., Cheng, X. W., Wang, F. C., Zhang, Y. F., Li, S. L., “A Review of Multi-Physical Fields Induced Phenomena and Effects in Spark Plasma Sintering: Fundamentals and Applications”, Materials & Design, 191: 108662, (2020).
- [35] Juliyana, S. J., Prakash, J. U., Salunkhe, S., Hussein, H. M. A., Gawade, S. R., “Mechanical Characterization and Microstructural Analysis of Hybrid Composites (LM5/ZrO2/Gr)”, Crystals, 12(9): 1207, (2022).
- [36] Şenel, M. C., Gürbüz, M., “Investigation on mechanical properties and microstructure of B4C/graphene binary particles reinforced aluminum hybrid composites”, Metals and Materials International, 27: 2438-2449, (2021).
- [37] Abdellah, M. Y., Fadhl, B. M., Abu El-Ainin, H. M., Hassan, M. K., Backar, A. H., Mohamed, A. F., “Experimental Evaluation of Mechanical and Tribological Properties of Segregated Al-Mg-Si Alloy Filled with Alumina and Silicon Carbide through Different Types of Casting Molds”, Metals MDPI, 13(2): 316, (2023).
- [38] Uzun, A., Asikuzun, E., Gokmen, U., Cinici, H., “Vickers Microhardness Studies on B4C Reinforced/Unreinforced Foamable Aluminium Composites”, Transactions of the Indian Institute of Metals, 71: 327-337, (2018).
- [39] Asmare, A., Al-Sabur, R., Messele, E., “Experimental investigation of friction stir welding on 6061-T6 aluminum alloy using taguchi-based gra”, Metals MDPI, 10(11): 1480, (2020).
- [40] Tirfe, D., Woldeyohannes, A., Hunde, B., Batu, T., Geleta, E., “Investigating Mechanical and Physical Properties of Stir Casted Al6061/Nano Al2O3/Quartz Hybrid Composite”, Advances in Mechanical and Materials Engineering, 40(1): 189-201, (2023).
- [41] Sasikumar, K., Bharathikannan, R., Raja, M., “Effect of Annealing Temperature on Structural and Electrical Properties of Al/ZrO2/p-Si MIS Schottky Diodes”, Silicon, 11: 137-143, (2019).
- [42] Vijayabhaskar, S., Rajmohan, T., Vignesh, T. K., Venkatakrishnan, H., “Effect of nano SiC particles on properties and characterization of Magnesium matrix nano composites”, Materials Today: Proceedings, 16: 853-858, (2019).
- [43] Neamati, J., “SiC and ZrO2 Weigh Percentage Effects on Microstructure of Al Based Matrix Composite Fabricated by Spark Plasma Sintering Method”, International Journal of Advanced Engineering, Management and Science, 2(6): 239496. (2016).
- [44] Yadav, M., Kumaraswamidhas, L. A., Singh, S. K., “Investigation of solid particle erosion behavior of Al-Al2O3 and Al-ZrO2 metal matrix composites fabricated through powder metallurgy technique”, Tribology International, 172: 107636, (2022).
- [45] Burak, G. Ü. L., Gezici, L. U., Ayvaz, M., Çavdar, U., “The comparative study of conventional and ultra-high frequency induction sintering behavior of pure aluminum”, International Advanced Researches and Engineering Journal, 4(3): 173-179, (2020).
- [46] Anjaneyulu, B., Rao, G. N., Rao, K. P., “Development, mechanical and tribological characterization of Al2O3 reinforced ZrO2 ceramic composites”, Materials Today: Proceedings, 37: 584-591, (2021).
- [47] Tosun, G., Kurt, M., “The porosity, microstructure, and hardness of Al-Mg composites reinforced with micro particle SiC/Al2O3 produced using powder metallurgy”, Composites Part B: Engineering, 174: 106965, (2019).
- [48] Rajasekar, M., Faizal, U. M., Sudhagar, S., Vijayakumar, P., “Influence of heat treatment on tribological behavior of Al/ZrO2/fly ash hybrid composite”, Materials Today: Proceedings, 45: 774-779, (2021).
- [49] Al-Alimi, S. A. M., Bin Lajis, M. A., Shamsudin, S. B., Boon Long, C., “Influence of Zirconia Percent on Physical Properties of Zirconia-Aluminum Chip Matrix (Al6061) Nanocomposites”, Journal of Nanostructures, 12(1): 194-203, (2022).
- [50] Şenel, M. C., Üstün, M., “Dry sliding wear and friction behavior of graphene/ZrO2 binary nanoparticles reinforced aluminum hybrid composites”, Arabian Journal for Science and Engineering, 47(7): 9253-9269, (2022).
Year 2024,
Volume: 37 Issue: 3, 1461 - 1478, 01.09.2024
Kalaimani M
,
Shaafi Tajudeen
References
- [1] Singla, M., Dwivedi, D. D., Singh, L., Chawla, V., “Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite”, Journal of Minerals and Materials Characterization and Engineering, 8(06): 455, (2009).
- [2] Chatterjee, A., Sen, S., Paul, S., Ghosh, K., Ghosh, M., Sutradhar, G., “Fabrication and Characterization of Silicon Carbide and Graphite Reinforced Aluminium Matrix Composite”, Journal of The Institution of Engineers (India): Series D, 104(2): 587-601, (2023).
- [3] Chak, V., Chattopadhyay, H., Dora, T. L., “A Review on Fabrication Methods, Reinforcements and Mechanical Properties of Aluminum Matrix Composites”, Journal of Manufacturing Processes, 56: 1059-74, (2020).
- [4] Mondal, S., “Aluminum or its alloy matrix hybrid nanocomposites”, Metals and Materials International, 27: 2188-2204, (2021).
- [5] Ramnath, B. V., Elanchezhian, C., Annamalai, R. M., Aravind, S., Atreya, T. S. A., Vignesh, V., Subramanian, C., “Aluminium Metal Matrix Composites–A Review”, Reviews on Advanced Materials Science, 38(5): 55-60, (2014).
- [6] Bodunrin, M. O., Alaneme, K. K., Chown, L. H., “Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics”, Journal of materials research and technology, 4(4): 434-445, (2015).
- [7] Lakshmikanthan, A., Angadi, S., Malik, V., Saxena, K. K., Prakash, C., Dixit, S., Mohammed, K. A., “Mechanical and tribological properties of aluminum-based metal-matrix composites”, Materials, 15(17): 6111, (2022).
- [8] Mavhungu, S. T., Akinlabi, E. T., Onitiri, M. A., Varachia, F. M., “Aluminum Matrix Composites for Industrial Use: Advances and Trends”, Procedia Manufacturing, 7: 178-182, (2017).
- [9] Kumar, A., Arafath, M. Y., Gupta, P., Kumar, D., Hussain, C. M., Jamwal, A., “Microstructural and mechano-tribological behavior of Al reinforced SiC-TiC hybrid metal matrix composite”, Materials Today: Proceedings, 21: 1417-1420, (2020).
- [10] Muley, A. V., Aravindan, S., Singh, I. P., “Nano and Hybrid Aluminum Based Metal Matrix Composites: An Overview”, Manufacturing Review, 2:15, (2015).
- [11] Chandel, R., Sharma, N., Bansal, S. A., “A Review on Recent Developments of Aluminum-Based Hybrid Composites for Automotive Applications”, Emergent Materials, 4(5): 1243-1257, (2021).
- [12] Inegbenebor, A. O., Bolu, C. A., Babalola, P. O., Inegbenebor, A. I., Fayomi, O. S. I., “Aluminum silicon carbide particulate metal matrix composite development via stir casting processing”, Silicon, 10: 343-347, (2018).
- [13] Zhang, L., Wang, Z., Li, Q., Wu, J., Shi, G., Qi, F., Zhou, X., “Microtopography and Mechanical Properties of Vacuum Hot Pressing Al/B4C Composites”, Ceramics International, 44(3): 3048-3055, (2018).
- [14] Veeravalli, R. R., Nallu, R., Mohiuddin, S. M. M., “Mechanical and Tribological Properties of AA7075–TiC Metal Matrix Composites Under Heat Treated (T6) and Cast Conditions”, Journal of Materials research and Technology, 5(4): 377-383, (2016).
- [15] Sharma, P., Dwivedi, S. P., Sharma, R., Dabra, V., Sharma, N., “Microstructural and mechanical behavior of aluminium alloy reinforced with TiC”, Materials Today: Proceedings, 25: 934-937. (2020).
- [16] Reddy, M. P., Ubaid, F., Shakoor, R. A., Parande, G., Manakari, V., Mohamed, A. M. A., Gupta, M., “Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process”, Materials Science and Engineering: A, 696: 60-69, (2017).
- [17] Kutzhanov, M. K., Matveev, A. T., Narzulloev, U. U., Kuptsov, K. A., Sheveyko, A. N., Shtansky, D. V., “Microwave plasma-produced Al/Al2O3 microparticles as precursors for high-temperature high-strength composites”, Journal of Alloys and Compounds, 972: 172879, (2024).
- [18] Aktaş, S., Anıl Diler, E., “Effect of ZrO2 Nanoparticles and Mechanical Milling on Microstructure and Mechanical Properties of Al–ZrO2 Nanocomposites”, Journal of Engineering Materials and Technology, 143(4): 041002, (2021).
- [19] Abdo, H. S., Seikh, A. H., “Correlation of Microstructure with Compression Behaviour of Al5083/ZrC Nanocomposites Fabricated Through Spark Plasma Sintering”, Transactions of the Indian Institute of Metals, 75(9): 2273-2280, (2022).
- [20] Kumar, C. A. V., Rajadurai, J. S., “Influence of Rutile (TiO2) Content on Wear and Microhardness Characteristics of Aluminium-Based Hybrid Composites Synthesized by Powder Metallurgy”, Transactions of Nonferrous Metals Society of China, 26(1): 63-73, (2016).
- [21] Chen, Y., Chung, D. D. L., “In Situ Al-TiB Composite Obtained by Stir Casting”, Journal of Materials Science, 31: 311-315, (1996).
- [22] Meena, K. L., Alakesh Manna., S. S. Banwait., “An analysis of mechanical properties of the developed Al/SiC-MMC’s”, American Journal of Mechanical Engineering, 1(1): 14-19, (2013).
- [23] Karvanis, K., Fasnakis, D., Maropoulos, A., Papanikolaou, S., “Production and Mechanical Properties of Al-SiC Metal Matrix Composites”, In IOP Conference Series: Materials Science and Engineering, 161, 012070, (2016).
- [24] Surya, M. S., Nilesh, T. V., “Synthesis and Mechanical Behaviour of (Al/SiC) Functionally Graded Material using Powder Metallurgy Technique”, Materials Today: Proceedings, 18: 3501-3506, (2019).
- [25] Raghuvaran, P., Baskaran, J., Aagash, C., Ganesh, A., Krishna, S. G., “Evaluation of Mechanical Properties of Al7075-SiC Composites Fabricated Through Stir Casting Technique”, Materials Today: Proceedings, 45: 1914-1918, (2021).
- [26] Rajasekaran, A., Pugazhenthi, R., “Study of Mechanical Properties of Stir Casted Al7075/SiCp Composites After Thermomechanical Treatment”, Materials Today: Proceedings, 22: 766-771, (2020).
- [27] Şimşek, İ., Şimşek, D., Özyürek, D., “The Effect of Different Sliding Speeds on Wear Behavior of ZrO2 Reinforcement Aluminium Matrix Composite Materials”, International Advanced Researches and Engineering Journal, 4(1): 1-7, (2020).
- [28] Abdizadeh, H., Baghchesara, M. A., “Investigation on Mechanical Properties and Fracture Behavior of A356 Aluminum Alloy Based ZrO2 Particle Reinforced Metal-Matrix Composites”, Ceramics International, 39(2): 2045-2050, (2013).
- [29] Dhandapani, C., “Characteristics on Heat Treatment of AA6063 Aluminum Extrusion Based ZrO2 Molecule Reinforced MMC”, International Journal of Advanced Scientific Research and Management (IJASRM) 3(10): 108-113, (2018).
- [30] Kumar, N., Irfan, G., “A Review on Tribological Behaviour and Mechanical Properties of Al/ZrO2 Metal Matrix Nano Composites”, Materials Today: Proceedings, 38: 2649-2657, (2021).
- [31] James, S. J., Ganesan, M., Santhamoorthy, P., Kuppan, P., “Development of Hybrid Aluminium Metal Matrix Composite and Study of Property”, Materials Today: Proceedings, 5(5): 13048-13054, (2018).
- [32] Arif, S., Alam, M. T., Ansari, A. H., Siddiqui, M. A., Mohsin, M., “Study of Mechanical and Tribological Behaviour of Al/SiC/ZrO2 Hybrid Composites Fabricated Through Powder Metallurgy Technique”, Materials Research Express, 4(7): 076511, (2017).
- [33] Khan, A., Abdelrazeq, M. W., Mattli, M. R., Yusuf, M. M., Alashraf, A., Matli, P. R., Shakoor, R. A., “Structural and Mechanical Properties of Al-SiC-ZrO2 Nanocomposites Fabricated by Microwave Sintering Technique”, Crystals, 10(10): 904, (2020).
- [34] Hu, Z. Y., Zhang, Z. H., Cheng, X. W., Wang, F. C., Zhang, Y. F., Li, S. L., “A Review of Multi-Physical Fields Induced Phenomena and Effects in Spark Plasma Sintering: Fundamentals and Applications”, Materials & Design, 191: 108662, (2020).
- [35] Juliyana, S. J., Prakash, J. U., Salunkhe, S., Hussein, H. M. A., Gawade, S. R., “Mechanical Characterization and Microstructural Analysis of Hybrid Composites (LM5/ZrO2/Gr)”, Crystals, 12(9): 1207, (2022).
- [36] Şenel, M. C., Gürbüz, M., “Investigation on mechanical properties and microstructure of B4C/graphene binary particles reinforced aluminum hybrid composites”, Metals and Materials International, 27: 2438-2449, (2021).
- [37] Abdellah, M. Y., Fadhl, B. M., Abu El-Ainin, H. M., Hassan, M. K., Backar, A. H., Mohamed, A. F., “Experimental Evaluation of Mechanical and Tribological Properties of Segregated Al-Mg-Si Alloy Filled with Alumina and Silicon Carbide through Different Types of Casting Molds”, Metals MDPI, 13(2): 316, (2023).
- [38] Uzun, A., Asikuzun, E., Gokmen, U., Cinici, H., “Vickers Microhardness Studies on B4C Reinforced/Unreinforced Foamable Aluminium Composites”, Transactions of the Indian Institute of Metals, 71: 327-337, (2018).
- [39] Asmare, A., Al-Sabur, R., Messele, E., “Experimental investigation of friction stir welding on 6061-T6 aluminum alloy using taguchi-based gra”, Metals MDPI, 10(11): 1480, (2020).
- [40] Tirfe, D., Woldeyohannes, A., Hunde, B., Batu, T., Geleta, E., “Investigating Mechanical and Physical Properties of Stir Casted Al6061/Nano Al2O3/Quartz Hybrid Composite”, Advances in Mechanical and Materials Engineering, 40(1): 189-201, (2023).
- [41] Sasikumar, K., Bharathikannan, R., Raja, M., “Effect of Annealing Temperature on Structural and Electrical Properties of Al/ZrO2/p-Si MIS Schottky Diodes”, Silicon, 11: 137-143, (2019).
- [42] Vijayabhaskar, S., Rajmohan, T., Vignesh, T. K., Venkatakrishnan, H., “Effect of nano SiC particles on properties and characterization of Magnesium matrix nano composites”, Materials Today: Proceedings, 16: 853-858, (2019).
- [43] Neamati, J., “SiC and ZrO2 Weigh Percentage Effects on Microstructure of Al Based Matrix Composite Fabricated by Spark Plasma Sintering Method”, International Journal of Advanced Engineering, Management and Science, 2(6): 239496. (2016).
- [44] Yadav, M., Kumaraswamidhas, L. A., Singh, S. K., “Investigation of solid particle erosion behavior of Al-Al2O3 and Al-ZrO2 metal matrix composites fabricated through powder metallurgy technique”, Tribology International, 172: 107636, (2022).
- [45] Burak, G. Ü. L., Gezici, L. U., Ayvaz, M., Çavdar, U., “The comparative study of conventional and ultra-high frequency induction sintering behavior of pure aluminum”, International Advanced Researches and Engineering Journal, 4(3): 173-179, (2020).
- [46] Anjaneyulu, B., Rao, G. N., Rao, K. P., “Development, mechanical and tribological characterization of Al2O3 reinforced ZrO2 ceramic composites”, Materials Today: Proceedings, 37: 584-591, (2021).
- [47] Tosun, G., Kurt, M., “The porosity, microstructure, and hardness of Al-Mg composites reinforced with micro particle SiC/Al2O3 produced using powder metallurgy”, Composites Part B: Engineering, 174: 106965, (2019).
- [48] Rajasekar, M., Faizal, U. M., Sudhagar, S., Vijayakumar, P., “Influence of heat treatment on tribological behavior of Al/ZrO2/fly ash hybrid composite”, Materials Today: Proceedings, 45: 774-779, (2021).
- [49] Al-Alimi, S. A. M., Bin Lajis, M. A., Shamsudin, S. B., Boon Long, C., “Influence of Zirconia Percent on Physical Properties of Zirconia-Aluminum Chip Matrix (Al6061) Nanocomposites”, Journal of Nanostructures, 12(1): 194-203, (2022).
- [50] Şenel, M. C., Üstün, M., “Dry sliding wear and friction behavior of graphene/ZrO2 binary nanoparticles reinforced aluminum hybrid composites”, Arabian Journal for Science and Engineering, 47(7): 9253-9269, (2022).