Research Article
BibTex RIS Cite

Some Paradoxical Perspectives on Approaches and Structures in Functional Data Analysis

Year 2025, Volume: 38 Issue: 3, 1518 - 1538
https://doi.org/10.35378/gujs.1587357

Abstract

Developments in functional data analysis have attracted considerable attention in recent literature. This study aims to provide general information about functional data analysis and demonstrate how it can be enriched with auxiliary tools. When the article is considered as a whole, the results predominantly pertain to functional linear models. The first section discusses the estimation of regression model parameters using the Least Squares method. It explains how the Least Squares method is applied within a functional framework and incorporates auxiliary calculations as part of the modeling process. At this stage, the Error Sum of Squares, which forms the basis of the Least Squares method, is represented as a vector field. The second section addresses the interim estimation problem. In this part, the Bernstein polynomial is combined with the wavelet transform to address the interim estimation challenge. The final section introduces various types of functional data analysis. Specifically, the Bernstein polynomial is used in estimating a functional linear model with functional coefficients. Employing the Bernstein polynomial as a model component in the linear model offers a simpler and more innovative approach compared to traditional functional linear model structures. The methods proposed in this study are generally practical and compatible with the classical framework of functional data analysis.

References

  • [1] Fisher, R.A., Owen, A.R.G., "An Appreciation of the Life and Work of Sir Ronald Aylmer Fisher: FRS, FSS Sc. D." Journal of the Royal Statistical Society. Series D (The Statistician), 12(4): 313-319, (1962). DOI: https://doi.org/10.2307/2986951
  • [2] Cittert-Eymers, V., "CHD Buys Ballot (1817-1890)." Scientiarum Historia: Tijdschrift voor de Geschiedenis van de Wetenschappen en de Geneeskunde, 10(1): 145-153, (1968).
  • [3] Dozie Kelechukwu, C.N., Christian, C.I., "Decomposition with the Mixed Model in Time Series Analysis using Buys-Ballot Procedure," Asian Journal of Advanced Research and Reports, 17(2): 8-18, (2023). DOI: 10.9734/ajarr/2023/v17i2465
  • [4] Iwueze, I.S., Nwogu. E.C., "Buys–Ballot Estimates for time series decomposition," Global Journal of Mathematical Sciences, 3(2): 83-98, (2004). DOI: 10.4314/gjmas.v3i2.21356
  • [5] Iwueza, I. S., and Ohakwe, J. " Buys-Ballot estimates when stochastic trend is quadratic." Journal of the Nigerian Association of Mathematical Physics, 8: 311-318, (2004). DOI: https://doi.org/10.4314/jonamp.v8i1.40020
  • [6] Doob, Joseph L. "What is a stochastic process?," The American Mathematical Monthly, 49(10): 648-653, (1942). DOI: https://doi.org/10.1080/00029890.1942.11991300
  • [7] Węglarczyk, S., "Kernel density estimation and its application." ITM Web of Conferences. 23. EDP Sciences, (2018). DOI: https://doi.org/10.1051/itmconf/20182300037
  • [8] Leva, J.L., "A fast normal random number generator," ACM Transactions on Mathematical Software (TOMS), 18(4): 449-453, (1992). DOI: https://doi.org/10.1145/138351.138364
  • [9] Joy, K.I., "On-line geometric modeling notes." Computer Science Department, University of California, Davis. http://graphics. cs. UC Davis. Edu/CAGDNotes (1996).
  • [10] Lorentz, G.G., “Bernstein polynomials”, American Mathematical Society, (2012).
  • [11] Gürcan, M., Colak, C., Orman. M.N., “Bernstein polynomial approach against to some frequently used growth curve models on animal data," Pakistan Journal of Statistics, 26(3): 509-516, (2010).
  • [12] Gürcan, M., Colak. C. "Generalization of korovkin type approximation by appropriate random variables & moments and an application in medicine," Pakistan Journal of Statistics, 27(3): 283-297, (2011).
  • [13] Totik, V., "Approximation by Bernstein polynomials," American Journal of Mathematics, 116(4): 995-1018, (1994). DOI: https://doi.org/10.2307/2375007
  • [14] Güral, Y., Demirelli, A., Gürcan, M. "Gölgelerin oyunu: İzdüşümlerin istatistiksel çıkarsamaları ve türkiye’de döviz kurlarını etkileyen makroekonomik göstergeler üzerine bir uygulama," Avrupa Bilim ve Teknoloji Dergisi 38: 341-351, (2022). DOI: https://doi.org/10.31590/ejosat.1039913
  • [15] Aitken, A.C. "IV.—On least squares and linear combination of observations." Proceedings of the Royal Society of Edinburgh, 55: 42-48, (1936). DOI: https://doi.org/10.1017/S0370164600014346
  • [16] Markov, A.A., “Wahrscheinlichkeitsrechnung”. Leipzig. [1287], (1912).
  • [17] Hansen, B.E. "A modern Gauss–Markov theorem," Econometrica, 90(3): 1283-1294, (2022). DOI: https://doi.org/10.3982/ECTA19255
  • [18] Gasser, T., Müller, H.G. "Kernel estimation of regression functions." Smoothing Techniques for Curve Estimation: Proceedings of a Workshop held in Heidelberg, April 2–4, 1979. Springer Berlin Heidelberg, (1979). DOI: https://doi.org/10.1007/BFb0098489
  • [19] Hill. P.D., "Kernel estimation of a distribution function." Communications in Statistics-Theory and Methods, 14(3): 605-620, (1985). DOI: https://doi.org/10.1080/03610928508828937
  • [20] Gürcan, M., Çalık, S., "Generalized convergence characterizations of Feller operator," Pakistan Journal of Statistics, 27(3): 213–219, (2011).
  • [21] Rao, C.R. "Estimation of parameters in a linear model," The Annals of Statistics, 4(6): 1023-1037, (1976). DOI: 10.1214/aos/1176343639
  • [22] Müller, H.G., Stadtmüller, U., "Generalized functional linear models," The Annals of Statistics, 33: 774-805, (2005). DOI: 10.1214/009053604000001156
  • [23] Cardot, H., Ferraty, F., Sarda, P., "Spline estimators for the functional linear model," Statistica Sinica, 13: 571-591, (2003). DOI: https://doi.org/10.1016/S0167-7152(99)00036-X
  • [24] Kwak, N., Choi, C.H. "Input feature selection by mutual information based on Parzen window," IEEE Transactions On Pattern Analysis and Machine Intelligence, 24(12): 1667-1671, (2002). DOI: https://doi.org/10.1109/TPAMI.2002.1114861
  • [25] Babich, G.A., Camps, O.I. "Weighted Parzen windows for pattern classification," IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(5): 567-570, (1996). DOI: https://doi.org/10.1109/34.494647
  • [26] Vincent, P., Bengio. Y., "Manifold parzen windows," Advances in Neural Information Processing Systems, 15: (2002).
  • [27] Köse, H., Gürcan, M., "Zamana bağlı gözlem serilerinin tarihsel başlangıcı ve Buys Ballot’un incelemeleri," Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 1(18): 33-38, (2001).
  • [28] Ramsay, J.O., Dalzell. C.J., "Some tools for functional data analysis," Journal of the Royal Statistical Society Series B: Statistical Methodology, 53(3): 539-561, (1991). DOI: https://doi.org/10.1111/j.2517-6161.1991.tb01844.x
  • [29] Ullah, S., Caroline F.F. "Applications of functional data analysis: A systematic review," BMC Medical Research Methodology, 13 (2013): 1-12. DOI: https://doi.org/10.1186/1471-2288-13-43
  • [30] Zhu, H., Li, S., Shen, D., Guo, Y., Liu, T., and Chou, Y. C., "FRATS: Functional regression analysis of DTI tract statistics," IEEE Transactions on Medical Imaging, 29(4): 1039-1049, (2010). DOI: https://doi.org/10.1109/TMI.2010.2040625
  • [31] Wu, P.S., Müller, H.G., "Functional embedding for the classification of gene expression profiles," Bioinformatics, 26(4): 509-517, (2010). DOI: https://doi.org/10.1093/bioinformatics/btp711
  • [32] Kim, S.B., Rattakorn, P., Peng, Y.B., "An effective clustering procedure of neuronal response profiles in graded thermal stimulation," Expert Systems with Applications, 37(8): 5818-5826, (2010). DOI: https://doi.org/10.1016/j.eswa.2010.02.025
  • [33] Hyndman, R.J., Shang, H.L., "Rainbow plots, bagplots, and boxplots for functional data," Journal of Computational and Graphical Statistics, 19(1): 29-45, (2010). DOI: https://doi.org/10.1198/jcgs.2009.08158
  • [34] Erbas, B., Sato, T., Yamaguchi, M., Inoue, K., and Fujita, M., "Using functional data analysis models to estimate future time trends in age-specific breast cancer mortality for the United States and England–Wales," Journal of Epidemiology, 20(2): 159-165, (2010). DOI: https://doi.org/10.2188/jea.JE20090072
  • [35] Ghosal, R., Chen, Y., Zhou, Y., and Wang, X., "Shape-constrained estimation in functional regression with Bernstein polynomials," Computational Statistics & Data Analysis, 178: 107614, (2023). DOI: https://doi.org/10.1016/j.csda.2022.107614
  • [36] Bellucci, M. A. "On the explicit representation of orthonormal Bernstein polynomials," arXiv preprint arXiv:1404.2293 (2014). DOI: https://doi.org/10.48550/arXiv.1404.2293
Year 2025, Volume: 38 Issue: 3, 1518 - 1538
https://doi.org/10.35378/gujs.1587357

Abstract

References

  • [1] Fisher, R.A., Owen, A.R.G., "An Appreciation of the Life and Work of Sir Ronald Aylmer Fisher: FRS, FSS Sc. D." Journal of the Royal Statistical Society. Series D (The Statistician), 12(4): 313-319, (1962). DOI: https://doi.org/10.2307/2986951
  • [2] Cittert-Eymers, V., "CHD Buys Ballot (1817-1890)." Scientiarum Historia: Tijdschrift voor de Geschiedenis van de Wetenschappen en de Geneeskunde, 10(1): 145-153, (1968).
  • [3] Dozie Kelechukwu, C.N., Christian, C.I., "Decomposition with the Mixed Model in Time Series Analysis using Buys-Ballot Procedure," Asian Journal of Advanced Research and Reports, 17(2): 8-18, (2023). DOI: 10.9734/ajarr/2023/v17i2465
  • [4] Iwueze, I.S., Nwogu. E.C., "Buys–Ballot Estimates for time series decomposition," Global Journal of Mathematical Sciences, 3(2): 83-98, (2004). DOI: 10.4314/gjmas.v3i2.21356
  • [5] Iwueza, I. S., and Ohakwe, J. " Buys-Ballot estimates when stochastic trend is quadratic." Journal of the Nigerian Association of Mathematical Physics, 8: 311-318, (2004). DOI: https://doi.org/10.4314/jonamp.v8i1.40020
  • [6] Doob, Joseph L. "What is a stochastic process?," The American Mathematical Monthly, 49(10): 648-653, (1942). DOI: https://doi.org/10.1080/00029890.1942.11991300
  • [7] Węglarczyk, S., "Kernel density estimation and its application." ITM Web of Conferences. 23. EDP Sciences, (2018). DOI: https://doi.org/10.1051/itmconf/20182300037
  • [8] Leva, J.L., "A fast normal random number generator," ACM Transactions on Mathematical Software (TOMS), 18(4): 449-453, (1992). DOI: https://doi.org/10.1145/138351.138364
  • [9] Joy, K.I., "On-line geometric modeling notes." Computer Science Department, University of California, Davis. http://graphics. cs. UC Davis. Edu/CAGDNotes (1996).
  • [10] Lorentz, G.G., “Bernstein polynomials”, American Mathematical Society, (2012).
  • [11] Gürcan, M., Colak, C., Orman. M.N., “Bernstein polynomial approach against to some frequently used growth curve models on animal data," Pakistan Journal of Statistics, 26(3): 509-516, (2010).
  • [12] Gürcan, M., Colak. C. "Generalization of korovkin type approximation by appropriate random variables & moments and an application in medicine," Pakistan Journal of Statistics, 27(3): 283-297, (2011).
  • [13] Totik, V., "Approximation by Bernstein polynomials," American Journal of Mathematics, 116(4): 995-1018, (1994). DOI: https://doi.org/10.2307/2375007
  • [14] Güral, Y., Demirelli, A., Gürcan, M. "Gölgelerin oyunu: İzdüşümlerin istatistiksel çıkarsamaları ve türkiye’de döviz kurlarını etkileyen makroekonomik göstergeler üzerine bir uygulama," Avrupa Bilim ve Teknoloji Dergisi 38: 341-351, (2022). DOI: https://doi.org/10.31590/ejosat.1039913
  • [15] Aitken, A.C. "IV.—On least squares and linear combination of observations." Proceedings of the Royal Society of Edinburgh, 55: 42-48, (1936). DOI: https://doi.org/10.1017/S0370164600014346
  • [16] Markov, A.A., “Wahrscheinlichkeitsrechnung”. Leipzig. [1287], (1912).
  • [17] Hansen, B.E. "A modern Gauss–Markov theorem," Econometrica, 90(3): 1283-1294, (2022). DOI: https://doi.org/10.3982/ECTA19255
  • [18] Gasser, T., Müller, H.G. "Kernel estimation of regression functions." Smoothing Techniques for Curve Estimation: Proceedings of a Workshop held in Heidelberg, April 2–4, 1979. Springer Berlin Heidelberg, (1979). DOI: https://doi.org/10.1007/BFb0098489
  • [19] Hill. P.D., "Kernel estimation of a distribution function." Communications in Statistics-Theory and Methods, 14(3): 605-620, (1985). DOI: https://doi.org/10.1080/03610928508828937
  • [20] Gürcan, M., Çalık, S., "Generalized convergence characterizations of Feller operator," Pakistan Journal of Statistics, 27(3): 213–219, (2011).
  • [21] Rao, C.R. "Estimation of parameters in a linear model," The Annals of Statistics, 4(6): 1023-1037, (1976). DOI: 10.1214/aos/1176343639
  • [22] Müller, H.G., Stadtmüller, U., "Generalized functional linear models," The Annals of Statistics, 33: 774-805, (2005). DOI: 10.1214/009053604000001156
  • [23] Cardot, H., Ferraty, F., Sarda, P., "Spline estimators for the functional linear model," Statistica Sinica, 13: 571-591, (2003). DOI: https://doi.org/10.1016/S0167-7152(99)00036-X
  • [24] Kwak, N., Choi, C.H. "Input feature selection by mutual information based on Parzen window," IEEE Transactions On Pattern Analysis and Machine Intelligence, 24(12): 1667-1671, (2002). DOI: https://doi.org/10.1109/TPAMI.2002.1114861
  • [25] Babich, G.A., Camps, O.I. "Weighted Parzen windows for pattern classification," IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(5): 567-570, (1996). DOI: https://doi.org/10.1109/34.494647
  • [26] Vincent, P., Bengio. Y., "Manifold parzen windows," Advances in Neural Information Processing Systems, 15: (2002).
  • [27] Köse, H., Gürcan, M., "Zamana bağlı gözlem serilerinin tarihsel başlangıcı ve Buys Ballot’un incelemeleri," Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 1(18): 33-38, (2001).
  • [28] Ramsay, J.O., Dalzell. C.J., "Some tools for functional data analysis," Journal of the Royal Statistical Society Series B: Statistical Methodology, 53(3): 539-561, (1991). DOI: https://doi.org/10.1111/j.2517-6161.1991.tb01844.x
  • [29] Ullah, S., Caroline F.F. "Applications of functional data analysis: A systematic review," BMC Medical Research Methodology, 13 (2013): 1-12. DOI: https://doi.org/10.1186/1471-2288-13-43
  • [30] Zhu, H., Li, S., Shen, D., Guo, Y., Liu, T., and Chou, Y. C., "FRATS: Functional regression analysis of DTI tract statistics," IEEE Transactions on Medical Imaging, 29(4): 1039-1049, (2010). DOI: https://doi.org/10.1109/TMI.2010.2040625
  • [31] Wu, P.S., Müller, H.G., "Functional embedding for the classification of gene expression profiles," Bioinformatics, 26(4): 509-517, (2010). DOI: https://doi.org/10.1093/bioinformatics/btp711
  • [32] Kim, S.B., Rattakorn, P., Peng, Y.B., "An effective clustering procedure of neuronal response profiles in graded thermal stimulation," Expert Systems with Applications, 37(8): 5818-5826, (2010). DOI: https://doi.org/10.1016/j.eswa.2010.02.025
  • [33] Hyndman, R.J., Shang, H.L., "Rainbow plots, bagplots, and boxplots for functional data," Journal of Computational and Graphical Statistics, 19(1): 29-45, (2010). DOI: https://doi.org/10.1198/jcgs.2009.08158
  • [34] Erbas, B., Sato, T., Yamaguchi, M., Inoue, K., and Fujita, M., "Using functional data analysis models to estimate future time trends in age-specific breast cancer mortality for the United States and England–Wales," Journal of Epidemiology, 20(2): 159-165, (2010). DOI: https://doi.org/10.2188/jea.JE20090072
  • [35] Ghosal, R., Chen, Y., Zhou, Y., and Wang, X., "Shape-constrained estimation in functional regression with Bernstein polynomials," Computational Statistics & Data Analysis, 178: 107614, (2023). DOI: https://doi.org/10.1016/j.csda.2022.107614
  • [36] Bellucci, M. A. "On the explicit representation of orthonormal Bernstein polynomials," arXiv preprint arXiv:1404.2293 (2014). DOI: https://doi.org/10.48550/arXiv.1404.2293
There are 36 citations in total.

Details

Primary Language English
Subjects Computational Statistics
Journal Section Statistics
Authors

Tuba Şekerci 0000-0002-0398-4477

Mehmet Gürcan 0000-0002-3641-8113

Early Pub Date June 14, 2025
Publication Date
Submission Date November 18, 2024
Acceptance Date March 17, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA Şekerci, T., & Gürcan, M. (n.d.). Some Paradoxical Perspectives on Approaches and Structures in Functional Data Analysis. Gazi University Journal of Science, 38(3), 1518-1538. https://doi.org/10.35378/gujs.1587357
AMA Şekerci T, Gürcan M. Some Paradoxical Perspectives on Approaches and Structures in Functional Data Analysis. Gazi University Journal of Science. 38(3):1518-1538. doi:10.35378/gujs.1587357
Chicago Şekerci, Tuba, and Mehmet Gürcan. “Some Paradoxical Perspectives on Approaches and Structures in Functional Data Analysis”. Gazi University Journal of Science 38, no. 3 n.d.: 1518-38. https://doi.org/10.35378/gujs.1587357.
EndNote Şekerci T, Gürcan M Some Paradoxical Perspectives on Approaches and Structures in Functional Data Analysis. Gazi University Journal of Science 38 3 1518–1538.
IEEE T. Şekerci and M. Gürcan, “Some Paradoxical Perspectives on Approaches and Structures in Functional Data Analysis”, Gazi University Journal of Science, vol. 38, no. 3, pp. 1518–1538, doi: 10.35378/gujs.1587357.
ISNAD Şekerci, Tuba - Gürcan, Mehmet. “Some Paradoxical Perspectives on Approaches and Structures in Functional Data Analysis”. Gazi University Journal of Science 38/3 (n.d.), 1518-1538. https://doi.org/10.35378/gujs.1587357.
JAMA Şekerci T, Gürcan M. Some Paradoxical Perspectives on Approaches and Structures in Functional Data Analysis. Gazi University Journal of Science.;38:1518–1538.
MLA Şekerci, Tuba and Mehmet Gürcan. “Some Paradoxical Perspectives on Approaches and Structures in Functional Data Analysis”. Gazi University Journal of Science, vol. 38, no. 3, pp. 1518-3, doi:10.35378/gujs.1587357.
Vancouver Şekerci T, Gürcan M. Some Paradoxical Perspectives on Approaches and Structures in Functional Data Analysis. Gazi University Journal of Science. 38(3):1518-3.