Research Article
BibTex RIS Cite
Year 2025, Volume: 38 Issue: 3, 1503 - 1516
https://doi.org/10.35378/gujs.1604187

Abstract

References

  • [1] Boos, D. D., Brownie, C., “Comparing variances and other measures of dispersion”, Statistical Science, 19: 571-578, (2004). DOI: https://doi.org/10.1214/088342304000000500.
  • [2] Li, X., Qiu, W., Morrow, J., DeMeo, D. L., Weiss, S. T., Fu, Y., Wang, X., “A comparative study of tests for homogeneity of variances with application to DNA methylation data”, PloS one, 10(12): (2015). DOI: https://doi.org/10.1371/journal.pone.0145295
  • [3] Conover, W. J., Johnson, M.E., Johnson, M.M. “A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data”, Technometrics, 23: 351- 361, (1981). DOI: https://doi.org/10.1080/00401706.1981.10487693
  • [4] Cahoy, D. O. “A bootstrap test for equality of variances”, Computational Statistics and Data Analysis, 54: 2306-2316, (2010). DOI: https://doi.org/10.1016/j.csda.2010.01.015
  • [5] Bartlett, M. S., “Properties of Sufficiency and Statistical Test”, Proceedings of the Royal Society: A, 160: 268-282, (1937). DOI: https://doi.org/10.1098/rspa.1937.0109
  • [6] Bishop, D. J., Nair, U. S. “A note on certain methods of testing for the homogeneity of a set of estimated variances”, Journal of the Royal Statistical Society, 6: 89–99, (1939).
  • [7] Box, G. E., “Non-Normality and Tests on Variances”, Biometrika, 40: 318-335, (1953). DOI: https://doi.org/10.1093/biomet/40.3-4.318
  • [8] Brown, M. B., Forsythe, A.B., “Robust tests for the equality of variances”, Journal of the American Statistical Association, 69: 364-367, (1974). DOI: https://doi.org/10.2307/2285659
  • [9] Cochran, W. G., “Testing a linear relation among variances”, Biometrics, 7: 17-32, (1951). DOI: https://doi.org/10.2307/3001666
  • [10] Levene, H., “Robust Tests for Equality of Variances, In Contributions to Probability and Statistics: Essays in honor of Harold Hotelling”, 2: 278-292, (1960).
  • [11] Loh, W. Y., “Some modifications of Levene's test of variance homogeneity”, Journal of Statistical Computation and Simulation, 28: 213-226, (1987). DOI: https://doi.org/10.1080/00949658708811047
  • [12] Keyes, T. K., Levy, M. S., “Analysis of Levene’s Test under Design Inbalance”, Journal of Educational and Behavioral Statistics, 22: 227-236, (1997). DOI: https://doi.org/10.3102/10769986022003227
  • [13] Bhandary, M., Dai, H., “An alternative test for the equality of variances for several populations when the underlying distributions are normal”, Communications in Statistics- -Simulation and Computation, 38: 109-117, (2008). DOI: https://doi.org/10.1080/03610910802387378
  • [14] Liu, X., Xu, X., “A new generalized p-value approach for testing the homogeneity of variances”, Statistics and Probability Letters, 80: 1486-1491, (2010). DOI: https://doi.org/10.1016/j.spl.2010.04.018
  • [15] Gökpınar, E., Gökpınar, F., “Testing equality of variances for several normal populations”, Communications in Statistics- Simulation and Computation, 46(1): 38–52, (2017). DOI: https://doi.org/10.1080/03610918.2015.1093934
  •   [16] Jafari, A. A., Shaabani, J., “Comparing scale parameters in several gamma distributions with known shapes”, Computational Statistics, 35(4): 1927-1950, (2020). DOI: https://doi.org/10.1007/s00180-019-00926-0
  • [17] Wang, J., Li, X., Liang, H., “A new exact p-value approach for testing variance homogeneity”, Statistics Theory Related Fields, 6(1): 81-86, (2022). DOI: https://doi.org/10.1080/24754269.2021.2021010
  • [18] Bera, A. K., Bilias, Y., “Rao's score, Neyman's C (α) and Silvey's LM tests: an essay on historical developments and some new results”, Journal of Statistical Planning and Inference, 97: 9-44, (2001). DOI: https://doi.org/10.1016/S0378-3758(00)00236-2
  • [19] Davison, A. C., Hinkley, D. V., “Bootstrap methods and their application”, Cambridge: Cambridge University Press, (1997). DOI: https://doi.org/10.1017/CBO9780511802843
  • [20] Chang, C. H., Pal, N., Lin, J. J., “A revisit to test the equality of variances of several populations”, Communications in Statistics- -Simulation and Computation, 46: 6360-6384, (2017). DOI: https://doi.org/10.1080/03610918.2016.1148143
  • [21] Gökpınar, E., “Standardized likelihood ratio test for homogeneity of variance of several normal populations”, Communications in Statistics- -Simulation and Computation, 51: 6309-6319, (2022). DOI: https://doi.org/10.1080/03610918.2021.1943494
  • [22] Anderson, E., “The Irises of the Gaspe Peninsula”, Bulletin of the American Iris Society, 59: 2–5, (1935).
  • [23] Hu, Y. C., “A new fuzzy-data mining method for pattern classification by principal component analysis”, Cybernetics and Systems, 36: 527–547, (2005). DOI: https://doi.org/ 10.1080/01969720590913116
  • [24] Korkmaz, S., Goksuluk, D., Zararsiz, G., “MVN: An R Package for Assessing Multivariate Normality”, The R Journal, 6: 151–162, (2014). DOI: https://doi.org/10.32614/RJ-2014-031

Score Test for Homogeneity of Variances in Normal Distributions

Year 2025, Volume: 38 Issue: 3, 1503 - 1516
https://doi.org/10.35378/gujs.1604187

Abstract

In this study, we suggest a novel test statistic based on the Score statistic for evaluating the homogeneity of variances in normal distributions. In addition to the conventional chi-square approximation of the Score statistic, we introduce a parametric bootstrap technique known as the Computational Approach Test (CAT). Through a simulation study, we evaluate the proposed test’s CAT approach (referred to as CS) and assess its performance against established methods under varying group sizes and sample sizes. The results show that, regardless of the number of groups, the CAT approach of the Score test performs well when sample sizes and variances are directly proportional, even with a minimum sample size of three. Furthermore, when sample sizes and variances are inversely proportional, the proposed test significantly outperforms alternative methods. To demonstrate the application of the discussed methods, we provide two numerical examples.

References

  • [1] Boos, D. D., Brownie, C., “Comparing variances and other measures of dispersion”, Statistical Science, 19: 571-578, (2004). DOI: https://doi.org/10.1214/088342304000000500.
  • [2] Li, X., Qiu, W., Morrow, J., DeMeo, D. L., Weiss, S. T., Fu, Y., Wang, X., “A comparative study of tests for homogeneity of variances with application to DNA methylation data”, PloS one, 10(12): (2015). DOI: https://doi.org/10.1371/journal.pone.0145295
  • [3] Conover, W. J., Johnson, M.E., Johnson, M.M. “A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data”, Technometrics, 23: 351- 361, (1981). DOI: https://doi.org/10.1080/00401706.1981.10487693
  • [4] Cahoy, D. O. “A bootstrap test for equality of variances”, Computational Statistics and Data Analysis, 54: 2306-2316, (2010). DOI: https://doi.org/10.1016/j.csda.2010.01.015
  • [5] Bartlett, M. S., “Properties of Sufficiency and Statistical Test”, Proceedings of the Royal Society: A, 160: 268-282, (1937). DOI: https://doi.org/10.1098/rspa.1937.0109
  • [6] Bishop, D. J., Nair, U. S. “A note on certain methods of testing for the homogeneity of a set of estimated variances”, Journal of the Royal Statistical Society, 6: 89–99, (1939).
  • [7] Box, G. E., “Non-Normality and Tests on Variances”, Biometrika, 40: 318-335, (1953). DOI: https://doi.org/10.1093/biomet/40.3-4.318
  • [8] Brown, M. B., Forsythe, A.B., “Robust tests for the equality of variances”, Journal of the American Statistical Association, 69: 364-367, (1974). DOI: https://doi.org/10.2307/2285659
  • [9] Cochran, W. G., “Testing a linear relation among variances”, Biometrics, 7: 17-32, (1951). DOI: https://doi.org/10.2307/3001666
  • [10] Levene, H., “Robust Tests for Equality of Variances, In Contributions to Probability and Statistics: Essays in honor of Harold Hotelling”, 2: 278-292, (1960).
  • [11] Loh, W. Y., “Some modifications of Levene's test of variance homogeneity”, Journal of Statistical Computation and Simulation, 28: 213-226, (1987). DOI: https://doi.org/10.1080/00949658708811047
  • [12] Keyes, T. K., Levy, M. S., “Analysis of Levene’s Test under Design Inbalance”, Journal of Educational and Behavioral Statistics, 22: 227-236, (1997). DOI: https://doi.org/10.3102/10769986022003227
  • [13] Bhandary, M., Dai, H., “An alternative test for the equality of variances for several populations when the underlying distributions are normal”, Communications in Statistics- -Simulation and Computation, 38: 109-117, (2008). DOI: https://doi.org/10.1080/03610910802387378
  • [14] Liu, X., Xu, X., “A new generalized p-value approach for testing the homogeneity of variances”, Statistics and Probability Letters, 80: 1486-1491, (2010). DOI: https://doi.org/10.1016/j.spl.2010.04.018
  • [15] Gökpınar, E., Gökpınar, F., “Testing equality of variances for several normal populations”, Communications in Statistics- Simulation and Computation, 46(1): 38–52, (2017). DOI: https://doi.org/10.1080/03610918.2015.1093934
  •   [16] Jafari, A. A., Shaabani, J., “Comparing scale parameters in several gamma distributions with known shapes”, Computational Statistics, 35(4): 1927-1950, (2020). DOI: https://doi.org/10.1007/s00180-019-00926-0
  • [17] Wang, J., Li, X., Liang, H., “A new exact p-value approach for testing variance homogeneity”, Statistics Theory Related Fields, 6(1): 81-86, (2022). DOI: https://doi.org/10.1080/24754269.2021.2021010
  • [18] Bera, A. K., Bilias, Y., “Rao's score, Neyman's C (α) and Silvey's LM tests: an essay on historical developments and some new results”, Journal of Statistical Planning and Inference, 97: 9-44, (2001). DOI: https://doi.org/10.1016/S0378-3758(00)00236-2
  • [19] Davison, A. C., Hinkley, D. V., “Bootstrap methods and their application”, Cambridge: Cambridge University Press, (1997). DOI: https://doi.org/10.1017/CBO9780511802843
  • [20] Chang, C. H., Pal, N., Lin, J. J., “A revisit to test the equality of variances of several populations”, Communications in Statistics- -Simulation and Computation, 46: 6360-6384, (2017). DOI: https://doi.org/10.1080/03610918.2016.1148143
  • [21] Gökpınar, E., “Standardized likelihood ratio test for homogeneity of variance of several normal populations”, Communications in Statistics- -Simulation and Computation, 51: 6309-6319, (2022). DOI: https://doi.org/10.1080/03610918.2021.1943494
  • [22] Anderson, E., “The Irises of the Gaspe Peninsula”, Bulletin of the American Iris Society, 59: 2–5, (1935).
  • [23] Hu, Y. C., “A new fuzzy-data mining method for pattern classification by principal component analysis”, Cybernetics and Systems, 36: 527–547, (2005). DOI: https://doi.org/ 10.1080/01969720590913116
  • [24] Korkmaz, S., Goksuluk, D., Zararsiz, G., “MVN: An R Package for Assessing Multivariate Normality”, The R Journal, 6: 151–162, (2014). DOI: https://doi.org/10.32614/RJ-2014-031
There are 24 citations in total.

Details

Primary Language English
Subjects Computational Statistics, Applied Statistics
Journal Section Statistics
Authors

Sevgi Aksoy 0000-0001-6434-7087

Fikri Gökpınar 0000-0002-6310-8727

Esra Gökpınar 0000-0003-2148-4940

Early Pub Date June 29, 2025
Publication Date
Submission Date December 20, 2024
Acceptance Date May 12, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA Aksoy, S., Gökpınar, F., & Gökpınar, E. (n.d.). Score Test for Homogeneity of Variances in Normal Distributions. Gazi University Journal of Science, 38(3), 1503-1516. https://doi.org/10.35378/gujs.1604187
AMA Aksoy S, Gökpınar F, Gökpınar E. Score Test for Homogeneity of Variances in Normal Distributions. Gazi University Journal of Science. 38(3):1503-1516. doi:10.35378/gujs.1604187
Chicago Aksoy, Sevgi, Fikri Gökpınar, and Esra Gökpınar. “Score Test for Homogeneity of Variances in Normal Distributions”. Gazi University Journal of Science 38, no. 3 n.d.: 1503-16. https://doi.org/10.35378/gujs.1604187.
EndNote Aksoy S, Gökpınar F, Gökpınar E Score Test for Homogeneity of Variances in Normal Distributions. Gazi University Journal of Science 38 3 1503–1516.
IEEE S. Aksoy, F. Gökpınar, and E. Gökpınar, “Score Test for Homogeneity of Variances in Normal Distributions”, Gazi University Journal of Science, vol. 38, no. 3, pp. 1503–1516, doi: 10.35378/gujs.1604187.
ISNAD Aksoy, Sevgi et al. “Score Test for Homogeneity of Variances in Normal Distributions”. Gazi University Journal of Science 38/3 (n.d.), 1503-1516. https://doi.org/10.35378/gujs.1604187.
JAMA Aksoy S, Gökpınar F, Gökpınar E. Score Test for Homogeneity of Variances in Normal Distributions. Gazi University Journal of Science.;38:1503–1516.
MLA Aksoy, Sevgi et al. “Score Test for Homogeneity of Variances in Normal Distributions”. Gazi University Journal of Science, vol. 38, no. 3, pp. 1503-16, doi:10.35378/gujs.1604187.
Vancouver Aksoy S, Gökpınar F, Gökpınar E. Score Test for Homogeneity of Variances in Normal Distributions. Gazi University Journal of Science. 38(3):1503-16.