Research Article
BibTex RIS Cite

Intelligent Control of a New High Voltage Gain Interleaved DC-DC Converter for Fuel Cell Applications

Year 2025, Volume: 38 Issue: 3, 1276 - 1292, 01.09.2025
https://doi.org/10.35378/gujs.1605928

Abstract

As important elements of the hydrogen economy, fuel cells (FCs) require high step-up DC-DC converters. To this end, a new high voltage gain interleaved DC-DC converter benefiting from expandable quadratic-boost and switched-capacitor networks is proposed in this paper. A switching model shows that the proposed converter reaches a voltage gain of about 10, semiconductor voltage stresses are half of the output voltage or less, and current stresses are cut in half when compared to the non-interleaved version. Besides, according to a dynamic simulation study, the newly proposed single-input fuzzy-logic controller-based control method allows less than half the settling time and 5% less voltage overshoot than the current mode control; moreover, it attains a perfect current sharing while voltage mode control fails by having a current unbalance factor of up to 0.33. Finally, an average model demonstrates the accomplished operation of the offered system under an office block power demand.

References

  • [1] Elsayed, A.T., Mohamed, A.A., Mohammed, O.A. “DC microgrids and distribution systems: An overview”, Electric Power Systems Research, (119): 407-417, (2015). DOI: https://doi.org/10.1016/j.epsr.2014.10.017
  • [2] Reddy, K.J, Natarajan, S. “Energy sources and multi-input DC-DC converters used in hybrid electric vehicle applications–a review”, International Journal of Hydrogen Energy”, 43(36):17387-17408, (2018). DOI: https://doi.org/10.1016/j.ijhydene.2018.07.076
  • [3] Sazali, N., Wan Salleh, W.N., Jamaludin, A.S., Mhd Razali, M.N. “New perspectives on fuel cell technology: A brief review”, Membranes, 10(5): 99, (2020). DOI: https://doi.org/10.3390/membranes10050099
  • [4] Harichandan, S., Kar, S.K., Rai, P.K. “A systematic and critical review of green hydrogen economy in India”, International Journal of Hydrogen Energy, 48(81): 31425-31442, (2023). DOI: https://doi.org/10.1016/j.ijhydene.2023.04.316
  • [5] Yap, J., McLellan, B. “Exploring transitions to a hydrogen economy: Quantitative insights from an expert survey”, International Journal of Hydrogen Energy, 66: 371-386, (2024). DOI: https://doi.org/10.1016/j.ijhydene.2024.03.213
  • [6] Somkun, S., Sirisamphanwong, C., Sukchai, S. “A DSP-based interleaved boost dc–dc converter for fuel cell applications”, International Journal of Hydrogen Energy, 40(19): 6391-6404, (2015). DOI: https://doi.org/10.1016/j.ijhydene.2015.03.069
  • [7] Srinivasan, S., Tiwari, R., Krishnamoorthy, M., Lalitha, M.P., Raj, K.K. “Neural network based MPPT control with reconfigured quadratic boost converter for fuel cell application”, International Journal of Hydrogen Energy, 46(9): 6709–6719, (2021). DOI: https://doi.org/10.1016/j.ijhydene.2020.11.121
  • [8] Hong, T., Geng, Z., Qi, K., Zhao, X., Ambrosio, J., Gu, D. “A wide range unidirectional isolated dc-dc converter for fuel cell electric vehicles”, IEEE Transactions on Industrial Electronics, 68(7): 5932–5943, (2020). DOI: 10.1109/TIE.2020.2998758
  • [9] Fani, R., Farshidi, E., Adib, E., Kosarian, A. “Interleaved non-isolated dc– dc converter for ultra-high step-up applications”, IET Power Electronics, 13(18): 4261-4269, (2020). DOI: https://doi.org/10.1049/iet-pel.2020.0285
  • [10] Nouri, T., Shaneh, M., Benbouzid, M., Kurdkandi, N.V. “An interleaved zvs high step-up converter for renewable energy systems applications”, IEEE Transactions on Industrial Electronics, 69(5): 4786–4800, (2021). DOI: 10.1109/TIE.2021.3080211
  • [11] Bhaskar, M.S., Ramachandaramurthy, V.K., Padmanaban, S., Blaabjerg, F., Ionel, D.M., Mitolo, M., Almakhles, D. “Survey of dc-dc non-isolated topologies for unidirectional power flow in fuel cell vehicles”, IEEE Access, 8: 178130–178166, (2020). DOI: 10.1109/ACCESS.2020.3027041
  • [12] Wu, X., Yang, M., Zhou, M., Zhang, Y., Fu, J. “A novel high-gain dc-dc converter applied in fuel cell vehicles”, IEEE Transactions on Vehicular Technology, 69(11): 12763-12774, (2020). DOI: 10.1109/TVT.2020.3023545
  • [13] Babu, N.R., Saravanan, S. “Modified high step-up coupled inductor based DC-DC converter for PV applications”, Gazi University Journal of Science, 29(4): 981-986, (2016).
  • [14] Kumar, K., Tiwari, R., Varaprasad, P.V., Babu, C., Reddy, K.J. “Performance evaluation of fuel cell fed electric vehicle system with reconfigured quadratic boost converter”, International Journal of Hydrogen Energy, 46(11): 8167–8178, (2021). DOI: https://doi.org/10.1016/j.ijhydene.2020.11.272
  • [15] Vinnikov, D., Roasto, I. “Quasi-z-source-based isolated dc/dc converters for distributed power generation”, IEEE Transactions on Industrial Electronics, 58(1): 192-201, (2010). DOI: 10.1109/TIE.2009.2039460
  • [16] Wu, G., Ruan, X., Ye, Z. “Nonisolated high step-up dc–dc converters adopting switched-capacitor cell”, IEEE Transactions on Industrial Electronics, 62(1): 383-393, (2014). DOI: 10.1109/TIE.2014.2327000
  • [17] Tewari, N., Sreedevi, V. “A novel single switch dc-dc converter with high voltage gain capability for solar pv based power generation systems”, Solar Energy, 171: 466-477, (2018). DOI: https://doi.org/10.1016/j.solener.2018.06.081
  • [18] Haji-Esmaeili, M.M., Babaei, E., Sabahi, M. “High step-up quasi-z source dc–dc converter”, IEEE Transactions on Power Electronics, 33(12): 10563-10571, (2018). DOI: 10.1109/TPEL.2018.2810884
  • [19] Sivaraj, D., Arounassalame, M. “High gain quadratic boost switched capacitor converter for photovoltaic applications”, 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 1234-1239, (2017). DOI: 10.1109/ICPCSI.2017.8391907
  • [20] Zhao, J., Chen, D., Jiang, J. “A novel transformerless high step-up dc-dc converter with active switched-inductor and quasi-z-source network”, IET Power Electronics, 14(9): 1592-1605, (2021). https://doi.org/10.1049/pel2.12128
  • [21] Li, H., Chen D. “A novel high step-up non-isolated quasi-z-source dc-dc converter with active switched inductor and switched capacitor”, IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(5): 5062-5077, (2023). DOI: 10.1109/JESTPE.2023.3295408
  • [22] Akar, F, Kale, M., Yalcin, S., Tas, G. “Comparative study of a bidirectional multi-phase multiinput converter for electric vehicles”, Turkish Journal of Electrical Engineering and Computer Sciences, 30(5): 1677–1694, (2022). DOI: 10.55730/1300-0632.3898
  • [23] Zhuo, S., Gaillard, A., Xu, L., Paire, D., Gao, F. “Extended state observerbased control of dc–dc converters for fuel cell application”, IEEE Transactions on Power Electronics, 35(9): 9923–9932, (2020). DOI: 10.1109/TPEL.2020.2974556
  • [24] Kannan, R., Sundharajan, V. “A novel mppt controller based pemfc system for electric vehicle applications with interleaved sepic converter”, International Journal of Hydrogen Energy, 48(38): 14391-14405, (2023). DOI: https://doi.org/10.1016/j.ijhydene.2022.12.284
  • [25] Saadi, R., Kraa, O., Ayad, M., Becherif, M., Ghodbane, H., Bahri, M., Aboubou, A. “Dual loop controllers using pi, sliding mode and flatness controls applied to low voltage converters for fuel cell applications”, International Journal of Hydrogen Energy, 41(42): 19154-19163, (2016). DOI: https://doi.org/10.1016/j.ijhydene.2016.08.171
  • [26] Garrigos, A., Marroqui, D., Garcia, A., Blanes, J., Gutierrez, R. “Interleaved, switched-inductor, multi-phase, multi-device dc/dc boost converter for non-isolated and high conversion ratio fuel cell applications”, International Journal of Hydrogen Energy, 44(25): 12783-12792, (2019). DOI: https://doi.org/10.1016/j.ijhydene.2018.11.094
  • [27] Huangfu, Y., Ma, Y., Bai, H., Xu, L., Wang, A., Ma, R. “A family of high gain fuel cell front-end converters with low input current ripple for pemfc power conditioning systems”, International Journal of Hydrogen Energy, 46(53): 27156–27172, (2021). DOI: https://doi.org/10.1016/j.ijhydene.2021.05.174
  • [28] Zhang, Y., Liu, Q., Li, J., Sumner, M. “A common ground switched-quasi-zsource bidirectional dc–dc converter with wide-voltage-gain range for evs with hybrid energy sources”, IEEE Transactions on Industrial Electronics, 65(6): 5188–5200, (2017). DOI: 10.1109/TIE.2017.2756603
  • [29] Ye, H., Jin, G., Fei, W., Ghadimi, N. “High step-up interleaved dc/dc converter with high efficiency”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1): 1-20, (2024). DOI: https://doi.org/10.1080/15567036.2020.1716111
  • [30] Meraj, M., Bhaskar, M.S., Iqbal, A., Al-Emadi, N., Rahman, S. “Interleaved multilevel boost converter with minimal voltage multiplier components for high-voltage step-up applications”, IEEE Transactions on Power Electronics, 35(12): 12816-12833, (2020). DOI: 10.1109/TPEL.2020.2992602
  • [31] Beiranvand, R., Sangani, S.H. “A family of interleaved high step-up dc– dc converters by integrating a voltage multiplier and an active clamp circuits”, IEEE Transactions on Power Electronics, 37(7): 8001- 8014, (2022). DOI: 10.1109/TPEL.2022.3141941
  • [32] Slah, F., Mansour, A., Hajer, M., Faouzi, B. “Analysis, modeling and implementation of an interleaved boost dc-dc converter for fuel cell used in electric vehicle”, International Journal of Hydrogen Energy, 42(48): 28852–28864, (2017). DOI: https://doi.org/10.1016/j.ijhydene.2017.08.068
  • [33] Hwang, Y.S., Chen, J.J., Ku, Y.T., Yang, J.Y. “An improved optimumdamping current-mode buck converter with fast-transient response and small-transient voltage using new current sensing circuits”, IEEE Transactions on Industrial Electronics, 68(10): 9505-9514, (2020). DOI: DOI: 10.1109/TIE.2020.3020030
  • [34] Ofoli, A.R., Rubaai, A. “Real-time implementation of a fuzzy logic controller for switch-mode power-stage dc–dc converters”, IEEE Transactions on Industry Applications, 42(6): 1367-1374, (2006). DOI: 10.1109/TIA.2006.882669
  • [35] Perry, A. G., Feng, G., Liu, Y.F., Sen, P.C. “A design method for PI-like fuzzy logic controllers for dc–dc converter”, IEEE Transactions on Industrial Electronics, 54(5): 2688-2696, (2007). DOI: 10.1109/TIE.2007.899858
  • [36] Saravanan, S., Usha Rani P., Thakre, M.P. “Evaluation and improvement of a transformerless high-efficiency dc–dc converter for renewable energy applications employing a fuzzy logic controller”, Journal of Metrology Society of India (MAPAN), 37(2): 291-310, (2022). DOI: https://doi.org/10.1007/s12647-021-00530-5
  • [37] Kart, S., Demir, F., Kocaarslan, I., Genc, N. “Increasing pem fuel cell˙ performance via fuzzy-logic controlled cascaded dc-dc boost converter”, International Journal of Hydrogen Energy, 54(7): 84-95, (2024). DOI: https://doi.org/10.1016/j.ijhydene.2023.05.130
  • [38] Daraz, A., Basit, A., Zhang, G. “Performance analysis of pid controller and fuzzy logic controller for dc-dc boost converter”, PLOS One, 18(10): 1-18, (2023). DOI: https://doi.org/10.1371/journal.pone.0281122
  • [39] Zhang, H., Li, Y., Xie, R., Song, J., Liang, B., Huangfu, Y. “Adaptive model predictive control of an interleaved boost converter using realtime updated model”, IEEE Transactions on Power Electronics, 38(2): 1720-1731, (2022). DOI: 10.1109/TPEL.2022.3216600
  • [40] Ge, X., Xiao, D., Lu, Y., Luo, W. “Adaptive sliding mode control for interleaved nx multilevel boost converter”, IEEE Access, 11: 27843- 27852, (2023). DOI: 10.1109/ACCESS.2023.3257997
  • [41] Smadi, A.A., Khoucha, F., Amirat, Y., Benrabah, A., Benbouzid, M. “Active disturbance rejection control of an interleaved high gain dc-dc boost converter for fuel cell applications”, Energies, 16(3): 1-17, (2023). DOI: https://doi.org/10.3390/en16031019
  • [42] Lee, K.M., Kim, I.S. “Unified modeling and double-loop controller design of three-level boost converter”, Sustainability, 15(2): 1-17, (2023). DOI: https://doi.org/10.3390/su15021597
  • [43] Salam, Z., Taeed, F., Ayob, S.M. “Design and implementation of a single input fuzzy logic controller for boost converters”, Journal of Power Electronics, 11(4): 542-550, (2011). DOI: https://doi.org/10.6113/JPE.2011.11.4.542
  • [44] Suresh, D., Singh, S.P. “Design of single input fuzzy logic controller for shunt active power filter”, IETE Journal of Research, 61(5): 500-509, (2015). DOI: https://doi.org/10.1080/03772063.2015.1024176
  • [45] Saleem, O., Shami, U.T., Mahmood-ul Hasan, K. “Time-optimal control of dc-dc buck converter using single-input fuzzy augmented fractionalorder pi controller”, International Transactions on Electrical Energy Systems, 29(10): 1-20, (2019). DOI: https://doi.org/10.1002/2050-7038.12064
  • [46] Choi, B.J., Kwak, S.W., Kim, B.K. “Design and stability analysis of single-input fuzzy logic controller”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 30(2): 303–309, (2000). DOI: 10.1109/3477.836378
  • [47] Uzunoglu, M., Alam, M. “Dynamic modeling, design and simulation of a pem fuel cell/ultra-capacitor hybrid system for vehicular applications”, Energy Conversion and Management, 48(5): 1544-1553, (2007). DOI: https://doi.org/10.1016/j.enconman.2006.11.014
  • [48] He, L., Lin, Z., Tan, Q., Lu, F., Zeng, T. “Interleaved high step-up current sharing converter with coupled inductors”, Electronics, 10(4): 1-14, (2021). DOI: https://doi.org/10.3390/electronics10040436
  • [49] Erdinc, O., Elma, O., Uzunoglu, M., Selamogullari, U., Vural, B., Ugur, E., Boynuegri, A., Dusmez, S. “Experimental performance assessment of an online energy management strategy for varying renewable power production suppression”, International Journal of Hydrogen Energy, 37(6): 4737–4748, (2012). DOI: https://doi.org/10.1016/j.ijhydene.2011.12.042
  • [50] Soyturk, G., Kizilkan, O., Ezan, M.A., Colpan, C.O. “Design, modeling, and analysis of a PV/T and PEM fuel cell based hybrid energy system for an off-grid house”, International Journal of Hydrogen Energy, 67: 1181–1193, (2024). DOI: https://doi.org/10.1016/j.ijhydene.2023.11.291

Year 2025, Volume: 38 Issue: 3, 1276 - 1292, 01.09.2025
https://doi.org/10.35378/gujs.1605928

Abstract

References

  • [1] Elsayed, A.T., Mohamed, A.A., Mohammed, O.A. “DC microgrids and distribution systems: An overview”, Electric Power Systems Research, (119): 407-417, (2015). DOI: https://doi.org/10.1016/j.epsr.2014.10.017
  • [2] Reddy, K.J, Natarajan, S. “Energy sources and multi-input DC-DC converters used in hybrid electric vehicle applications–a review”, International Journal of Hydrogen Energy”, 43(36):17387-17408, (2018). DOI: https://doi.org/10.1016/j.ijhydene.2018.07.076
  • [3] Sazali, N., Wan Salleh, W.N., Jamaludin, A.S., Mhd Razali, M.N. “New perspectives on fuel cell technology: A brief review”, Membranes, 10(5): 99, (2020). DOI: https://doi.org/10.3390/membranes10050099
  • [4] Harichandan, S., Kar, S.K., Rai, P.K. “A systematic and critical review of green hydrogen economy in India”, International Journal of Hydrogen Energy, 48(81): 31425-31442, (2023). DOI: https://doi.org/10.1016/j.ijhydene.2023.04.316
  • [5] Yap, J., McLellan, B. “Exploring transitions to a hydrogen economy: Quantitative insights from an expert survey”, International Journal of Hydrogen Energy, 66: 371-386, (2024). DOI: https://doi.org/10.1016/j.ijhydene.2024.03.213
  • [6] Somkun, S., Sirisamphanwong, C., Sukchai, S. “A DSP-based interleaved boost dc–dc converter for fuel cell applications”, International Journal of Hydrogen Energy, 40(19): 6391-6404, (2015). DOI: https://doi.org/10.1016/j.ijhydene.2015.03.069
  • [7] Srinivasan, S., Tiwari, R., Krishnamoorthy, M., Lalitha, M.P., Raj, K.K. “Neural network based MPPT control with reconfigured quadratic boost converter for fuel cell application”, International Journal of Hydrogen Energy, 46(9): 6709–6719, (2021). DOI: https://doi.org/10.1016/j.ijhydene.2020.11.121
  • [8] Hong, T., Geng, Z., Qi, K., Zhao, X., Ambrosio, J., Gu, D. “A wide range unidirectional isolated dc-dc converter for fuel cell electric vehicles”, IEEE Transactions on Industrial Electronics, 68(7): 5932–5943, (2020). DOI: 10.1109/TIE.2020.2998758
  • [9] Fani, R., Farshidi, E., Adib, E., Kosarian, A. “Interleaved non-isolated dc– dc converter for ultra-high step-up applications”, IET Power Electronics, 13(18): 4261-4269, (2020). DOI: https://doi.org/10.1049/iet-pel.2020.0285
  • [10] Nouri, T., Shaneh, M., Benbouzid, M., Kurdkandi, N.V. “An interleaved zvs high step-up converter for renewable energy systems applications”, IEEE Transactions on Industrial Electronics, 69(5): 4786–4800, (2021). DOI: 10.1109/TIE.2021.3080211
  • [11] Bhaskar, M.S., Ramachandaramurthy, V.K., Padmanaban, S., Blaabjerg, F., Ionel, D.M., Mitolo, M., Almakhles, D. “Survey of dc-dc non-isolated topologies for unidirectional power flow in fuel cell vehicles”, IEEE Access, 8: 178130–178166, (2020). DOI: 10.1109/ACCESS.2020.3027041
  • [12] Wu, X., Yang, M., Zhou, M., Zhang, Y., Fu, J. “A novel high-gain dc-dc converter applied in fuel cell vehicles”, IEEE Transactions on Vehicular Technology, 69(11): 12763-12774, (2020). DOI: 10.1109/TVT.2020.3023545
  • [13] Babu, N.R., Saravanan, S. “Modified high step-up coupled inductor based DC-DC converter for PV applications”, Gazi University Journal of Science, 29(4): 981-986, (2016).
  • [14] Kumar, K., Tiwari, R., Varaprasad, P.V., Babu, C., Reddy, K.J. “Performance evaluation of fuel cell fed electric vehicle system with reconfigured quadratic boost converter”, International Journal of Hydrogen Energy, 46(11): 8167–8178, (2021). DOI: https://doi.org/10.1016/j.ijhydene.2020.11.272
  • [15] Vinnikov, D., Roasto, I. “Quasi-z-source-based isolated dc/dc converters for distributed power generation”, IEEE Transactions on Industrial Electronics, 58(1): 192-201, (2010). DOI: 10.1109/TIE.2009.2039460
  • [16] Wu, G., Ruan, X., Ye, Z. “Nonisolated high step-up dc–dc converters adopting switched-capacitor cell”, IEEE Transactions on Industrial Electronics, 62(1): 383-393, (2014). DOI: 10.1109/TIE.2014.2327000
  • [17] Tewari, N., Sreedevi, V. “A novel single switch dc-dc converter with high voltage gain capability for solar pv based power generation systems”, Solar Energy, 171: 466-477, (2018). DOI: https://doi.org/10.1016/j.solener.2018.06.081
  • [18] Haji-Esmaeili, M.M., Babaei, E., Sabahi, M. “High step-up quasi-z source dc–dc converter”, IEEE Transactions on Power Electronics, 33(12): 10563-10571, (2018). DOI: 10.1109/TPEL.2018.2810884
  • [19] Sivaraj, D., Arounassalame, M. “High gain quadratic boost switched capacitor converter for photovoltaic applications”, 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 1234-1239, (2017). DOI: 10.1109/ICPCSI.2017.8391907
  • [20] Zhao, J., Chen, D., Jiang, J. “A novel transformerless high step-up dc-dc converter with active switched-inductor and quasi-z-source network”, IET Power Electronics, 14(9): 1592-1605, (2021). https://doi.org/10.1049/pel2.12128
  • [21] Li, H., Chen D. “A novel high step-up non-isolated quasi-z-source dc-dc converter with active switched inductor and switched capacitor”, IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(5): 5062-5077, (2023). DOI: 10.1109/JESTPE.2023.3295408
  • [22] Akar, F, Kale, M., Yalcin, S., Tas, G. “Comparative study of a bidirectional multi-phase multiinput converter for electric vehicles”, Turkish Journal of Electrical Engineering and Computer Sciences, 30(5): 1677–1694, (2022). DOI: 10.55730/1300-0632.3898
  • [23] Zhuo, S., Gaillard, A., Xu, L., Paire, D., Gao, F. “Extended state observerbased control of dc–dc converters for fuel cell application”, IEEE Transactions on Power Electronics, 35(9): 9923–9932, (2020). DOI: 10.1109/TPEL.2020.2974556
  • [24] Kannan, R., Sundharajan, V. “A novel mppt controller based pemfc system for electric vehicle applications with interleaved sepic converter”, International Journal of Hydrogen Energy, 48(38): 14391-14405, (2023). DOI: https://doi.org/10.1016/j.ijhydene.2022.12.284
  • [25] Saadi, R., Kraa, O., Ayad, M., Becherif, M., Ghodbane, H., Bahri, M., Aboubou, A. “Dual loop controllers using pi, sliding mode and flatness controls applied to low voltage converters for fuel cell applications”, International Journal of Hydrogen Energy, 41(42): 19154-19163, (2016). DOI: https://doi.org/10.1016/j.ijhydene.2016.08.171
  • [26] Garrigos, A., Marroqui, D., Garcia, A., Blanes, J., Gutierrez, R. “Interleaved, switched-inductor, multi-phase, multi-device dc/dc boost converter for non-isolated and high conversion ratio fuel cell applications”, International Journal of Hydrogen Energy, 44(25): 12783-12792, (2019). DOI: https://doi.org/10.1016/j.ijhydene.2018.11.094
  • [27] Huangfu, Y., Ma, Y., Bai, H., Xu, L., Wang, A., Ma, R. “A family of high gain fuel cell front-end converters with low input current ripple for pemfc power conditioning systems”, International Journal of Hydrogen Energy, 46(53): 27156–27172, (2021). DOI: https://doi.org/10.1016/j.ijhydene.2021.05.174
  • [28] Zhang, Y., Liu, Q., Li, J., Sumner, M. “A common ground switched-quasi-zsource bidirectional dc–dc converter with wide-voltage-gain range for evs with hybrid energy sources”, IEEE Transactions on Industrial Electronics, 65(6): 5188–5200, (2017). DOI: 10.1109/TIE.2017.2756603
  • [29] Ye, H., Jin, G., Fei, W., Ghadimi, N. “High step-up interleaved dc/dc converter with high efficiency”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1): 1-20, (2024). DOI: https://doi.org/10.1080/15567036.2020.1716111
  • [30] Meraj, M., Bhaskar, M.S., Iqbal, A., Al-Emadi, N., Rahman, S. “Interleaved multilevel boost converter with minimal voltage multiplier components for high-voltage step-up applications”, IEEE Transactions on Power Electronics, 35(12): 12816-12833, (2020). DOI: 10.1109/TPEL.2020.2992602
  • [31] Beiranvand, R., Sangani, S.H. “A family of interleaved high step-up dc– dc converters by integrating a voltage multiplier and an active clamp circuits”, IEEE Transactions on Power Electronics, 37(7): 8001- 8014, (2022). DOI: 10.1109/TPEL.2022.3141941
  • [32] Slah, F., Mansour, A., Hajer, M., Faouzi, B. “Analysis, modeling and implementation of an interleaved boost dc-dc converter for fuel cell used in electric vehicle”, International Journal of Hydrogen Energy, 42(48): 28852–28864, (2017). DOI: https://doi.org/10.1016/j.ijhydene.2017.08.068
  • [33] Hwang, Y.S., Chen, J.J., Ku, Y.T., Yang, J.Y. “An improved optimumdamping current-mode buck converter with fast-transient response and small-transient voltage using new current sensing circuits”, IEEE Transactions on Industrial Electronics, 68(10): 9505-9514, (2020). DOI: DOI: 10.1109/TIE.2020.3020030
  • [34] Ofoli, A.R., Rubaai, A. “Real-time implementation of a fuzzy logic controller for switch-mode power-stage dc–dc converters”, IEEE Transactions on Industry Applications, 42(6): 1367-1374, (2006). DOI: 10.1109/TIA.2006.882669
  • [35] Perry, A. G., Feng, G., Liu, Y.F., Sen, P.C. “A design method for PI-like fuzzy logic controllers for dc–dc converter”, IEEE Transactions on Industrial Electronics, 54(5): 2688-2696, (2007). DOI: 10.1109/TIE.2007.899858
  • [36] Saravanan, S., Usha Rani P., Thakre, M.P. “Evaluation and improvement of a transformerless high-efficiency dc–dc converter for renewable energy applications employing a fuzzy logic controller”, Journal of Metrology Society of India (MAPAN), 37(2): 291-310, (2022). DOI: https://doi.org/10.1007/s12647-021-00530-5
  • [37] Kart, S., Demir, F., Kocaarslan, I., Genc, N. “Increasing pem fuel cell˙ performance via fuzzy-logic controlled cascaded dc-dc boost converter”, International Journal of Hydrogen Energy, 54(7): 84-95, (2024). DOI: https://doi.org/10.1016/j.ijhydene.2023.05.130
  • [38] Daraz, A., Basit, A., Zhang, G. “Performance analysis of pid controller and fuzzy logic controller for dc-dc boost converter”, PLOS One, 18(10): 1-18, (2023). DOI: https://doi.org/10.1371/journal.pone.0281122
  • [39] Zhang, H., Li, Y., Xie, R., Song, J., Liang, B., Huangfu, Y. “Adaptive model predictive control of an interleaved boost converter using realtime updated model”, IEEE Transactions on Power Electronics, 38(2): 1720-1731, (2022). DOI: 10.1109/TPEL.2022.3216600
  • [40] Ge, X., Xiao, D., Lu, Y., Luo, W. “Adaptive sliding mode control for interleaved nx multilevel boost converter”, IEEE Access, 11: 27843- 27852, (2023). DOI: 10.1109/ACCESS.2023.3257997
  • [41] Smadi, A.A., Khoucha, F., Amirat, Y., Benrabah, A., Benbouzid, M. “Active disturbance rejection control of an interleaved high gain dc-dc boost converter for fuel cell applications”, Energies, 16(3): 1-17, (2023). DOI: https://doi.org/10.3390/en16031019
  • [42] Lee, K.M., Kim, I.S. “Unified modeling and double-loop controller design of three-level boost converter”, Sustainability, 15(2): 1-17, (2023). DOI: https://doi.org/10.3390/su15021597
  • [43] Salam, Z., Taeed, F., Ayob, S.M. “Design and implementation of a single input fuzzy logic controller for boost converters”, Journal of Power Electronics, 11(4): 542-550, (2011). DOI: https://doi.org/10.6113/JPE.2011.11.4.542
  • [44] Suresh, D., Singh, S.P. “Design of single input fuzzy logic controller for shunt active power filter”, IETE Journal of Research, 61(5): 500-509, (2015). DOI: https://doi.org/10.1080/03772063.2015.1024176
  • [45] Saleem, O., Shami, U.T., Mahmood-ul Hasan, K. “Time-optimal control of dc-dc buck converter using single-input fuzzy augmented fractionalorder pi controller”, International Transactions on Electrical Energy Systems, 29(10): 1-20, (2019). DOI: https://doi.org/10.1002/2050-7038.12064
  • [46] Choi, B.J., Kwak, S.W., Kim, B.K. “Design and stability analysis of single-input fuzzy logic controller”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 30(2): 303–309, (2000). DOI: 10.1109/3477.836378
  • [47] Uzunoglu, M., Alam, M. “Dynamic modeling, design and simulation of a pem fuel cell/ultra-capacitor hybrid system for vehicular applications”, Energy Conversion and Management, 48(5): 1544-1553, (2007). DOI: https://doi.org/10.1016/j.enconman.2006.11.014
  • [48] He, L., Lin, Z., Tan, Q., Lu, F., Zeng, T. “Interleaved high step-up current sharing converter with coupled inductors”, Electronics, 10(4): 1-14, (2021). DOI: https://doi.org/10.3390/electronics10040436
  • [49] Erdinc, O., Elma, O., Uzunoglu, M., Selamogullari, U., Vural, B., Ugur, E., Boynuegri, A., Dusmez, S. “Experimental performance assessment of an online energy management strategy for varying renewable power production suppression”, International Journal of Hydrogen Energy, 37(6): 4737–4748, (2012). DOI: https://doi.org/10.1016/j.ijhydene.2011.12.042
  • [50] Soyturk, G., Kizilkan, O., Ezan, M.A., Colpan, C.O. “Design, modeling, and analysis of a PV/T and PEM fuel cell based hybrid energy system for an off-grid house”, International Journal of Hydrogen Energy, 67: 1181–1193, (2024). DOI: https://doi.org/10.1016/j.ijhydene.2023.11.291
There are 50 citations in total.

Details

Primary Language English
Subjects Power Electronics
Journal Section Electrical & Electronics Engineering
Authors

Furkan Akar 0000-0002-1460-4468

Early Pub Date July 31, 2025
Publication Date September 1, 2025
Submission Date December 23, 2024
Acceptance Date June 1, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA Akar, F. (2025). Intelligent Control of a New High Voltage Gain Interleaved DC-DC Converter for Fuel Cell Applications. Gazi University Journal of Science, 38(3), 1276-1292. https://doi.org/10.35378/gujs.1605928
AMA Akar F. Intelligent Control of a New High Voltage Gain Interleaved DC-DC Converter for Fuel Cell Applications. Gazi University Journal of Science. September 2025;38(3):1276-1292. doi:10.35378/gujs.1605928
Chicago Akar, Furkan. “Intelligent Control of a New High Voltage Gain Interleaved DC-DC Converter for Fuel Cell Applications”. Gazi University Journal of Science 38, no. 3 (September 2025): 1276-92. https://doi.org/10.35378/gujs.1605928.
EndNote Akar F (September 1, 2025) Intelligent Control of a New High Voltage Gain Interleaved DC-DC Converter for Fuel Cell Applications. Gazi University Journal of Science 38 3 1276–1292.
IEEE F. Akar, “Intelligent Control of a New High Voltage Gain Interleaved DC-DC Converter for Fuel Cell Applications”, Gazi University Journal of Science, vol. 38, no. 3, pp. 1276–1292, 2025, doi: 10.35378/gujs.1605928.
ISNAD Akar, Furkan. “Intelligent Control of a New High Voltage Gain Interleaved DC-DC Converter for Fuel Cell Applications”. Gazi University Journal of Science 38/3 (September2025), 1276-1292. https://doi.org/10.35378/gujs.1605928.
JAMA Akar F. Intelligent Control of a New High Voltage Gain Interleaved DC-DC Converter for Fuel Cell Applications. Gazi University Journal of Science. 2025;38:1276–1292.
MLA Akar, Furkan. “Intelligent Control of a New High Voltage Gain Interleaved DC-DC Converter for Fuel Cell Applications”. Gazi University Journal of Science, vol. 38, no. 3, 2025, pp. 1276-92, doi:10.35378/gujs.1605928.
Vancouver Akar F. Intelligent Control of a New High Voltage Gain Interleaved DC-DC Converter for Fuel Cell Applications. Gazi University Journal of Science. 2025;38(3):1276-92.