Research Article
BibTex RIS Cite

Year 2025, Volume: 38 Issue: 4, 1968 - 1998, 01.12.2025
https://doi.org/10.35378/gujs.1501298

Abstract

References

  • [1] Gao, Y., González, V.A. and Yiu, T.W., “Exploring the Relationship between Construction Workers’ Personality Traits and Safety Behavior”, J. Constr. Eng. Manag, 146: 04019111, (2020). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0001763
  • [2] Lee, W., Migliaccio, G.C., Lin, K.-Y. and Seto, E.Y.W., “Workforce development: understanding task-level job demands-resources, burnout, and performance in unskilled construction workers”, Saf. Sci, 123: 104577, (2020). DOI: https://doi.org/10.1016/j.ssci.2019.104577
  • [3] Karuppiah, K., Sankaranarayanan, B. and Ali, S.M., “A fuzzy ANP–DEMATEL model on faulty behavior risks: implications for improving safety in the workplace”, Int. J. Occup. Saf. Ergon, 28: 923–940, (2022). DOI: https://doi.org/10.1080/10803548.2020.1847486
  • [4] Altunkaynak, B., “A statistical study of occupational accidents in the manufacturing industry in Turkey”, Int. J. Ind. Ergon, 66: 101–109, (2018). DOI: https://doi.org/10.1016/j.ergon.2018.02.012
  • [5] European Agency for Safety and Health at Work, “Occupational safety and health in Europe - state and trends 2023”, (2023). COI: 20.500.12592/qhkb73
  • [6] Mutlu, N.G. and Altuntas, S., “Analyzing factors influencing the severity of occupational accidents in textile industry using decision tree algorithms”, Clust. Comput, 27: 787–825, (2024). DOI: https://doi.org/10.1007/s10586-022-03958-9
  • [7] T.C. Çalışma Ve Sosyal Güvenlik Bakanlığı Rehberlik ve Teftiş Başkanlığı, Y.Y., “2022 Yılı Yapı İşyerlerinde İş sağlığı ve Güvenliği Programlı Teftişi”, (2022).
  • [8] Fernández-Muñiz, B., Montes-Peón, J.M. and Vázquez-Ordás, C.J., “Safety leadership, risk management and safety performance in Spanish firms”, Saf. Sci, 70: 295–307, (2014). https://doi.org/10.1016/j.ssci.2014.07.010
  • [9] Hanvold, T.N., Kines, P., Nykänen, M., Thomée, S., Holte, K.A., Vuori, J., Wærsted, M. and Veiersted, K.B., “Occupational Safety and Health Among Young Workers in the Nordic Countries: A Systematic Literature Review”, Saf. Health Work, 10: 3–20, (2019). DOI: https://doi.org/10.1016/j.shaw.2018.12.003
  • [10] Chan, A.P.C. and Chan, A.P.L., “Key performance indicators for measuring construction success”, Benchmarking Int. J, 11: 203–221, (2004). DOI: https://doi.org/10.1108/14635770410532624
  • [11] Eskandari, D., Gharabagh, M.J., Barkhordari, A., Gharari, N., Panahi, D., Gholami, A. and Teimori-Boghsani, G., “Development of a scale for assessing the organization’s safety performance based fuzzy ANP”, J. Loss Prev. Process Ind, 69: 104342, (2021). DOI: https://doi.org/10.1016/j.jlp.2020.104342
  • [12] Sheehan, C., Donohue, R., Shea, T., Cooper, B. and Cieri, H.D., “Leading and lagging indicators of occupational health and safety: The moderating role of safety leadership”, Accid. Anal. Prev, 92: 130–138, (2016). DOI: https://doi.org/10.1016/j.aap.2016.03.018
  • [13] Ale, B., “More thinking about process safety indicators”, Saf. Sci, 47: 470–471, (2009). https://doi.org/10.1016/j.ssci.2008.07.012
  • [14] Beriha, G.S., Patnaik, B., Mahapatra, S.S. and Padhee, S., “Assessment of safety performance in Indian industries using fuzzy approach”, Expert Syst. Appl, 39: 3311–3323, (2012). DOI: https://doi.org/10.1016/j.eswa.2011.09.018
  • [15] Abu-Khader, M.M., “Impact of Human Behaviour on Process Safety Management in Developing Countries”, Process Saf. Environ. Prot, 82: 431–437, (2004). DOI: https://doi.org/10.1205/psep.82.6.431.53206
  • [16] Anderson, M., “Behavioural Safety and Major Accident Hazards”, Process Saf. Environ. Prot, 83: 109–116, (2005). DOI: https://doi.org/10.1205/psep.04230
  • [17] Chen, Y., Yu, X. and Yang, Z., “A fuzzy decision support system for risk prioritization in fine kinney-based occupational risk analysis”, J. Soft Comput. Decis. Anal, 3: 1–17, (2025). DOI: https://doi.org/10.31181/jscda31202545
  • [18] Aksüt, G., Eren, T. and Alakaş, H.M., “Using wearable technological devices to improve workplace health and safety: An assessment on a sector base with multi-criteria decision-making methods”, Ain Shams Eng. J, 15: 102423, (2024). DOI: https://doi.org/10.1016/j.asej.2023.102423
  • [19] Ayvaz, B., Tatar, V., Sağır, Z. and Pamucar, D., “An Integrated fine-kinney risk assessment model utilizing fermatean fuzzy AHP-WASPAS for occupational hazards in the aquaculture sector”, Process Saf. Environ. Prot, 186: 232–251, (2024). DOI: https://doi.org/10.1016/j.psep.2024.04.025
  • [20] Ayyildiz, E., Erdogan, M. and Gul, M., “A comprehensive risk assessment framework for occupational health and safety in pharmaceutical warehouses using pythagorean fuzzy bayesian networks”, Eng. Appl. Artif. Intell, 135: 108763, (2024). DOI: https://doi.org/10.1016/j.engappai.2024.108763
  • [21] Kursunoglu, N., “Fuzzy multi-criteria decision-making framework for controlling methane explosions in coal mines”, Environ. Sci. Pollut. Res, 31: 9045–9061, (2024). DOI: https://doi.org/10.1007/s11356-023-31782-0
  • [22] Serrato, R.B., “A novel global probabilistic fuzzy system for occupational risk assessment (GPFSORA)”, Ing. Investig, 42: e104181, (2024). DOI: https://doi.org/10.15446/ing.investig.104181
  • [23] Sherin, S. and Raza, S., “risk analysis and prioritization with AHP and fuzzy TOPSIS techniques in surface mines of Pakistan”, J. Min. Environ, 15: 463–479, (2024). DOI: https://doi.org/10.22044/jme.2023.13687.2533
  • [24] Ahmed, T., Hoque, A.S.M., Karmaker, C.L. and Ahmed, S., “Integrated approach for occupational health and safety (OHS) risk Assessment: An Empirical (Case) study in Small enterprises”, Saf. Sci, 164: 106143, (2023). DOI: https://doi.org/10.1016/j.ssci.2023.106143
  • [25] Badida, P., Janakiraman, S. and Jayaprakash, J., “Occupational health and safety risk assessment using a fuzzy multi-criteria approach in a hospital in Chennai, India”, Int. J. Occup. Saf. Ergon, 29: 1047–1056, (2023). DOI: https://doi.org/10.1080/10803548.2022.2109323
  • [26] Koulinas, G.K., Demesouka, O.E., Marhavilas, P.K., Orfanos, N.I. and Koulouriotis, D.E., “Multicriteria Health and Safety Risk Assessments in Highway Construction Projects”, Sustainability, 15: 9241, (2023). DOI: https://doi.org/10.3390/su15129241
  • [27] Küçükarslan, A.B., Köksal, M. and Ekmekci, I., “A Model Proposal for Measuring Performance in Occupational Health and Safety in Forest Fires”, Sustainability, 15: 14729, (2023). DOI: https://doi.org/10.3390/su152014729
  • [28] Chen, W., Yang, B. and Liu, Y., “An integrated QFD and FMEA approach to identify risky components of products”, Adv. Eng. Inform, 54: 101808, (2022). DOI: https://doi.org/10.1016/j.aei.2022.101808
  • [29] Ye, W., Gao, C., Liu, Z., Wang, Q. and Su, W., “A Fuzzy-AHP-based variable weight safety evaluation model for expansive soil slope”, Nat. Hazards, 119: 559–581, (2023). DOI: https://doi.org/10.1007/s11069-023-06130-7
  • [30] Marhavilas, P.K., Filippidis, M., Koulinas, G.K. and Koulouriotis, D.E., “Safety-assessment by hybridizing the MCDM/AHP & HAZOP-DMRA techniques through safety’s level colored maps: Implementation in a petrochemical industry”, Alex. Eng. J, 61: 6959–6977, (2022). DOI: https://doi.org/10.1016/j.aej.2021.12.040
  • [31] Omidi, L., Salehi, V., Zakerian, S.A. and Nasl Saraji, J., “Assessing the influence of safety climate-related factors on safety performance using an Integrated Entropy-TOPSIS Approach”, J. Ind. Prod. Eng, 39: 73–82, (2022). DOI: https://doi.org/10.1080/21681015.2021.1958937
  • [32] Unver, S. and Ergenc, I., “Safety risk identification and prioritize of forest logging activities using analytic hierarchy process (AHP)”, Alex. Eng. J, 60: 1591–1599, (2021). DOI: https://doi.org/10.1016/j.aej.2020.11.012
  • 33] Ferrari, G.N., Leal, G.C.L., Galdamez, E.V.C. and Souza, R.C.T.D., “Prioritization of occupational health and safety indicators using the Fuzzy-AHP method”, Production, 30: e20200054, (2020). DOI: https://doi.org/10.1590/0103-6513.20200054
  • [34] Zytoon, M.A., “A Decision Support Model for Prioritization of Regulated Safety Inspections Using Integrated Delphi, AHP and Double-Hierarchical TOPSIS Approach”, IEEE Access, 8: 83444–83464, (2020). DOI: https://doi.org/10.1109/ACCESS.2020.2991179
  • [35] Akbar, S. and Ahsan, K., “Workplace safety compliance implementation challenges in apparel supplier firms”, J. Clean. Prod, 232: 462–473, (2019). DOI: https://doi.org/10.1016/j.jclepro.2019.05.368
  • [36] Gul, M., Ak, M.F. and Guneri, A.F., “Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry”, J. Safety Res, 69: 135–153, (2019). DOI: https://doi.org/10.1016/j.jsr.2019.03.005
  • [37] Dağdeviren, M. and Yüksel, İ., “Developing a fuzzy analytic hierarchy process (AHP) model for behavior-based safety management”, Inf. Sci, 178: 1717–1733, (2008). DOI: https://doi.org/10.1016/j.ins.2007.10.016
  • [38] Ilbahar, E., Karaşan, A., Cebi, S. and Kahraman, C., “A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system”, Saf. Sci, 103: 124–136, (2018). DOI: https://doi.org/10.1016/j.ssci.2017.10.025
  • [39] Raviv, G., Fishbain, B. and Shapira, A., “Analyzing risk factors in crane-related near-miss and accident reports”, Saf. Sci, 91: 192–205, (2017a). DOI: https://doi.org/10.1016/j.ssci.2016.08.022
  • [40] Raviv, G., Shapira, A. and Fishbain, B., “AHP-based analysis of the risk potential of safety incidents: Case study of cranes in the construction industry”, Saf. Sci, 91: 298–309, (2017b). DOI: https://doi.org/10.1016/j.ssci.2016.08.027
  • [41] Basahel, A. and Taylan, O., “Using fuzzy ahp and fuzzy topsis approaches for assessing safety conditions at worksites in construction industry”, Int. J. Saf. Secur. Eng, 6: 728–745, (2016). DOI: https://doi.org/10.2495/SAFE-V6-N4-728-745
  • [42] Gnoni, M.G., Duraccio, V. and Iavagnilio, R., “A fuzzy AHP-based approach for assessing the faulty behaviour risk at workplace”, Int. J. Bus. Syst. Res, 10: 291, (2016). DOI: https://doi.org/10.1504/IJBSR.2016.075759
  • [43] Enchill, E. and Nyamah, E.Y., “AHP Application In Occupational Safety Analysis In An Industrial Gas Manufacturing Company (Ghana)”, Int. J. Manag. Econ. 1, (2015). DOI: https://doi.org/10.1016/j.ssci.2014.11.018
  • [44] Podgórski, D., “Measuring operational performance of OSH management system – A demonstration of AHP-based selection of leading key performance indicators”, Saf. Sci, 73: 146–166, (2015). DOI: https://doi.org/10.1016/j.ssci.2014.11.018
  • [45] Aminbakhsh, S., Gunduz, M. and Sonmez, R., “Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects”, J. Safety Res, 46: 99–105, (2013). DOI: https://doi.org/10.1016/j.jsr.2013.05.003
  • [46] Zheng, G., Zhu, N., Tian, Z., Chen, Y. and Sun, B., “Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments”, Saf. Sci, 50: 228–239, (2012). DOI: https://doi.org/10.1016/j.ssci.2011.08.042
  • [47] Gürcanli, G.E. and Müngen, U., “An occupational safety risk analysis method at construction sites using fuzzy sets”, Int. J. Ind. Ergon, 39: 371–387, (2009). DOI: https://doi.org/10.1016/j.ergon.2008.10.006
  • [48] Dağdeviren, M., Yüksel, İ. and Kurt, M., “A fuzzy analytic network process (ANP) model to identify faulty behavior risk (FBR) in work system”, Saf. Sci, 46: 771–783, (2008). DOI: https://doi.org/10.1016/j.ssci.2007.02.002
  • [49] Zohar, D., “Safety climate: Conceptual and measurement issues”, in: Quick, J. C. , Tetrick, L. E. (Eds.), Handbook of Occupational Health Psychology. American Psychological Association, Washington, pp. 123–142, (2003). DOI: https://doi.org/10.1037/10474-006
  • [50] Clarke, S., “The relationship between safety climate and safety performance: A meta-analytic review”, J. Occup. Health Psychol, 11: 315–327, (2006). DOI: . https://doi.org/10.1037/1076-8998.11.4.315
  • [51] Oah, S., Na, R. and Moon, K., “The Influence of Safety Climate, Safety Leadership, Workload, and Accident Experiences on Risk Perception: A Study of Korean Manufacturing Workers”, Saf. Health Work, 9: 427–433, (2018). DOI: https://doi.org/10.1016/j.shaw.2018.01.008
  • [52] Kouabenan, D.R., Ngueutsa, R. and Mbaye, S., “Safety climate, perceived risk, and involvement in safety management”, Saf. Sci, 77: 72–79, (2015). DOI: https://doi.org/10.1016/j.ssci.2015.03.009
  • [53] Zohar, D. and Luria, G., “A Multilevel Model of Safety Climate: Cross-Level Relationships Between Organization and Group-Level Climates”, J. Appl. Psychol, 90: 616–628, (2005). DOI: https://doi.org/10.1037/0021-9010.90.4.616
  • [54] Feng, Y., “Effect of safety investments on safety performance of building projects”, Saf. Sci, 59: 28–45, (2013). DOI: https://doi.org/10.1016/j.ssci.2013.04.004
  • [55] Fang, D., Jiang, Z., Zhang, M. and Wang, H., “An experimental method to study the effect of fatigue on construction workers’ safety performance”, Saf. Sci, 73: 80–91, (2015). DOI: https://doi.org/10.1016/j.ssci.2014.11.019
  • [56] Pinto, A., Nunes, I.L. and Ribeiro, R.A., “Occupational risk assessment in construction industry – Overview and reflection”, Saf. Sci, 49: 616–624, (2011). DOI: https://doi.org/10.1016/j.ssci.2011.01.003
  • [57] Huang, Y.-H., Ho, M., Smith, G.S. and Chen, P.Y., “Safety climate and self-reported injury: Assessing the mediating role of employee safety control”, Accid. Anal. Prev, 38: 425–433, (2006). DOI: https://doi.org/10.1016/j.aap.2005.07.002
  • [58] Fleming, “Effective Supervisory Safety Leadership Behaviors in the Offshore Oil and Gas Industry”, HSE Books, (2001).
  • [59] Xia, N., Xie, Q., Griffin, M.A., Ye, G. and Yuan, J., “Antecedents of safety behavior in construction: A literature review and an integrated conceptual framework”, Accid. Anal. Prev, 148: 105834, (2020). DOI: https://doi.org/10.1016/j.aap.2020.105834
  • [60] Mohammadi, A., Tavakolan, M. and Khosravi, Y., “Factors influencing safety performance on construction projects: A review”, Saf. Sci, 109: 382–397, (2018). DOI: https://doi.org/10.1016/j.ssci.2018.06.017
  • [61] Niskanen, T., “Safety climate in the road administration”, Saf. Sci, 17: 237–255, (1994). DOI: https://doi.org/10.1016/0925-7535(94)90026-4
  • [62] Meliá, J.L., Mearns, K., Silva, S.A. and Lima, M.L., “Safety climate responses and the perceived risk of accidents in the construction industry”, Saf. Sci, 46: 949–958, (2008). DOI: https://doi.org/10.1016/j.ssci.2007.11.004
  • [63] Hayes, B.E., Perander, J., Smecko, T. and Trask, J., “Measuring Perceptions of Workplace Safety: Development and Validation of the Work Safety Scale”, J. Safety Res. 29, (1998). DOI: https://doi.org/10.1016/S0022-4375(98)00011-5
  • [64] Kalteh, H.O., Mortazavi, S.B., Mohammadi, E. and Salesi, M., “The relationship between safety culture and safety climate and safety performance: a systematic review”, Int. J. Occup. Saf. Ergon, 27: 206–216, (2021). DOI: https://doi.org/10.1080/10803548.2018.1556976
  • [65] Seo, H.C., Lee, Y.S., Kim, J.J. and Jee, N.Y., “Analyzing safety behaviors of temporary construction workers using structural equation modeling”, Saf. Sci, 77: 160–168, (2015). DOI: https://doi.org/10.1016/j.ssci.2015.03.010
  • [66] Kao, K.Y., Spitzmueller, C., Cigularov, K. and Wu, H., “Linking insomnia to workplace injuries: A moderated mediation model of supervisor safety priority and safety behavior”, J. Occup. Health Psychol, 21: 91–104, (2016). DOI: https://doi.org/10.1037/a0039144
  • [67] Xiang, Q., Ye, G., Liu, Y., Miang Goh, Y., Wang, D. and He, T., “Cognitive mechanism of construction workers’ unsafe behavior: A systematic review”, Saf. Sci, 159: 106037, (2023). DOI: https://doi.org/10.1016/j.ssci.2022.106037
  • [68] Johnson, R.C., Eatough, E.M., Chang, C.-H. (Daisy)., Hammer, L.B. and Truxilllo, D., “Home is where the mind is: Family interference with work and safety performance in two high risk industries”, J. Vocat. Behav, 110: 117–130, (2019). DOI: https://doi.org/10.1016/j.jvb.2018.10.012
  • [69] Liao, P.-C., Liu, B., Wang, Y., Wang, X. and Ganbat, T., “Work paradigm as a moderator between cognitive factors and behaviors – A comparison of mechanical and rebar workers”, KSCE J. Civ. Eng, 21: 2514–2525, (2017). DOI: https://doi.org/10.1007/s12205-017-0091-2
  • [70] Barr, G.C., Kane, K.E., Barraco, R.D., Rayburg, T., Demers, L., Kraus, C.K., Greenberg, M.R., Rupp, V.A., Hamilton, K.M. and Kane, B.G., “Gender Differences in Perceptions and Self-reported Driving Behaviors Among Teenagers”, J. Emerg. Med. 48, 366-370. e3, (2015). DOI: https://doi.org/10.1016/j.jemermed.2014.09.055
  • [71] Han, S., Saba, F., Lee, S., Mohamed, Y. and Peña-Mora, F., “Toward an understanding of the impact of production pressure on safety performance in construction operations”, Accid. Anal. Prev, 68: 106–116, (2014). DOI: https://doi.org/10.1016/j.aap.2013.10.007
  • [72] Cox, S.J. and Cheyne, A.J.T., “Assessing safety culture in offshore environments”, Saf. Sci, (2000). DOI: https://doi.org/10.1016/S0925-7535(00)00009-6
  • [73] Minchin, R.E., Glagola, C.R., Guo, K. and Languell, J.L., “Case for drug testing of construction workers 22”, (2006). DOI: https://doi.org/10.1061/(ASCE)0742-597X(2006)22:1(43)
  • [74] Swuste, P., Frijters, A. and Guldenmund, F., “Is it possible to influence safety in the building sector? Saf”, Sci, 50: 1333–1343, (2012). DOI: https://doi.org/10.1016/j.ssci.2011.12.036
  • [75] Zutshi, A. and Sohal, A.S., “A framework for environmental management system adoption and maintenance: an Australian perspective”, Manag. Environ. Qual. Int. J, 16: 464–475, (2005). DOI: https://doi.org/10.1108/14777830510614330
  • [76] Da Silva, S.L.C. and Amaral, F.G., “Critical factors of success and barriers to the implementation of occupational health and safety management systems: A systematic review of literature”, Saf. Sci, 117: 123–132, (2019). DOI: https://doi.org/10.1016/j.ssci.2019.03.026
  • [77] Abad, J., Lafuente, E. and Vilajosana, J., “An assessment of the OHSAS 18001 certification process: Objective drivers and consequences on safety performance and labour productivity”, Saf. Sci, 60: 47–56, (2013). DOI: https://doi.org/10.1016/j.ssci.2013.06.011
  • [78] Kahya, E., “The effects of job characteristics and working conditions on job performance”, Int. J. Ind. Ergon, 37: 515–523, (2007). DOI: https://doi.org/10.1016/j.ergon.2007.02.006
  • [79] Nahrgang, J.D., Morgeson, F.P. and Hofmann, D.A., “Safety at work: A meta-analytic investigation of the link between job demands, job resources, burnout, engagement, and safety outcomes”, J. Appl. Psychol, 96: 71–94, (2011). DOI: https://doi.org/10.1037/a0021484
  • [80] Frazier, C.B., Ludwig, T.D., Whitaker, B. and Roberts, D.S., “A hierarchical factor analysis of a safety culture survey”, J. Safety Res, 45: 15–28, (2013). DOI: https://doi.org/10.1016/j.jsr.2012.10.015
  • [81] Chen, Z.-S., Liu, X.-L., Rodríguez, R.M., Wang, X.-J., Chin, K.-S., Tsui, K.-L. and Martínez, L., “Identifying and prioritizing factors affecting in-cabin passenger comfort on high-speed rail in China: A fuzzy-based linguistic approach”, Appl. Soft Comput, 95: 106558, (2020). DOI: https://doi.org/10.1016/j.asoc.2020.106558
  • [82] Mitropoulos, P., Cupido, G. and Namboodiri, M., “Cognitive approach to construction safety: Task demand-capability model”, J. Manag. Eng. 22, (2006). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000060
  • [83] Park, M. and Peña‐Mora, F., “Dynamic change management for construction: introducing the change cycle into model‐based project management”, Syst. Dyn. Rev, 19: 213–242, (2003). DOI: https://doi.org/10.1002/sdr.273
  • [84] Khosravi, Y., Asilian-Mahabadi, H., Hajizadeh, E., Hassanzadeh-Rangi, N., Bastani, H. and Behzadan, A.H., “Factors Influencing Unsafe Behaviors and Accidents on Construction Sites: A Review”, Int. J. Occup. Saf. Ergon, 20: 111–125, (2014). DOI: https://doi.org/10.1080/10803548.2014.11077023
  • [85] Mohseni, P.H., Farshad, A.A., Mirkazemi, R. and Orak, R.J., “Assessment of the living and workplace health and safety conditions of site-resident construction workers in Tehran, Iran”, Int. J. Occup. Saf. Ergon, 21: 568–573, (2015). DOI: https://doi.org/10.1080/10803548.2015.1096061
  • [86] Goh, Y.M., Love, P.E.D., Stagbouer, G. and Annesley, C., “Dynamics of safety performance and culture: A group model building approach”, Accid. Anal. Prev, 48: 118–125, (2012). DOI: https://doi.org/10.1016/j.aap.2011.05.010
  • [87] Votano, S. and Sunindijo, R.Y., “Client Safety Roles in Small and Medium Construction Projects in Australia”, J. Constr. Eng. Manag, 140: 04014045, (2014). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000899
  • [88] Guo, B.H.W., Yiu, T.W. and González, V.A., “Predicting safety behavior in the construction industry: Development and test of an integrative model”, Saf. Sci, 84: 1–11, (2016). DOI: https://doi.org/10.1016/j.ssci.2015.11.020
  • [89] Büyüközkan, G. and Ruan, D., “Evaluation of software development projects using a fuzzy multi-criteria decision approach”, Math. Comput. Simul, 77: 464–475, (2008). DOI: https://doi.org/10.1016/j.matcom.2007.11.015
  • [90] Beskese, A., Corum, A. and Anolay, M., “A model proposal for ERP system selection in . automotive industry”, Inf. Syst. Technol, 26: 317–342, (2019).
  • [91] Beskese, A., Demir, H.H., Ozcan, H.K. and Okten, H.E., “Landfill site selection using fuzzy ahp and fuzzy TOPSIS: A Case Study for Istanbul”, Environ. Earth Sci, 73: 3513–3521, (2015). DOI: https://doi.org/10.1007/s12665-014-3635-5
  • [92] Torfi, F., Farahani, R.Z. and Rezapour, S., “Fuzzy AHP to determine the relative weights of evaluation criteria and fuzzy TOPSIS to rank the alternatives”, Appl. Soft Comput, 10: 520–528, (2010). DOI: http://dx.doi.org/10.1016/j.asoc.2009.08.021
  • [93] Saaty, T.L. and Özdemir, M.S., “How many judges should there be in a group? Ann”, Data Sci, 1: 359–368, (2014). DOI: https://doi.org/10.1007/s40745-014-0026-4
  • [94] Ziemba, P., Piwowarski, M. and Nermend, K., “Remote work in post-pandemic reality: multi-criteria evaluation of teleconferencing software”, Sustainability, 15: 9919, (2023). DOI: https://doi.org/10.3390/su15139919
  • [95] Shi, X., Kosari, S. and Khan, W.A., “Some novel concepts of interval-valued picture fuzzy graphs with applications toward the transmission control protocol and social networks”, Front. Phys, 11: 1260785, (2023). DOI: https://doi.org/10.3389/fphy.2023.1260785
  • [96] Azeem, M., Ali, J. and Ali, J., “Interval-valued picture fuzzy decision-making framework with partitioned maclaurin symmetric mean aggregation operators”, Sci. Rep, 14: 23155, (2024). DOI: https://doi.org/10.1038/s41598-024-72726-z
  • [97] Cuong, B.C., “Picture fuzzy sets”, J. Comput. Sci. Cybern, 30: 409-420, (2014). DOI: https://doi.org/10.15625/1813-9663/30/4/5032
  • [98] Khalil, A.M., Li, S.-G., Garg, H., Li, H. and Ma, S., “New Operations on Interval-Valued Picture Fuzzy Set, Interval-Valued Picture Fuzzy Soft Set and Their Applications”, IEEE Access, 7: 51236–51253, (2019). https://doi.org/10.1109/ACCESS.2019.2910844
  • [99] Saaty, T.L., “How to make a decision: the analytic hierarchy process”, Eur. J. Oper. Res, 48: 9–26, (1990). DOI: https://doi.org/10.1016/0377-2217(90)90057-I
  • [100] Saaty, T.L., Fundamentals of the Analytic Hierarchy Process, in: Schmoldt, D, L., Kangas, J., Mendoza, G. A., Pesonen, M. (Eds.), The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making, Managing Forest Ecosystems. Springer Netherlands, Dordrecht, pp. 15–35, (2001). DOI: https://doi.org/10.1007/978-94-015-9799-9_2
  • [101] Acar, C., Beskese, A. and Temur, G.T., “Comparative fuel cell sustainability assessment with a novel approach”, Int. J. Hydrog. Energy, 47: 575–594, (2022). DOI: https://doi.org/10.1016/j.ijhydene.2021.10.034
  • [102] Erdoğan, M. and Kaya, İ., “A combined fuzzy approach to determine the best region for a nuclear power plant in Turkey”, Appl. Soft Comput, 39: 84–93, (2016). DOI: https://doi.org/10.1016/j.asoc.2015.11.013
  • [103] Yildiz, D., Temur, G.T., Beskese, A. and Bozbura, F.T., “Evaluation of positive employee experien ce using hesitant fuzzy analytic hierarchy process”, J. Intell. Fuzzy Syst, 38: 1043–1058, (2020). DOI: https://doi.org/10.3233/JIFS-179467
  • [104] Abdullah, L. and Goh, P., “Decision making method based on Pythagorean fuzzy sets and its application to solid waste management”, Complex & intelligent systems, 5(2): 185-198, (2019). DOI: https://doi.org/10.1007/s40747-019-0100-9
  • [105] Gündoğdu, F. K., Duleba, S., Moslem, S. and Aydın, S., “Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model”, Applied Soft Computing, 100: 106920, (2021). DOI: https://doi.org/10.1016/J.ASOC.2020.106920
  • [106] Wan Mohd, W.R., Abdullah, L., Yusoff, B., Taib, C.M.I.C.1, and Merigo, J.M., “An integrated MCDM model based on Pythagorean fuzzy sets for green supplier development program”, Malaysian Journal of Mathematical Sciences, 13(S): 23–37, (2019).
  • [107] Saaty, T.L., “The analytic hierarchy process-what it is and how it is used”, Math. Model. 9, (1987). DOI: http://dx.doi.org/10.1016/0270-0255(87)90473-8
  • [108] Masmali, I., Hassan, R., Shuaib, U., Razaq, A., Razzaque, A. and Alhamzi, G., “Stock Reordering Decision Making under Interval Valued Picture Fuzzy Knowledge”, Symmetry, 15: 898, (2023). DOI: https://doi.org/10.3390/sym15040898
  • [109] Naeem, M., Qiyas, M. and Abdullah, S., “An Approach of Interval-Valued Picture Fuzzy Uncertain Linguistic Aggregation Operator and Their Application on Supplier Selection Decision-Making in Logistics Service Value Concretion”, Math. Probl. Eng, 2021: 1–19, (2021). DOI: https://doi.org/10.1155/2021/8873230
  • [110] Lingard, H., Cooke, T. and Blismas, N., “Do Perceptions of Supervisors’ Safety Responses Mediate the Relationship between Perceptions of the Organizational Safety Climate and Incident Rates in the Construction Supply Chain? J”, Constr. Eng. Manag, 138: 234–241, (2012). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000372
  • [111] Molenaar, K.R., Park, J.I. and Washington, S., “Framework for Measuring Corporate Safety Culture and Its Impact on Construction Safety Performance”, J. Constr. Eng. Manag, 135: 488–496, (2009). DOI: https://doi.org/10.1061/(ASCE)0733-9364(2009)135:6(488)
  • [112] Gümüştaş, C. and Küskü, F., “Dynamics of Organizational Distrust: An Exploratory Study in Workplace Safety”, Saf. Sci, 134: 105032, (2021). DOI: https://doi.org/10.1016/j.ssci.2020.105032
  • [113] Leung, M.Y., Liang, Q. and Olomolaiye, P., “Impact of job stressors and stress on the safety behavior and accidents of construction workers”, J. Manag. Eng. 32, (2016). DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000373
  • [114] Mohamed, S., Ali, T.H. and Tam, W.Y.V., “National culture and safe work behaviour of construction workers in Pakistan”, Saf. Sci, 47: 29–35, (2009). DOI: https://doi.org/10.1016/j.ssci.2008.01.003
  • [115] Sun, X., Chong, H.-Y., Liao, P.-C., Fang, D. and Wang, Y., “A System Dynamics Model of Prevention through Design towards Eliminating Human Error”, KSCE J. Civ. Eng, 23: 1923–1938, (2019). DOI: https://doi.org/10.1007/s12205-019-0845-0
  • [116] Pybus, R., Safety Management: Strategy and Practice, Butterworth-Heinemann, (1996).
  • [117] Arcury, T.A., Summers, P., Carrillo, L., Grzywacz, J.G., Quandt, S.A. and Mills, T.H., “Occupational safety beliefs among Latino residential roofing workers”, Am. J. Ind. Med, 57: 718–725, (2014). DOI: https://doi.org/10.1002/ajim.222
  • [118] Stege, T.A.M., Bolte, J.F.B., Claassen, L. and Timmermans, D.R.M., “Particulate matter exposure in roadwork companies: A mental models study on work safety”, Saf. Sci, 120: 137–145, (2019). DOI: https://doi.org/10.1016/j.ssci.2019.06.043
  • [119] Ju, D., Qin, X., Xu, M. and DiRenzo, M.S., “Boundary conditions of the emotional exhaustion-unsafe behavior link: The dark side of group norms and personal control”, Asia Pac. J. Manag, 33: 113–140, (2016). DOI: https://doi.org/10.1007/s10490-015-9455-7
  • [120] Patel, D.A. and Jha, K.N., “Neural Network Approach for Safety Climate Prediction”, J. Manag. Eng, 31: 05014027, (2015). DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000348
  • [121] Choudhry, R.M. and Fang, D., “Why operatives engage in unsafe work behavior: Investigating factors on construction sites”, Saf. Sci, 46: 566–584, (2008). DOI: https://doi.org/10.1016/j.ssci.2007.06.027
  • [122] Hon, C.K.H., Chan, A.P.C. and Wong, F.K.W., “An analysis for the causes of accidents of repair, maintenance, alteration and addition works in Hong Kong”, Saf. Sci, 48: 894–901, (2010). DOI: https://doi.org/10.1016/j.ssci.2010.03.013
  • [123] Jitwasinkul, B. and Hadikusumo, B.H.W., “Identification of Important Organisational Factors Influencing Safety Work Behaviours in Construction Projects”, J. Civ. Eng. Manag, 17: 520–528, (2011). DOI: https://doi.org/10.3846/13923730.2011.604538
  • [124] Manzey, D. and Marold, J., “Occupational accidents and safety: The challenge of globalization 47, 723–726”, (2009). DOI: https://doi.org/10.1016/j.ssci.2008.01.013
  • [125] Hallowell, M.R., Hinze, J.W., Baud, K.C. and Wehle, A., “Proactive Construction Safety Control: Measuring, Monitoring, and Responding to Safety Leading Indicators”, J. Constr. Eng. Manag, 139: 04013010, (2013). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000730
  • [126] Stoilkovska, B.B., Žileska Pančovska, V. and Mijoski, G., “Relationship of safety climate perceptions and job satisfaction among employees in the construction industry: the moderating role of age”, Int. J. Occup. Saf. Ergon, 21: 440–447, (2015). DOI: https://doi.org/10.1080/10803548.2015.1096059
  • [127] Feng, Y., Teo, E.A.L., Ling, F.Y.Y. and Low, S.P., “Exploring the interactive effects of safety investments, safety culture and project hazard on safety performance: An empirical analysis”, Int. J. Proj. Manag, 32: 932–943, (2014). DOI: https://doi.org/10.1016/j.ijproman.2013.10.016
  • [128] Cheng, C.W., Leu, S.S., Lin, C.C. and Fan, C., “Characteristic analysis of occupational accidents at small construction enterprises”, Saf. Sci, 48: 698–707, (2010). DOI: https://doi.org/10.1016/j.ssci.2010.02.001
  • [129] Kang, K. and Ryu, H., “Predicting types of occupational accidents at construction sites in Korea using random forest model”, Saf. Sci, 120: 226–236, (2019). DOI: https://doi.org/10.1016/j.ssci.2019.06.034

A Study on the Importance of Factors Effecting the Occupational Safety Performance

Year 2025, Volume: 38 Issue: 4, 1968 - 1998, 01.12.2025
https://doi.org/10.35378/gujs.1501298

Abstract

In contemporary workplaces, organizational safety is not just a regulatory obligation but a critical determinant of sustainable success. With the evolving technological advancements in industries, understanding the factors that influence occupational safety becomes paramount. This study examines the multifaceted structure of occupational safety criteria, recognizing its importance in ensuring not only the physical well-being of workers but also the organizational resilience. Utilizing the Interval-Valued Picture Fuzzy Analytic Hierarchy Process (IVPF-AHP) method, this research aims to prioritize the most crucial factors influencing safety performance. Through a comprehensive analysis of 20 sub-criteria under five main categories — Organization, Safety Climate, Regulatory Characteristics, Workplace Environment, and Individual Characteristics — the study reveals insights into the nuanced interplay of organizational, managerial, and individual factors that shape safety outcomes. The findings underscore the prominence of factors such as Workload Pressure, Management and Supervisor Commitment to Safety, Sanctions and Auditing, Number of Subcontractors, and Equipment Conditions in enhancing safety performance.

References

  • [1] Gao, Y., González, V.A. and Yiu, T.W., “Exploring the Relationship between Construction Workers’ Personality Traits and Safety Behavior”, J. Constr. Eng. Manag, 146: 04019111, (2020). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0001763
  • [2] Lee, W., Migliaccio, G.C., Lin, K.-Y. and Seto, E.Y.W., “Workforce development: understanding task-level job demands-resources, burnout, and performance in unskilled construction workers”, Saf. Sci, 123: 104577, (2020). DOI: https://doi.org/10.1016/j.ssci.2019.104577
  • [3] Karuppiah, K., Sankaranarayanan, B. and Ali, S.M., “A fuzzy ANP–DEMATEL model on faulty behavior risks: implications for improving safety in the workplace”, Int. J. Occup. Saf. Ergon, 28: 923–940, (2022). DOI: https://doi.org/10.1080/10803548.2020.1847486
  • [4] Altunkaynak, B., “A statistical study of occupational accidents in the manufacturing industry in Turkey”, Int. J. Ind. Ergon, 66: 101–109, (2018). DOI: https://doi.org/10.1016/j.ergon.2018.02.012
  • [5] European Agency for Safety and Health at Work, “Occupational safety and health in Europe - state and trends 2023”, (2023). COI: 20.500.12592/qhkb73
  • [6] Mutlu, N.G. and Altuntas, S., “Analyzing factors influencing the severity of occupational accidents in textile industry using decision tree algorithms”, Clust. Comput, 27: 787–825, (2024). DOI: https://doi.org/10.1007/s10586-022-03958-9
  • [7] T.C. Çalışma Ve Sosyal Güvenlik Bakanlığı Rehberlik ve Teftiş Başkanlığı, Y.Y., “2022 Yılı Yapı İşyerlerinde İş sağlığı ve Güvenliği Programlı Teftişi”, (2022).
  • [8] Fernández-Muñiz, B., Montes-Peón, J.M. and Vázquez-Ordás, C.J., “Safety leadership, risk management and safety performance in Spanish firms”, Saf. Sci, 70: 295–307, (2014). https://doi.org/10.1016/j.ssci.2014.07.010
  • [9] Hanvold, T.N., Kines, P., Nykänen, M., Thomée, S., Holte, K.A., Vuori, J., Wærsted, M. and Veiersted, K.B., “Occupational Safety and Health Among Young Workers in the Nordic Countries: A Systematic Literature Review”, Saf. Health Work, 10: 3–20, (2019). DOI: https://doi.org/10.1016/j.shaw.2018.12.003
  • [10] Chan, A.P.C. and Chan, A.P.L., “Key performance indicators for measuring construction success”, Benchmarking Int. J, 11: 203–221, (2004). DOI: https://doi.org/10.1108/14635770410532624
  • [11] Eskandari, D., Gharabagh, M.J., Barkhordari, A., Gharari, N., Panahi, D., Gholami, A. and Teimori-Boghsani, G., “Development of a scale for assessing the organization’s safety performance based fuzzy ANP”, J. Loss Prev. Process Ind, 69: 104342, (2021). DOI: https://doi.org/10.1016/j.jlp.2020.104342
  • [12] Sheehan, C., Donohue, R., Shea, T., Cooper, B. and Cieri, H.D., “Leading and lagging indicators of occupational health and safety: The moderating role of safety leadership”, Accid. Anal. Prev, 92: 130–138, (2016). DOI: https://doi.org/10.1016/j.aap.2016.03.018
  • [13] Ale, B., “More thinking about process safety indicators”, Saf. Sci, 47: 470–471, (2009). https://doi.org/10.1016/j.ssci.2008.07.012
  • [14] Beriha, G.S., Patnaik, B., Mahapatra, S.S. and Padhee, S., “Assessment of safety performance in Indian industries using fuzzy approach”, Expert Syst. Appl, 39: 3311–3323, (2012). DOI: https://doi.org/10.1016/j.eswa.2011.09.018
  • [15] Abu-Khader, M.M., “Impact of Human Behaviour on Process Safety Management in Developing Countries”, Process Saf. Environ. Prot, 82: 431–437, (2004). DOI: https://doi.org/10.1205/psep.82.6.431.53206
  • [16] Anderson, M., “Behavioural Safety and Major Accident Hazards”, Process Saf. Environ. Prot, 83: 109–116, (2005). DOI: https://doi.org/10.1205/psep.04230
  • [17] Chen, Y., Yu, X. and Yang, Z., “A fuzzy decision support system for risk prioritization in fine kinney-based occupational risk analysis”, J. Soft Comput. Decis. Anal, 3: 1–17, (2025). DOI: https://doi.org/10.31181/jscda31202545
  • [18] Aksüt, G., Eren, T. and Alakaş, H.M., “Using wearable technological devices to improve workplace health and safety: An assessment on a sector base with multi-criteria decision-making methods”, Ain Shams Eng. J, 15: 102423, (2024). DOI: https://doi.org/10.1016/j.asej.2023.102423
  • [19] Ayvaz, B., Tatar, V., Sağır, Z. and Pamucar, D., “An Integrated fine-kinney risk assessment model utilizing fermatean fuzzy AHP-WASPAS for occupational hazards in the aquaculture sector”, Process Saf. Environ. Prot, 186: 232–251, (2024). DOI: https://doi.org/10.1016/j.psep.2024.04.025
  • [20] Ayyildiz, E., Erdogan, M. and Gul, M., “A comprehensive risk assessment framework for occupational health and safety in pharmaceutical warehouses using pythagorean fuzzy bayesian networks”, Eng. Appl. Artif. Intell, 135: 108763, (2024). DOI: https://doi.org/10.1016/j.engappai.2024.108763
  • [21] Kursunoglu, N., “Fuzzy multi-criteria decision-making framework for controlling methane explosions in coal mines”, Environ. Sci. Pollut. Res, 31: 9045–9061, (2024). DOI: https://doi.org/10.1007/s11356-023-31782-0
  • [22] Serrato, R.B., “A novel global probabilistic fuzzy system for occupational risk assessment (GPFSORA)”, Ing. Investig, 42: e104181, (2024). DOI: https://doi.org/10.15446/ing.investig.104181
  • [23] Sherin, S. and Raza, S., “risk analysis and prioritization with AHP and fuzzy TOPSIS techniques in surface mines of Pakistan”, J. Min. Environ, 15: 463–479, (2024). DOI: https://doi.org/10.22044/jme.2023.13687.2533
  • [24] Ahmed, T., Hoque, A.S.M., Karmaker, C.L. and Ahmed, S., “Integrated approach for occupational health and safety (OHS) risk Assessment: An Empirical (Case) study in Small enterprises”, Saf. Sci, 164: 106143, (2023). DOI: https://doi.org/10.1016/j.ssci.2023.106143
  • [25] Badida, P., Janakiraman, S. and Jayaprakash, J., “Occupational health and safety risk assessment using a fuzzy multi-criteria approach in a hospital in Chennai, India”, Int. J. Occup. Saf. Ergon, 29: 1047–1056, (2023). DOI: https://doi.org/10.1080/10803548.2022.2109323
  • [26] Koulinas, G.K., Demesouka, O.E., Marhavilas, P.K., Orfanos, N.I. and Koulouriotis, D.E., “Multicriteria Health and Safety Risk Assessments in Highway Construction Projects”, Sustainability, 15: 9241, (2023). DOI: https://doi.org/10.3390/su15129241
  • [27] Küçükarslan, A.B., Köksal, M. and Ekmekci, I., “A Model Proposal for Measuring Performance in Occupational Health and Safety in Forest Fires”, Sustainability, 15: 14729, (2023). DOI: https://doi.org/10.3390/su152014729
  • [28] Chen, W., Yang, B. and Liu, Y., “An integrated QFD and FMEA approach to identify risky components of products”, Adv. Eng. Inform, 54: 101808, (2022). DOI: https://doi.org/10.1016/j.aei.2022.101808
  • [29] Ye, W., Gao, C., Liu, Z., Wang, Q. and Su, W., “A Fuzzy-AHP-based variable weight safety evaluation model for expansive soil slope”, Nat. Hazards, 119: 559–581, (2023). DOI: https://doi.org/10.1007/s11069-023-06130-7
  • [30] Marhavilas, P.K., Filippidis, M., Koulinas, G.K. and Koulouriotis, D.E., “Safety-assessment by hybridizing the MCDM/AHP & HAZOP-DMRA techniques through safety’s level colored maps: Implementation in a petrochemical industry”, Alex. Eng. J, 61: 6959–6977, (2022). DOI: https://doi.org/10.1016/j.aej.2021.12.040
  • [31] Omidi, L., Salehi, V., Zakerian, S.A. and Nasl Saraji, J., “Assessing the influence of safety climate-related factors on safety performance using an Integrated Entropy-TOPSIS Approach”, J. Ind. Prod. Eng, 39: 73–82, (2022). DOI: https://doi.org/10.1080/21681015.2021.1958937
  • [32] Unver, S. and Ergenc, I., “Safety risk identification and prioritize of forest logging activities using analytic hierarchy process (AHP)”, Alex. Eng. J, 60: 1591–1599, (2021). DOI: https://doi.org/10.1016/j.aej.2020.11.012
  • 33] Ferrari, G.N., Leal, G.C.L., Galdamez, E.V.C. and Souza, R.C.T.D., “Prioritization of occupational health and safety indicators using the Fuzzy-AHP method”, Production, 30: e20200054, (2020). DOI: https://doi.org/10.1590/0103-6513.20200054
  • [34] Zytoon, M.A., “A Decision Support Model for Prioritization of Regulated Safety Inspections Using Integrated Delphi, AHP and Double-Hierarchical TOPSIS Approach”, IEEE Access, 8: 83444–83464, (2020). DOI: https://doi.org/10.1109/ACCESS.2020.2991179
  • [35] Akbar, S. and Ahsan, K., “Workplace safety compliance implementation challenges in apparel supplier firms”, J. Clean. Prod, 232: 462–473, (2019). DOI: https://doi.org/10.1016/j.jclepro.2019.05.368
  • [36] Gul, M., Ak, M.F. and Guneri, A.F., “Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry”, J. Safety Res, 69: 135–153, (2019). DOI: https://doi.org/10.1016/j.jsr.2019.03.005
  • [37] Dağdeviren, M. and Yüksel, İ., “Developing a fuzzy analytic hierarchy process (AHP) model for behavior-based safety management”, Inf. Sci, 178: 1717–1733, (2008). DOI: https://doi.org/10.1016/j.ins.2007.10.016
  • [38] Ilbahar, E., Karaşan, A., Cebi, S. and Kahraman, C., “A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system”, Saf. Sci, 103: 124–136, (2018). DOI: https://doi.org/10.1016/j.ssci.2017.10.025
  • [39] Raviv, G., Fishbain, B. and Shapira, A., “Analyzing risk factors in crane-related near-miss and accident reports”, Saf. Sci, 91: 192–205, (2017a). DOI: https://doi.org/10.1016/j.ssci.2016.08.022
  • [40] Raviv, G., Shapira, A. and Fishbain, B., “AHP-based analysis of the risk potential of safety incidents: Case study of cranes in the construction industry”, Saf. Sci, 91: 298–309, (2017b). DOI: https://doi.org/10.1016/j.ssci.2016.08.027
  • [41] Basahel, A. and Taylan, O., “Using fuzzy ahp and fuzzy topsis approaches for assessing safety conditions at worksites in construction industry”, Int. J. Saf. Secur. Eng, 6: 728–745, (2016). DOI: https://doi.org/10.2495/SAFE-V6-N4-728-745
  • [42] Gnoni, M.G., Duraccio, V. and Iavagnilio, R., “A fuzzy AHP-based approach for assessing the faulty behaviour risk at workplace”, Int. J. Bus. Syst. Res, 10: 291, (2016). DOI: https://doi.org/10.1504/IJBSR.2016.075759
  • [43] Enchill, E. and Nyamah, E.Y., “AHP Application In Occupational Safety Analysis In An Industrial Gas Manufacturing Company (Ghana)”, Int. J. Manag. Econ. 1, (2015). DOI: https://doi.org/10.1016/j.ssci.2014.11.018
  • [44] Podgórski, D., “Measuring operational performance of OSH management system – A demonstration of AHP-based selection of leading key performance indicators”, Saf. Sci, 73: 146–166, (2015). DOI: https://doi.org/10.1016/j.ssci.2014.11.018
  • [45] Aminbakhsh, S., Gunduz, M. and Sonmez, R., “Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects”, J. Safety Res, 46: 99–105, (2013). DOI: https://doi.org/10.1016/j.jsr.2013.05.003
  • [46] Zheng, G., Zhu, N., Tian, Z., Chen, Y. and Sun, B., “Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments”, Saf. Sci, 50: 228–239, (2012). DOI: https://doi.org/10.1016/j.ssci.2011.08.042
  • [47] Gürcanli, G.E. and Müngen, U., “An occupational safety risk analysis method at construction sites using fuzzy sets”, Int. J. Ind. Ergon, 39: 371–387, (2009). DOI: https://doi.org/10.1016/j.ergon.2008.10.006
  • [48] Dağdeviren, M., Yüksel, İ. and Kurt, M., “A fuzzy analytic network process (ANP) model to identify faulty behavior risk (FBR) in work system”, Saf. Sci, 46: 771–783, (2008). DOI: https://doi.org/10.1016/j.ssci.2007.02.002
  • [49] Zohar, D., “Safety climate: Conceptual and measurement issues”, in: Quick, J. C. , Tetrick, L. E. (Eds.), Handbook of Occupational Health Psychology. American Psychological Association, Washington, pp. 123–142, (2003). DOI: https://doi.org/10.1037/10474-006
  • [50] Clarke, S., “The relationship between safety climate and safety performance: A meta-analytic review”, J. Occup. Health Psychol, 11: 315–327, (2006). DOI: . https://doi.org/10.1037/1076-8998.11.4.315
  • [51] Oah, S., Na, R. and Moon, K., “The Influence of Safety Climate, Safety Leadership, Workload, and Accident Experiences on Risk Perception: A Study of Korean Manufacturing Workers”, Saf. Health Work, 9: 427–433, (2018). DOI: https://doi.org/10.1016/j.shaw.2018.01.008
  • [52] Kouabenan, D.R., Ngueutsa, R. and Mbaye, S., “Safety climate, perceived risk, and involvement in safety management”, Saf. Sci, 77: 72–79, (2015). DOI: https://doi.org/10.1016/j.ssci.2015.03.009
  • [53] Zohar, D. and Luria, G., “A Multilevel Model of Safety Climate: Cross-Level Relationships Between Organization and Group-Level Climates”, J. Appl. Psychol, 90: 616–628, (2005). DOI: https://doi.org/10.1037/0021-9010.90.4.616
  • [54] Feng, Y., “Effect of safety investments on safety performance of building projects”, Saf. Sci, 59: 28–45, (2013). DOI: https://doi.org/10.1016/j.ssci.2013.04.004
  • [55] Fang, D., Jiang, Z., Zhang, M. and Wang, H., “An experimental method to study the effect of fatigue on construction workers’ safety performance”, Saf. Sci, 73: 80–91, (2015). DOI: https://doi.org/10.1016/j.ssci.2014.11.019
  • [56] Pinto, A., Nunes, I.L. and Ribeiro, R.A., “Occupational risk assessment in construction industry – Overview and reflection”, Saf. Sci, 49: 616–624, (2011). DOI: https://doi.org/10.1016/j.ssci.2011.01.003
  • [57] Huang, Y.-H., Ho, M., Smith, G.S. and Chen, P.Y., “Safety climate and self-reported injury: Assessing the mediating role of employee safety control”, Accid. Anal. Prev, 38: 425–433, (2006). DOI: https://doi.org/10.1016/j.aap.2005.07.002
  • [58] Fleming, “Effective Supervisory Safety Leadership Behaviors in the Offshore Oil and Gas Industry”, HSE Books, (2001).
  • [59] Xia, N., Xie, Q., Griffin, M.A., Ye, G. and Yuan, J., “Antecedents of safety behavior in construction: A literature review and an integrated conceptual framework”, Accid. Anal. Prev, 148: 105834, (2020). DOI: https://doi.org/10.1016/j.aap.2020.105834
  • [60] Mohammadi, A., Tavakolan, M. and Khosravi, Y., “Factors influencing safety performance on construction projects: A review”, Saf. Sci, 109: 382–397, (2018). DOI: https://doi.org/10.1016/j.ssci.2018.06.017
  • [61] Niskanen, T., “Safety climate in the road administration”, Saf. Sci, 17: 237–255, (1994). DOI: https://doi.org/10.1016/0925-7535(94)90026-4
  • [62] Meliá, J.L., Mearns, K., Silva, S.A. and Lima, M.L., “Safety climate responses and the perceived risk of accidents in the construction industry”, Saf. Sci, 46: 949–958, (2008). DOI: https://doi.org/10.1016/j.ssci.2007.11.004
  • [63] Hayes, B.E., Perander, J., Smecko, T. and Trask, J., “Measuring Perceptions of Workplace Safety: Development and Validation of the Work Safety Scale”, J. Safety Res. 29, (1998). DOI: https://doi.org/10.1016/S0022-4375(98)00011-5
  • [64] Kalteh, H.O., Mortazavi, S.B., Mohammadi, E. and Salesi, M., “The relationship between safety culture and safety climate and safety performance: a systematic review”, Int. J. Occup. Saf. Ergon, 27: 206–216, (2021). DOI: https://doi.org/10.1080/10803548.2018.1556976
  • [65] Seo, H.C., Lee, Y.S., Kim, J.J. and Jee, N.Y., “Analyzing safety behaviors of temporary construction workers using structural equation modeling”, Saf. Sci, 77: 160–168, (2015). DOI: https://doi.org/10.1016/j.ssci.2015.03.010
  • [66] Kao, K.Y., Spitzmueller, C., Cigularov, K. and Wu, H., “Linking insomnia to workplace injuries: A moderated mediation model of supervisor safety priority and safety behavior”, J. Occup. Health Psychol, 21: 91–104, (2016). DOI: https://doi.org/10.1037/a0039144
  • [67] Xiang, Q., Ye, G., Liu, Y., Miang Goh, Y., Wang, D. and He, T., “Cognitive mechanism of construction workers’ unsafe behavior: A systematic review”, Saf. Sci, 159: 106037, (2023). DOI: https://doi.org/10.1016/j.ssci.2022.106037
  • [68] Johnson, R.C., Eatough, E.M., Chang, C.-H. (Daisy)., Hammer, L.B. and Truxilllo, D., “Home is where the mind is: Family interference with work and safety performance in two high risk industries”, J. Vocat. Behav, 110: 117–130, (2019). DOI: https://doi.org/10.1016/j.jvb.2018.10.012
  • [69] Liao, P.-C., Liu, B., Wang, Y., Wang, X. and Ganbat, T., “Work paradigm as a moderator between cognitive factors and behaviors – A comparison of mechanical and rebar workers”, KSCE J. Civ. Eng, 21: 2514–2525, (2017). DOI: https://doi.org/10.1007/s12205-017-0091-2
  • [70] Barr, G.C., Kane, K.E., Barraco, R.D., Rayburg, T., Demers, L., Kraus, C.K., Greenberg, M.R., Rupp, V.A., Hamilton, K.M. and Kane, B.G., “Gender Differences in Perceptions and Self-reported Driving Behaviors Among Teenagers”, J. Emerg. Med. 48, 366-370. e3, (2015). DOI: https://doi.org/10.1016/j.jemermed.2014.09.055
  • [71] Han, S., Saba, F., Lee, S., Mohamed, Y. and Peña-Mora, F., “Toward an understanding of the impact of production pressure on safety performance in construction operations”, Accid. Anal. Prev, 68: 106–116, (2014). DOI: https://doi.org/10.1016/j.aap.2013.10.007
  • [72] Cox, S.J. and Cheyne, A.J.T., “Assessing safety culture in offshore environments”, Saf. Sci, (2000). DOI: https://doi.org/10.1016/S0925-7535(00)00009-6
  • [73] Minchin, R.E., Glagola, C.R., Guo, K. and Languell, J.L., “Case for drug testing of construction workers 22”, (2006). DOI: https://doi.org/10.1061/(ASCE)0742-597X(2006)22:1(43)
  • [74] Swuste, P., Frijters, A. and Guldenmund, F., “Is it possible to influence safety in the building sector? Saf”, Sci, 50: 1333–1343, (2012). DOI: https://doi.org/10.1016/j.ssci.2011.12.036
  • [75] Zutshi, A. and Sohal, A.S., “A framework for environmental management system adoption and maintenance: an Australian perspective”, Manag. Environ. Qual. Int. J, 16: 464–475, (2005). DOI: https://doi.org/10.1108/14777830510614330
  • [76] Da Silva, S.L.C. and Amaral, F.G., “Critical factors of success and barriers to the implementation of occupational health and safety management systems: A systematic review of literature”, Saf. Sci, 117: 123–132, (2019). DOI: https://doi.org/10.1016/j.ssci.2019.03.026
  • [77] Abad, J., Lafuente, E. and Vilajosana, J., “An assessment of the OHSAS 18001 certification process: Objective drivers and consequences on safety performance and labour productivity”, Saf. Sci, 60: 47–56, (2013). DOI: https://doi.org/10.1016/j.ssci.2013.06.011
  • [78] Kahya, E., “The effects of job characteristics and working conditions on job performance”, Int. J. Ind. Ergon, 37: 515–523, (2007). DOI: https://doi.org/10.1016/j.ergon.2007.02.006
  • [79] Nahrgang, J.D., Morgeson, F.P. and Hofmann, D.A., “Safety at work: A meta-analytic investigation of the link between job demands, job resources, burnout, engagement, and safety outcomes”, J. Appl. Psychol, 96: 71–94, (2011). DOI: https://doi.org/10.1037/a0021484
  • [80] Frazier, C.B., Ludwig, T.D., Whitaker, B. and Roberts, D.S., “A hierarchical factor analysis of a safety culture survey”, J. Safety Res, 45: 15–28, (2013). DOI: https://doi.org/10.1016/j.jsr.2012.10.015
  • [81] Chen, Z.-S., Liu, X.-L., Rodríguez, R.M., Wang, X.-J., Chin, K.-S., Tsui, K.-L. and Martínez, L., “Identifying and prioritizing factors affecting in-cabin passenger comfort on high-speed rail in China: A fuzzy-based linguistic approach”, Appl. Soft Comput, 95: 106558, (2020). DOI: https://doi.org/10.1016/j.asoc.2020.106558
  • [82] Mitropoulos, P., Cupido, G. and Namboodiri, M., “Cognitive approach to construction safety: Task demand-capability model”, J. Manag. Eng. 22, (2006). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000060
  • [83] Park, M. and Peña‐Mora, F., “Dynamic change management for construction: introducing the change cycle into model‐based project management”, Syst. Dyn. Rev, 19: 213–242, (2003). DOI: https://doi.org/10.1002/sdr.273
  • [84] Khosravi, Y., Asilian-Mahabadi, H., Hajizadeh, E., Hassanzadeh-Rangi, N., Bastani, H. and Behzadan, A.H., “Factors Influencing Unsafe Behaviors and Accidents on Construction Sites: A Review”, Int. J. Occup. Saf. Ergon, 20: 111–125, (2014). DOI: https://doi.org/10.1080/10803548.2014.11077023
  • [85] Mohseni, P.H., Farshad, A.A., Mirkazemi, R. and Orak, R.J., “Assessment of the living and workplace health and safety conditions of site-resident construction workers in Tehran, Iran”, Int. J. Occup. Saf. Ergon, 21: 568–573, (2015). DOI: https://doi.org/10.1080/10803548.2015.1096061
  • [86] Goh, Y.M., Love, P.E.D., Stagbouer, G. and Annesley, C., “Dynamics of safety performance and culture: A group model building approach”, Accid. Anal. Prev, 48: 118–125, (2012). DOI: https://doi.org/10.1016/j.aap.2011.05.010
  • [87] Votano, S. and Sunindijo, R.Y., “Client Safety Roles in Small and Medium Construction Projects in Australia”, J. Constr. Eng. Manag, 140: 04014045, (2014). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000899
  • [88] Guo, B.H.W., Yiu, T.W. and González, V.A., “Predicting safety behavior in the construction industry: Development and test of an integrative model”, Saf. Sci, 84: 1–11, (2016). DOI: https://doi.org/10.1016/j.ssci.2015.11.020
  • [89] Büyüközkan, G. and Ruan, D., “Evaluation of software development projects using a fuzzy multi-criteria decision approach”, Math. Comput. Simul, 77: 464–475, (2008). DOI: https://doi.org/10.1016/j.matcom.2007.11.015
  • [90] Beskese, A., Corum, A. and Anolay, M., “A model proposal for ERP system selection in . automotive industry”, Inf. Syst. Technol, 26: 317–342, (2019).
  • [91] Beskese, A., Demir, H.H., Ozcan, H.K. and Okten, H.E., “Landfill site selection using fuzzy ahp and fuzzy TOPSIS: A Case Study for Istanbul”, Environ. Earth Sci, 73: 3513–3521, (2015). DOI: https://doi.org/10.1007/s12665-014-3635-5
  • [92] Torfi, F., Farahani, R.Z. and Rezapour, S., “Fuzzy AHP to determine the relative weights of evaluation criteria and fuzzy TOPSIS to rank the alternatives”, Appl. Soft Comput, 10: 520–528, (2010). DOI: http://dx.doi.org/10.1016/j.asoc.2009.08.021
  • [93] Saaty, T.L. and Özdemir, M.S., “How many judges should there be in a group? Ann”, Data Sci, 1: 359–368, (2014). DOI: https://doi.org/10.1007/s40745-014-0026-4
  • [94] Ziemba, P., Piwowarski, M. and Nermend, K., “Remote work in post-pandemic reality: multi-criteria evaluation of teleconferencing software”, Sustainability, 15: 9919, (2023). DOI: https://doi.org/10.3390/su15139919
  • [95] Shi, X., Kosari, S. and Khan, W.A., “Some novel concepts of interval-valued picture fuzzy graphs with applications toward the transmission control protocol and social networks”, Front. Phys, 11: 1260785, (2023). DOI: https://doi.org/10.3389/fphy.2023.1260785
  • [96] Azeem, M., Ali, J. and Ali, J., “Interval-valued picture fuzzy decision-making framework with partitioned maclaurin symmetric mean aggregation operators”, Sci. Rep, 14: 23155, (2024). DOI: https://doi.org/10.1038/s41598-024-72726-z
  • [97] Cuong, B.C., “Picture fuzzy sets”, J. Comput. Sci. Cybern, 30: 409-420, (2014). DOI: https://doi.org/10.15625/1813-9663/30/4/5032
  • [98] Khalil, A.M., Li, S.-G., Garg, H., Li, H. and Ma, S., “New Operations on Interval-Valued Picture Fuzzy Set, Interval-Valued Picture Fuzzy Soft Set and Their Applications”, IEEE Access, 7: 51236–51253, (2019). https://doi.org/10.1109/ACCESS.2019.2910844
  • [99] Saaty, T.L., “How to make a decision: the analytic hierarchy process”, Eur. J. Oper. Res, 48: 9–26, (1990). DOI: https://doi.org/10.1016/0377-2217(90)90057-I
  • [100] Saaty, T.L., Fundamentals of the Analytic Hierarchy Process, in: Schmoldt, D, L., Kangas, J., Mendoza, G. A., Pesonen, M. (Eds.), The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making, Managing Forest Ecosystems. Springer Netherlands, Dordrecht, pp. 15–35, (2001). DOI: https://doi.org/10.1007/978-94-015-9799-9_2
  • [101] Acar, C., Beskese, A. and Temur, G.T., “Comparative fuel cell sustainability assessment with a novel approach”, Int. J. Hydrog. Energy, 47: 575–594, (2022). DOI: https://doi.org/10.1016/j.ijhydene.2021.10.034
  • [102] Erdoğan, M. and Kaya, İ., “A combined fuzzy approach to determine the best region for a nuclear power plant in Turkey”, Appl. Soft Comput, 39: 84–93, (2016). DOI: https://doi.org/10.1016/j.asoc.2015.11.013
  • [103] Yildiz, D., Temur, G.T., Beskese, A. and Bozbura, F.T., “Evaluation of positive employee experien ce using hesitant fuzzy analytic hierarchy process”, J. Intell. Fuzzy Syst, 38: 1043–1058, (2020). DOI: https://doi.org/10.3233/JIFS-179467
  • [104] Abdullah, L. and Goh, P., “Decision making method based on Pythagorean fuzzy sets and its application to solid waste management”, Complex & intelligent systems, 5(2): 185-198, (2019). DOI: https://doi.org/10.1007/s40747-019-0100-9
  • [105] Gündoğdu, F. K., Duleba, S., Moslem, S. and Aydın, S., “Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model”, Applied Soft Computing, 100: 106920, (2021). DOI: https://doi.org/10.1016/J.ASOC.2020.106920
  • [106] Wan Mohd, W.R., Abdullah, L., Yusoff, B., Taib, C.M.I.C.1, and Merigo, J.M., “An integrated MCDM model based on Pythagorean fuzzy sets for green supplier development program”, Malaysian Journal of Mathematical Sciences, 13(S): 23–37, (2019).
  • [107] Saaty, T.L., “The analytic hierarchy process-what it is and how it is used”, Math. Model. 9, (1987). DOI: http://dx.doi.org/10.1016/0270-0255(87)90473-8
  • [108] Masmali, I., Hassan, R., Shuaib, U., Razaq, A., Razzaque, A. and Alhamzi, G., “Stock Reordering Decision Making under Interval Valued Picture Fuzzy Knowledge”, Symmetry, 15: 898, (2023). DOI: https://doi.org/10.3390/sym15040898
  • [109] Naeem, M., Qiyas, M. and Abdullah, S., “An Approach of Interval-Valued Picture Fuzzy Uncertain Linguistic Aggregation Operator and Their Application on Supplier Selection Decision-Making in Logistics Service Value Concretion”, Math. Probl. Eng, 2021: 1–19, (2021). DOI: https://doi.org/10.1155/2021/8873230
  • [110] Lingard, H., Cooke, T. and Blismas, N., “Do Perceptions of Supervisors’ Safety Responses Mediate the Relationship between Perceptions of the Organizational Safety Climate and Incident Rates in the Construction Supply Chain? J”, Constr. Eng. Manag, 138: 234–241, (2012). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000372
  • [111] Molenaar, K.R., Park, J.I. and Washington, S., “Framework for Measuring Corporate Safety Culture and Its Impact on Construction Safety Performance”, J. Constr. Eng. Manag, 135: 488–496, (2009). DOI: https://doi.org/10.1061/(ASCE)0733-9364(2009)135:6(488)
  • [112] Gümüştaş, C. and Küskü, F., “Dynamics of Organizational Distrust: An Exploratory Study in Workplace Safety”, Saf. Sci, 134: 105032, (2021). DOI: https://doi.org/10.1016/j.ssci.2020.105032
  • [113] Leung, M.Y., Liang, Q. and Olomolaiye, P., “Impact of job stressors and stress on the safety behavior and accidents of construction workers”, J. Manag. Eng. 32, (2016). DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000373
  • [114] Mohamed, S., Ali, T.H. and Tam, W.Y.V., “National culture and safe work behaviour of construction workers in Pakistan”, Saf. Sci, 47: 29–35, (2009). DOI: https://doi.org/10.1016/j.ssci.2008.01.003
  • [115] Sun, X., Chong, H.-Y., Liao, P.-C., Fang, D. and Wang, Y., “A System Dynamics Model of Prevention through Design towards Eliminating Human Error”, KSCE J. Civ. Eng, 23: 1923–1938, (2019). DOI: https://doi.org/10.1007/s12205-019-0845-0
  • [116] Pybus, R., Safety Management: Strategy and Practice, Butterworth-Heinemann, (1996).
  • [117] Arcury, T.A., Summers, P., Carrillo, L., Grzywacz, J.G., Quandt, S.A. and Mills, T.H., “Occupational safety beliefs among Latino residential roofing workers”, Am. J. Ind. Med, 57: 718–725, (2014). DOI: https://doi.org/10.1002/ajim.222
  • [118] Stege, T.A.M., Bolte, J.F.B., Claassen, L. and Timmermans, D.R.M., “Particulate matter exposure in roadwork companies: A mental models study on work safety”, Saf. Sci, 120: 137–145, (2019). DOI: https://doi.org/10.1016/j.ssci.2019.06.043
  • [119] Ju, D., Qin, X., Xu, M. and DiRenzo, M.S., “Boundary conditions of the emotional exhaustion-unsafe behavior link: The dark side of group norms and personal control”, Asia Pac. J. Manag, 33: 113–140, (2016). DOI: https://doi.org/10.1007/s10490-015-9455-7
  • [120] Patel, D.A. and Jha, K.N., “Neural Network Approach for Safety Climate Prediction”, J. Manag. Eng, 31: 05014027, (2015). DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000348
  • [121] Choudhry, R.M. and Fang, D., “Why operatives engage in unsafe work behavior: Investigating factors on construction sites”, Saf. Sci, 46: 566–584, (2008). DOI: https://doi.org/10.1016/j.ssci.2007.06.027
  • [122] Hon, C.K.H., Chan, A.P.C. and Wong, F.K.W., “An analysis for the causes of accidents of repair, maintenance, alteration and addition works in Hong Kong”, Saf. Sci, 48: 894–901, (2010). DOI: https://doi.org/10.1016/j.ssci.2010.03.013
  • [123] Jitwasinkul, B. and Hadikusumo, B.H.W., “Identification of Important Organisational Factors Influencing Safety Work Behaviours in Construction Projects”, J. Civ. Eng. Manag, 17: 520–528, (2011). DOI: https://doi.org/10.3846/13923730.2011.604538
  • [124] Manzey, D. and Marold, J., “Occupational accidents and safety: The challenge of globalization 47, 723–726”, (2009). DOI: https://doi.org/10.1016/j.ssci.2008.01.013
  • [125] Hallowell, M.R., Hinze, J.W., Baud, K.C. and Wehle, A., “Proactive Construction Safety Control: Measuring, Monitoring, and Responding to Safety Leading Indicators”, J. Constr. Eng. Manag, 139: 04013010, (2013). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000730
  • [126] Stoilkovska, B.B., Žileska Pančovska, V. and Mijoski, G., “Relationship of safety climate perceptions and job satisfaction among employees in the construction industry: the moderating role of age”, Int. J. Occup. Saf. Ergon, 21: 440–447, (2015). DOI: https://doi.org/10.1080/10803548.2015.1096059
  • [127] Feng, Y., Teo, E.A.L., Ling, F.Y.Y. and Low, S.P., “Exploring the interactive effects of safety investments, safety culture and project hazard on safety performance: An empirical analysis”, Int. J. Proj. Manag, 32: 932–943, (2014). DOI: https://doi.org/10.1016/j.ijproman.2013.10.016
  • [128] Cheng, C.W., Leu, S.S., Lin, C.C. and Fan, C., “Characteristic analysis of occupational accidents at small construction enterprises”, Saf. Sci, 48: 698–707, (2010). DOI: https://doi.org/10.1016/j.ssci.2010.02.001
  • [129] Kang, K. and Ryu, H., “Predicting types of occupational accidents at construction sites in Korea using random forest model”, Saf. Sci, 120: 226–236, (2019). DOI: https://doi.org/10.1016/j.ssci.2019.06.034
There are 129 citations in total.

Details

Primary Language English
Subjects Multiple Criteria Decision Making
Journal Section Research Article
Authors

Cihangir Gümüştaş 0000-0002-0487-2282

Elif Haktanır Aktaş 0000-0002-3341-4360

Gül Tekin Temur 0000-0003-3853-0974

Ahmet Beşkese 0000-0003-4427-3986

Early Pub Date October 17, 2025
Publication Date December 1, 2025
Submission Date June 14, 2024
Acceptance Date August 11, 2025
Published in Issue Year 2025 Volume: 38 Issue: 4

Cite

APA Gümüştaş, C., Haktanır Aktaş, E., Temur, G. T., Beşkese, A. (2025). A Study on the Importance of Factors Effecting the Occupational Safety Performance. Gazi University Journal of Science, 38(4), 1968-1998. https://doi.org/10.35378/gujs.1501298
AMA Gümüştaş C, Haktanır Aktaş E, Temur GT, Beşkese A. A Study on the Importance of Factors Effecting the Occupational Safety Performance. Gazi University Journal of Science. December 2025;38(4):1968-1998. doi:10.35378/gujs.1501298
Chicago Gümüştaş, Cihangir, Elif Haktanır Aktaş, Gül Tekin Temur, and Ahmet Beşkese. “A Study on the Importance of Factors Effecting the Occupational Safety Performance”. Gazi University Journal of Science 38, no. 4 (December 2025): 1968-98. https://doi.org/10.35378/gujs.1501298.
EndNote Gümüştaş C, Haktanır Aktaş E, Temur GT, Beşkese A (December 1, 2025) A Study on the Importance of Factors Effecting the Occupational Safety Performance. Gazi University Journal of Science 38 4 1968–1998.
IEEE C. Gümüştaş, E. Haktanır Aktaş, G. T. Temur, and A. Beşkese, “A Study on the Importance of Factors Effecting the Occupational Safety Performance”, Gazi University Journal of Science, vol. 38, no. 4, pp. 1968–1998, 2025, doi: 10.35378/gujs.1501298.
ISNAD Gümüştaş, Cihangir et al. “A Study on the Importance of Factors Effecting the Occupational Safety Performance”. Gazi University Journal of Science 38/4 (December2025), 1968-1998. https://doi.org/10.35378/gujs.1501298.
JAMA Gümüştaş C, Haktanır Aktaş E, Temur GT, Beşkese A. A Study on the Importance of Factors Effecting the Occupational Safety Performance. Gazi University Journal of Science. 2025;38:1968–1998.
MLA Gümüştaş, Cihangir et al. “A Study on the Importance of Factors Effecting the Occupational Safety Performance”. Gazi University Journal of Science, vol. 38, no. 4, 2025, pp. 1968-9, doi:10.35378/gujs.1501298.
Vancouver Gümüştaş C, Haktanır Aktaş E, Temur GT, Beşkese A. A Study on the Importance of Factors Effecting the Occupational Safety Performance. Gazi University Journal of Science. 2025;38(4):1968-9.