Review
BibTex RIS Cite

Year 2025, Volume: 38 Issue: 4, 1566 - 1595, 01.12.2025
https://doi.org/10.35378/gujs.1629541

Abstract

References

  • [1] International Energy Agency. “World Energy Outlook 2024” Report, (2024).
  • [2] Hubert, T., Dugué, A., Vogt Wu, T., Aujard, F., and Bruneau, D., “An adaptive building skin concept resulting from a new bioinspiration process: Design, prototyping, and characterization”, Energies, 15(3): 891, (2022). DOI: https://doi.org/10.3390/en15030891
  • [3] El Houda, A. N., and Mohamed, D., “Advanced building skins inspired from plants adaptation strategies to environmental stimuli: A review”, International Conference on Applied Smart Systems (ICASS), Médéa, 1-7, (2018). DOI: 10.1109/ICASS.2018.8651949
  • [4] Kızılörenli, E., and Maden, F., “Modular responsive facade proposals based on semi-regular and demi-regular tessellation: Daylighting and visual comfort”, Frontiers of Architectural Research, 12(4): 601-612, (2023). DOI: https://doi.org/10.1016/j.foar.2023.02.005
  • [5] Pawlyn, M., Biomimicry in Architecture 2nd ed., RIBA Publishing, Newcastle, (2019). DOI: https://doi.org/10.4324/9780429346774
  • [6] Park, J. J., and Dave, B., “Bio-inspired responsive façades”, 2nd Central European Symposium of Building Physics (CESBP), Vienna, (2013).
  • [7] Kuru, A., Oldfield, P., Bonser, S., and Fiorito, F., “Biomimetic adaptive building skins: Energy and environmental regulation in buildings”, Energy and Buildings, 205, (2019). DOI: https://doi.org/10.1016/j.enbuild.2019.109544
  • [8] Soliman, M. E., and Bo, S., “An innovative multifunctional biomimetic adaptive building envelope based on a novel integrated methodology of merging biological mechanisms”, Journal of Building Engineering, 76, (2023). DOI: https://doi.org/10.1016/j.jobe.2023.106995
  • [9] Meena, A. K., D’Costa, D., Bhavsar, S., Kshirsagar, M., and Kulkarni, S., “Applications of biomimicry in construction and architecture: A bibliometric analysis”, Library Philosophy and Practice, 1-17,(2021).
  • [10] Shashwat, S., Zingre, K. T., Thurairajah, N., Kumar, D. K., Panicker, K., Anand, P., and Wan, M. P., “A review on bioinspired strategies for an energy-efficient built environment.” Energy and Buildings, 296, (2023). DOI: https://doi.org/10.1016/j.enbuild.2023.113382
  • [11] Varshabi, N., Arslan Selçuk, S., and Mutlu Avinç, G., “Biomimicry for energy-efficient building design: A bibliometric analysis”, Biomimetics, 7(1): 21, (2022). DOI: https://doi.org/10.3390/biomimetics7010021
  • [12] Bem, G. D., and Krüger, E. L., “Responsive architecture: a bibliometric analysis of scientific production”, Ambiente Construído, 22, 31-45, (2022).
  • [13] Gonçalves, M., Figueiredo, A., Almeida, R. M. S. F., and Vicente, R., “Dynamic façades in buildings: A systematic review across thermal comfort, energy efficiency and daylight performance”, Renewable and Sustainable Energy Reviews, 199, (2024). DOI: https://doi.org/10.1016/j.rser.2024.114474
  • [14] Aria, M., and Cuccurullo, C., “Bibliometrix: An R-tool for comprehensive science mapping analysis”, Journal of Informetrics, 11(4): 959-975, (2017). DOI: https://doi.org/10.1016/j.joi.2017.08.007
  • [15] Dutt, F., and Das, S., “Computational design of a bio inspired responsive architectural Façade system”, International Journal of Architectural Computing, 10(4): 613-633, (2012). DOI: https://doi.org/10.1260/1478-0771.10.4.613
  • [16] Ladurner, G., Gabler, M., Menges, A., and Knippers, J., “Interactive form-finding for biomimetic fibre structures”, Education and Research in Computer Aided Architectural Design in Europe Computation and Performance (eCAADe), 509-520, (2012). DOI: https://doi.org/10.52842/conf.ecaade.2012.2.519
  • [17] Menges, A., and Knippers, J., “Fibrous tectonics”, Architectural Design, 85(5): 40-47, (2015). DOI: https://doi.org/10.1002/ad.1952
  • [18] Grun, T. B., Dehkordi, LKF., Schwinn, T., Sonntag, D., von Scheven, M., Bischoff, M., Knippers, J., and Nebelsick, J. H., The skeleton of the sand dollar as a biological role model for segmented shells in building construction: a research review. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 217-242, (2016). DOI: https://doi.org/10.1007/978-3-319-46374-2_11
  • [19] Weigele, J., Schloz, M., Schwinn, T., Reichert, S., LaMagna, R., Waimer, F., Knippers, J., and Menges, A., “Fibrous Morphologies”, Education and Research in Computer Aided Architectural Design in Europe Computation and Performance (eCAADe), 549-558, (2013).
  • [20] Knippers, J., La Magna, R., Menges, A., Reichert, S., Schwinn, T., and Waimer, F., “ICD/ITKE research pavilion 2012: coreless filament winding based on the morphological principles of an arthropod exoskeleton”, Architectural Design, 85(5): 48-53, (2015). DOI: https://doi.org/10.1002/ad.1953
  • [21] Dörstelmann, M., Knippers, J., Menges, A., Parascho, S., Prado, M., and Schwinn, T., “ICD/ITKE Research Pavilion 2013‐14: Modular Coreless Filament Winding Based on Beetle Elytra”, Architectural Design, 85(5): 54-59, (2015). DOI: https://doi.org/10.1002/ad.1954
  • [22] Dörstelmann, M., Knippers, J., Koslowski, V., Menges, A., Prado, M., Schieber, G., and Vasey, L., “ICD/ITKE research pavilion 2014–15: Fibre placement on a pneumatic body based on a water spider web”, Architectural Design, 85(5): 60-65, (2015). DOI: https://doi.org/10.1002/ad.1955
  • [23] Grun, T. B., von Scheven, M., Geiger, F., Schwinn, T., Sonntag, D., Bischoff, M., Knippers, J, and Nebelsick, J. H., Building principles and structural design of sea urchins: Examples of bio-inspired constructions. In Biomimetics for Architecture: Learning from Nature, Birkhäuser, Basel, 104-115, (2019). DOI: https://doi.org/10.1515/9783035617917-014
  • [24] Speck, T., Knippers, J., and Speck, O., “Self‐X materials and structures in nature and technology: Bio‐inspiration as a driving force for technical innovation”, Architectural Design, 85(5): 34-39, (2015). DOI: https://doi.org/10.1002/ad.1951
  • [25] Knippers, J., Schmid, U., and Speck, T., Biomimetics for architecture: learning from nature, Birkhäuser, Basel, (2019). DOI: https://doi.org/10.1515/9783035617917
  • [26] Poppinga, S., Körner, A., Sachse, R., Born, L., Westermeier, A., Hesse, L., Knippers, J., Bischoff, M., Gresser, GT., and Speck, T., Compliant mechanisms in plants and architecture. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 169-193, (2016). DOI: https://doi.org/10.1007/978-3-319-46374-2_9
  • [27] Born, L., Jonas, F. A., Bunk, K., Masselter, T., Speck, T., Knippers, J., and Gresser, G. T., Branched structures in plants and architecture. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 195-215, (2016). DOI: https://doi.org/10.1007/978-3-319-46374-2_10
  • [28] Westermeier, A. S., Poppinga, S., Körner, A., Born, L., Sachse, R., Saffarian, S., Knippers, J., Bischoff, M., Gresser, GT., and Speck, T., No joint ailments: How plants move and inspire technology. In Biomimetics for Architecture: Learning from Nature, Birkhäuser, Basel, 32-41, (2019). DOI: https://doi.org/10.1515/9783035617917-006
  • [29] Bunk, K., Jonas, F. A., Born, L., Hesse, L., Möhl, C., Gresser, GT., Knippers, J., Speck, T., and Masselter, T., From plant branchings to technical support structures. In Biomimetics for Architecture: Learning from Nature, Birkhäuser, Basel, 144-152, (2019).
  • [30] Waimer, F., La Magna, R., and Knippers, J., “Nature-inspired structural optimization of freeform shells”, International Conference Structures and Architecture (ICSA), (2013).
  • [31] Dahy, H., and Knippers, J., “Agricultural residues applications in contemporary building industry”, International Conference on Structures and Architecture (ICSA), Portogallo, (2013).
  • [32] Betz, O., Birkhold, A., Caliaro, M., Eggs, B., Mader, A., Knippers, J., and Speck, O., Adaptive stiffness and joint-free kinematics: actively actuated rod-shaped structures in plants and animals and their biomimetic potential in architecture and engineering. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 135-167, (2016).
  • [33] Speck, O., Caliaro, M., Mader A., and Knippers, J., Plants In Action. In Biomimetics for Architecture, 14–21, (2019).
  • [34] Violano, A., and Melchiorre, L., Eco-friendly materials and technologies: the added value of urban transformation. In Best Practices in Heritage, Conservation and Management From the World to Pompeii, La Scuola di Pitagora, (2014).
  • [35] Violano, A., “Beyond Materials: the experimentation of bio-based grown materials from mycelia”, TECHNE-Journal of Technology for Architecture and Environment, 299-307, (2018).
  • [36] Violano, A., Cannaviello, M., and Della Cioppa, A., Building With Wood: the summer energy performance according the UNITS 11300: 2014-I. In Heritage and Technology, Mind Knowledge Experience, 1940-1947, (2015).
  • [37] Albrizio, S., Capobianco, L., Di Domenico, C., Fiore, A., Fiore, W., Franchino, R, and Violano, A., “The SEEM project: a Solar Eco-Efficient Envelope Model”, Heritage Architecture Landesign focus on Conservation Regeneration Innovation Le vie dei Mercanti XI Forum Internazionale di Studi 1364-1371, (2013).
  • [38] Abdallah, Y. K., and Estevez, A. T., “Bioactive devices as self-sufficient systems for energy production in architecture”, Journal of Green Building, 16(2): 3-22, (2021). DOI: 10.3992/jgb.16.2.3
  • [39] Giannopoulou, E., Baquero, P., Warang, A., Orciuoli, A., Estevez, A. T., and Brun-Usan, M. A., “Biological pattern based on reaction-diffusion mechanism employed as fabrication strategy for a shell structure”, IOP Conference Series: Materials Science and Engineering, 471(10), 102053, (2019). DOI: 10.1088/1757-899X/471/10/102053
  • [40] Almusaed, A., Green Areas in Biophilic Architecture. In Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture, 113-122, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7_8
  • [41] Almusaed, A., Biophilic and bioclimatic architecture: Analytical therapy for the next generation of passive sustainable architecture, Springer Science & Business Media, New York, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7
  • [42] Almusaed, A., Biophilic Architecture Hypothesis. In Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture, 39-46, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7_4
  • [43] Almusaed, A., Socio and Healthy Human Psychology upon Biophilic Architecture. In Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture, 173-186, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7_14
  • [44] Malaktou, E., and Philokyprou, M., “Summer thermal comfort conditions in shopping arcades and their adjoining streets in hot and dry climates. The case of the Nicosia’s historic centre”, IOP Conference Series: Earth and Environmental Science, 410(1), 012093, (2020). DOI: https://doi.org/10.1088/1755-1315/410/1/012093
  • [45] Philokyprou, M., Savvides, A., Michael, A., and Malaktou, E., “Examination and assessment of the environmental characteristics of vernacular rural settlements. Three case studies in Cyprus”, World Sustainable Building Conference SB14, Barcelona, 1-8 (2014).
  • [46] Philokyprou, M., Michael, A., Thravalou, S., and Ioannou, I., “Evaluation of sustainable design elements in the historic centre of Nicosia, Cyprus”, Vernacular Heritage and Earthen Architecture, 631-637, (2013).
  • [47] Philokyprou, M., Michael, A., and Thravalou, S., “Assessment of the bioclimatic elements of vernacular architecture. The historic centre of Nicosia, Cyprus”, Le Vie dei Mercanti XI Forum Internazionale di Studi, Aversa, Capri, 13-15, (2013).
  • [48] Philokyprou, M., “Teaching conservation and vernacular architecture”, Journal of Architectural Conservation, 17(2): 7-24, (2011). DOI: https://doi.org/10.1080/13556207.2011.10785086
  • [49] Favoino, F., Jin, Q., and Overend, M., “Towards an ideal adaptive glazed façade for office buildings”, Energy Procedia, 62: 289-298, (2014). DOI: https://doi.org/10.1016/j.egypro.2014.12.390
  • [50] Favoino, F., and Overend, M., “A simulation framework for the evaluation of next generation Responsive Building Envelope Technologies”, Energy Procedia, 78: 2602-2607 (2015). DOI: https://doi.org/10.1016/j.egypro.2015.11.302
  • [51] Favoino, F., Fiorito, F., Cannavale, A., Ranzi, G., and Overend, M., “Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates”, Applied Energy, 178: 943-961, (2016). DOI: https://doi.org/10.1016/j.apenergy.2016.06.107
  • [52] Favoino, F., Jin, Q., and Overend, M., “Design and control optimisation of adaptive insulation systems for office buildings. Part 1: Adaptive technologies and simulation framework”, Energy, 127: 301-309, (2017). DOI: https://doi.org/10.1016/j.energy.2017.03.083
  • [53] Loonen, R. C., Favoino, F., Hensen, J. L., and Overend, M., “Review of current status, requirements and opportunities for building performance simulation of adaptive facades”, Journal of Building Performance Simulation, 10(2): 205-223, (2017). DOI: https://doi.org/10.1080/19401493.2016.1152303
  • [54] Giovannini, L., Serra, V., Verso, V. R. L., Pellegrino, A., Zinzi, M., and Favoino, F., “A novel methodology to optimize visual comfort and energy performance for transparent adaptive façades”, International Conference on Environment and Electrical Engineering (IEEE) and Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, 1-6, (2018). DOI: https://doi.org/10.1109/EEEIC.2018.8494565
  • [55] Giovannini, L., Favoino, F., Pellegrino, A., Verso, V. R. M. L., Serra, V., and Zinzi, M., “Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation”, Applied Energy, 251, (2019). DOI: https://doi.org/10.1016/j.apenergy.2019.113335
  • [56] Giovannini, L., Favoino, F., Serra, V., and Zinzi, M., “Thermo-chromic glazing in buildings: A novel methodological framework for a multi-objective performance evaluation”, Energy Procedia, 158: 4115-4122, (2019). DOI: https://doi.org/10.1016/j.egypro.2019.01.822
  • [57] Favoino, F., Goia, F., Perino, M., and Serra, V., “Experimental analysis of the energy performance of an ACTive, RESponsive and Solar (ACTRESS) façade module", Solar Energy, 133: 226-248, (2016). DOI: https://doi.org/10.1016/j.solener.2016.03.044
  • [58] Tabadkani, A., Roetzel, A., Li, H. X., Tsangrassoulis, A., “A review of automatic control strategies based on simulations for adaptive facades”, Building and Environment, 175, 106801, (2020). DOI: https://doi.org/10.1016/j.buildenv.2020.106801
  • [59] Tabadkani, A., Tsangrassoulis, A., Roetzel, A., and Li, H. X., “Innovative control approaches to assess energy implications of adaptive facades based on simulation using EnergyPlus”, Solar Energy, 206: 256-268, (2020). DOI: https://doi.org/10.1016/j.solener.2020.05.087
  • [60] Tabadkani, A., Roetzel, A., Li, H. X., and Tsangrassoulis, A., “Design approaches and typologies of adaptive facades: A review”, Automation in Construction, 121, 103450, (2021). DOI: https://doi.org/10.1016/j.autcon.2020.103450
  • [61] Tabadkani, A., Roetzel, A., Li, H. X., and Tsangrassoulis, A., “A review of occupant-centric control strategies for adaptive facades”, Automation in Construction, 122, 103464, (2021). DOI: https://doi.org/10.1016/j.autcon.2020.103464
  • [62] Tabadkani, A., Roetzel, A., Li, H. X., and Tsangrassoulis, A., “Simulation-based personalized real-time control of adaptive facades in shared office spaces”, Automation in Construction, 138, 104246, (2022). DOI: https://doi.org/10.1016/j.autcon.2022.104246
  • [63] Tabadkani, A., Haddadi, M., Rizi, R. A., and Tabadkani, E., “A hierarchical multi-purpose roller shade controller to enhance indoor comfort and energy efficiency”, Building Simulation, 16(7): 1239-1256, (2023). DOI: https://doi.org/10.1007/s12273-023-1003-7
  • [64] Tabadkani, A., Dehnavi, A. N., Mostafavi, F., and Naeini, H. G., “Targeting modular adaptive façade personalization in a shared office space using fuzzy logic and genetic optimization”, Journal of Building Engineering, 69: 106118, (2023). DOI: https://doi.org/10.1016/j.jobe.2023.106118
  • [65] Tabadkani, A., Roetzel, A., Li, H. X., Tsangrassoulis, A., and Attia, S., “Analysis of the impact of automatic shading control scenarios on occupant’s comfort and energy load”, Applied Energy, 294, 116904, (2021). DOI: https://doi.org/10.1016/j.apenergy.2021.116904
  • [66] Attia, S., Bertrand, S., Cuchet, M., Yang, S., and Tabadkani, A., “Comparison of thermal energy saving potential and overheating risk of four adaptive façade technologies in office buildings”, Sustainability, 14(10), 6106, (2022). DOI: https://doi.org/10.3390/su14106106
  • [67] Norouziasas, A., Tabadkani, A., Rahif, R., Amer, M., van Dijk, D., Lamy, H., and Attia, S., “Implementation of ISO/DIS 52016-3 for adaptive façades: A case study of an office building”, Building and Environment, 235, 110195, (2023). DOI: https://doi.org/10.1016/j.buildenv.2023.110195
  • [68] Cui, H., and Overend, M., “A review of heat transfer characteristics of switchable insulation technologies for thermally adaptive building envelopes”, Energy and Buildings, 199: 427-444, (2019). DOI: https://doi.org/10.1016/j.enbuild.2019.07.004
  • [69] Magri, E., Buhagiar, V., and Overend, M., “The Potential of Smart Glazing for Occupant Well-Being and Reduced Energy Load in a Central-Mediterranean Climate”, KnE Social Sciences, 534-545, (2019). DOI: https://doi.org/10.18502/kss.v3i27.5555
  • [70] Serra, V., Zanghirella, F., and Perino, M., “Experimental evaluation of a climate facade: energy efficiency and thermal comfort performance”, Energy and Buildings, 42(1): 50-62, (2010). DOI: https://doi.org/10.1016/j.enbuild.2009.07.010
  • [71] Goia, F., Perino, M., Serra, V., and Zanghirella, F., “Towards an active, responsive, and solar building envelope”, Journal of Green Building, 5(4): 121-136, (2010). DOI: https://doi.org/10.3992/jgb.5.4.121
  • [72] Callegari, G., Spinelli, A., Bianco, L., Serra, V., and Fantucci, S., “NATURWALL©-A solar timber façade system for building refurbishment: optimization process through in field measurements”, Energy Procedia, 78: 291-296, (2015). DOI: https://doi.org/10.1016/j.egypro.2015.11.641
  • [73] Attia, S., Lioure, R., and Declaude, Q., “Future trends and main concepts of adaptive facade systems”, Energy Science & Engineering, 8(9): 3255-3272, (2020). DOI: https://doi.org/10.1002/ese3.725
  • [74] Valitabar, M., Ghaffarian Hoseini, A., and Attia, S., “Advanced control strategy to maximize view and control discomforting glare: a complex adaptive façade”, Architectural Engineering and Design Management, 18(6): 829-849, (2022). DOI: https://doi.org/10.1080/17452007.2022.2032576
  • [75] Hosseini, S. M., Heidari, S., Attia, S., Wang, J., and Triantafyllidis, G., “Biomimetic kinetic façade as a real-time daylight control: complex form versus simple form with proper kinetic behavior”, International Conference on Smart and Sustainable Built Environment (SASBE), Auckland, (2024). DOI: https://doi.org/10.1108/SASBE-03-2024-0090
  • [76] Hosseini, S. M., Mohammadi, M., Schröder, T., and Guerra-Santin, O., “Integrating interactive kinetic façade design with colored glass to improve daylight performance based on occupants’ position”, Journal of Building Engineering, 31, 101404, (2020). DOI: https://doi.org/10.1016/j.jobe.2020.101404
  • [77] Hosseini, S. M., Mohammadi, M., Schröder, T., and Guerra-Santin, O., “Bio-inspired interactive kinetic façade: Using dynamic transitory-sensitive area to improve multiple occupants’ visual comfort”, Frontiers of Architectural Research, 10(4): 821-837, (2021). DOI: https://doi.org/10.1016/j.foar.2021.07.004
  • [78] Hosseini, S. M., and Heidari, S., “General morphological analysis of Orosi windows and morpho butterfly wing's principles for improving occupant's daylight performance through interactive kinetic façade”, Journal of Building Engineering, 59, 105027, (2022). DOI: https://doi.org/10.1016/j.jobe.2022.105027
  • [79] Sommese, F., Hosseini, S. M., Badarnah, L., Capozzi, F., Giordano, S., Ambrogi, V., and Ausiello, G., “Light-responsive kinetic façade system inspired by the Gazania flower: A biomimetic approach in parametric design for daylighting”, Building and Environment, 247, 111052, (2024).
  • [80] Heidari Matin, N., and Eydgahi, A., “Factors affecting the design and development of responsive facades: a historical evolution”, Intelligent Buildings International, 12(4): 257-270, (2020).
  • [81] Heidari Matin, N., and Eydgahi, A., “Using Smart Colored Windows for Improving Users’ Comfort in Buildings”, 3rd International Conference on Architecture, Construction, Environment and Hydraulics (ICACEH), 29-33, (2021). DOI: https://doi.org/10.1109/icaceh54312.2021.9768848
  • [82] Heidari Matin, N., and Eydgahi, A., “Technologies used in responsive facade systems: a comparative study”, Intelligent Buildings International, 14(1): 54-73, (2022). DOI: https://doi.org/10.1080/17508975.2019.1577213
  • [83] Heidari Matin, N., and Eydgahi, A., “A data-driven optimized daylight pattern for responsive facades design”, Intelligent Buildings International, 14(3): 363-374, (2022). DOI: https://doi.org/10.1080/17508975.2021.1872478
  • [84] Heidari Matin, N., Eydgahi, A., and Matin, P., “The effect of smart colored windows on visual performance of buildings”, Buildings, 12(6): 861, (2022). DOI: https://doi.org/10.3390/buildings12060861
  • [85] Heidari Matin, N., Eydgahi, A., Gharipour, A., and Matin, P., “A Novel Framework for Optimizing Indoor Illuminance and Discovering Association of Involved Variables”, Buildings, 12(7): 878, (2022). DOI: https://doi.org/10.3390/buildings12070878
  • [86] Rashidzadeh, Z., and Heidari Matin, N., “A comparative study on smart windows focusing on climate-based energy performance and users’ comfort attributes”, Sustainability, 15(3): 2294, (2023). DOI: https://doi.org/10.3390/su15032294
  • [87] Badarnah, L., “A biophysical framework of heat regulation strategies for the design of biomimetic building envelopes”, Procedia Engineering, 118: 1225-1235, (2015). DOI: https://doi.org/10.1016/j.proeng.2015.08.474
  • [88] Badarnah, L., and Kadri, U., “A methodology for the generation of biomimetic design concepts”, Architectural Science Review, 58(2): 120-133, (2015). DOI: https://doi.org/10.1080/00038628.2014.922458
  • [89] Cruz, E., Hubert, T., Chancoco, G., Naim, O., Chayaamor-Heil, N., Cornette, R., and Aujard, F., “Design processes and multi-regulation of biomimetic building skins: A comparative analysis”, Energy and Buildings, 246, 111034, (2021). DOI: https://doi.org/10.1016/j.enbuild.2021.111034
  • [90] Badarnah, L., “Form follows environment: Biomimetic approaches to building envelope design for environmental adaptation”, Buildings, 7(2): 40, (2017). DOI: https://doi.org/10.3390/buildings7020040
  • [91] Peeks, M., and Badarnah, L., “Textured building façades: utilizing morphological adaptations found in nature for evaporative cooling”, Biomimetics, 6(2): 24, (2021).
  • [92] Sommese, F., Badarnah, L., and Ausiello, G., “A critical review of biomimetic building envelopes: towards a bio-adaptive model from nature to architecture”, Renewable and Sustainable Energy Reviews, 169, 112850, (2022). DOI: https://doi.org/10.1016/j.rser.2022.112850
  • [93] Sommese, F., Badarnah, L., and Ausiello, G., “Smart materials for biomimetic building envelopes: current trends and potential applications”, Renewable and Sustainable Energy Reviews, 188, 113847, (2023). DOI: https://doi.org/10.1016/j.rser.2023.113847
  • [94] Jalali, S., Nicoletti, E., and Badarnah, L., “From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies”, Sustainability, 16(3): 1145, (2024).
  • [95] Hays, N., Badarnah, L., and Jain, A., “Biomimetic design of building facades: an evolutionary-based computational approach inspired by elephant skin for cooling in hot and humid climates”, Frontiers in Built Environment, 10, 1309621, (2024). DOI: https://doi.org/10.3389/fbuil.2024.1309621
  • [96] Ameh, H., Badarnah, L., and Lamond, J., “Amphibious Architecture: A Biomimetic Design Approach to Flood Resilience”, Sustainability, 16(3): 1069, (2024). DOI: https://doi.org/10.3390/su16031069
  • [97] Schleicher, S., Lienhard, J., Poppinga, S., Speck, T., and Knippers, J., Abstraction of bio-inspired curved-line folding patterns for elastic foils and membranes in architecture. In Design and Nature V, WIT Press, 479-90, (2010). DOI: https://doi.org/10.2495/DN100431
  • [98] Schleicher, S., Lienhard, J., Poppinga, S., Speck, T., and Knippers, J., “A methodology for transferring principles of plant movements to elastic systems in architecture”, Computer-Aided Design, 60: 105-117, (2015). DOI: https://doi.org/10.1016/j.cad.2014.01.005
  • [99] Antony, F., Grießhammer, R., Speck, T., and Speck, O., “The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®”, Beilstein Journal of Nanotechnology, 7(1): 2100-2115, (2016). DOI: https://doi.org/10.3762/bjnano.7.200
  • [100] Poppinga, S., Zollfrank, C., Prucker, O., Rühe, J., Menges, A., Cheng, T., and Speck, T., “Toward a new generation of smart biomimetic actuators for architecture”, Advanced Materials, 30(19), 1703653, (2018). DOI: https://doi.org/10.1002/adma.201703653
  • [101] Körner, A., Born, L., Mader, A., Sachse, R., Saffarian, S., Westermeier, A. S., and Knippers, J., “ for—a biomimetic compliant shading device for complex free form facades”, Smart Materials and Structures, 27(1), 017001, (2017). DOI: https://doi.org/10.1088/1361-665X/aa9c2f
  • [102] Speck, T., Poppinga, S., Speck, O., and Tauber, F., “Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene”, The Anthropocene Review, 9(2): 237-256, (2022). DOI: https://doi.org/10.1177/20530196211039275
  • [103] Speck, O., and Speck, T., “Biomimetics in botanical gardens—Educational trails and guided tours”, Biomimetics, 8(3): 303, (2023). DOI: https://doi.org/10.3390/biomimetics8030303
  • [104] Cheng, T., Tahouni, Y., Sahin, E. S., Ulrich, K., Lajewski, S., Bonten, C., and Menges, A., “Weather-responsive adaptive shading through biobased and bioinspired hygromorphic 4D-printing”, Nature Communications, 15(1), 10366, (2024). DOI: https://doi.org/10.1038/s41467-024-54808-8
  • [105] Schieber, G., Born, L., Bergmann, P., Körner, A., Mader, A., Saffarian, S., and Knippers, J., “Hindwings of insects as concept generator for hingeless foldable shading systems”, Bioinspiration & Biomimetics, 13(1), 016012, (2017). DOI: https://doi.org/10.1088/1748-3190/aa979c
  • [106] Mader, A., Langer, M., Knippers, J., and Speck, O., “Learning from plant movements triggered by bulliform cells: the biomimetic cellular actuator”, Journal of the Royal Society Interface, 17(169), 20200358, (2020). DOI: https://doi.org/10.1098/rsif.2020.0358
  • [107] Vazquez, E., Correa, D., and Poppinga, S., “A review of and taxonomy for elastic kinetic building envelopes”, Journal of Building Engineering, 82, 108227, (2024). DOI: https://doi.org/10.1016/j.jobe.2023.108227
  • [108] Hosseini, S. M., Mohammadi, M., Rosemann, A., Schröder, T., and Lichtenberg, J., “A morphological approach for kinetic façade design process to improve visual and thermal comfort”, Building and Environment, 153: 186-204, (2019). DOI: https://doi.org/10.1016/j.buildenv.2019.02.040
  • [109] Menges, A., and Reichert, S., “Material capacity: embedded responsiveness”, Architectural Design, 82(2): 52-59, (2012). DOI: https://doi.org/10.1002/ad.1379
  • [110] Reichert, S., Menges, A., and Correa, D., “Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness”, Computer-Aided Design, 60: 50-69, (2015). DOI: https://doi.org/10.1016/j.cad.2014.02.010
  • [111] Tahouni, Y., Cheng, T., Lajewski, S., Benz, J., Bonten, C., Wood, D., and Menges, A., “Codesign of biobased cellulose-filled filaments and mesostructures for 4D printing humidity responsive smart structures”, 3D Printing and Additive Manufacturing, 10(1): 1-14, (2023). DOI: https://doi.org/10.1089/3dp.2022.0061
  • [112] Webb, M., Aye, L., and Green, R., “Investigating potential comfort benefits of biologically inspired building skins”, 13th Conference of International Building Performance Simulation Association, Chambéry, 2634-2641, (2013).
  • [113] Webb, M., Aye, L. and Green, R., “TRNSYS simulation and thermal performance of biomimetic façade designs”, Crawford, RH (Ed.) Stephan, A. (Ed.) Living And Learning: Research For A Better Built Environment, 434-443, (2015). DOI: https://doi.org/10.1016/j.apenergy.2017.08.115
  • [114] Webb, M., Aye, L., and Green, R., “Simulation of a biomimetic façade using TRNSYS”. Applied Energy, 213, 670-694, (2018). DOI: https://doi.org/10.1016/j.apenergy.2017.08.115
  • [115] Webb, M., “Biomimetic building facades demonstrate potential to reduce energy consumption for different building typologies in different climate zones”, Clean Technologies and Environmental Policy, 24(2): 493-518, (2022). DOI: https://doi.org/10.1007/s10098-021-02183-z
  • [116] Wang, J., and Li, J., “Bio-inspired kinetic envelopes for building energy efficiency based on parametric design of building information modeling”, Asia-Pacific Power and Energy Engineering Conference, Chengdu, pp. 1-4, (2010). DOI: https://doi.org/10.1109/APPEEC.2010.5449511
  • [117] El Ahmar, S., and Fioravanti, A., “Botanics and Parametric Design Fusions for Performative Building Skins”, Smart and Responsive Design, 2: 595-604, (2014).
  • [118] Han, Y., Taylor, J. E., and Pisello, A. L., “Toward mitigating urban heat island effects: Investigating the thermal-energy impact of bio-inspired retro-reflective building envelopes in dense urban settings”, Energy and Buildings, 102: 380-389, (2015).
  • [119] El Ahmar, S., and Fioravanti, A., “Biomimetic-computational design for double facades in hot climates”, Smart and Responsive Design, 2: 687-696, (2015). DOI: https://doi.org/10.52842/conf.ecaade.2015.2.687
  • [120] Bouabdallah, N., M’sellem, H., and Alkama, D., “Biomimicry as an approach for sustainable architecture case of arid regions with hot and dry climate”, Technologies and Materials for Renewable Energy, Environment and Sustainability (TMREES), Beirut, 1758(1), (2016).
  • [121] Fecheyr-Lippens, D., and Bhiwapurkar, P., “Applying biomimicry to design building envelopes that lower energy consumption in a hot-humid climate”, Architectural Science Review, 60(5): 360-370, (2017). DOI: https://doi.org/10.1080/00038628.2017.1359145
  • [122] Holstov, A., Farmer, G., and Bridgens, B., “Sustainable materialisation of responsive architecture”, Sustainability, 9(3): 435, (2017). DOI: https://doi.org/10.3390/su9030435
  • [123] Jahanara, A., and Fioravanti, A., “Kinetic Shading System as a means for Optimizing Energy Load. A Parametric Approach to Optimize Daylight Performance for an Office Building in Rome”, 35th International Conference on Education and Research in Computer Aided Architectural Design in Europe, Rome, 2: 231-240, (2017). DOI: https://doi.org/10.52842/conf.ecaade.2017.2.231
  • [124] Sheikh, W. T., and Asghar, Q., “Adaptive biomimetic facades: Enhancing energy efficiency of highly glazed buildings”, Frontiers of Architectural Research, 8(3): 319-331, (2019). DOI: https://doi.org/10.1016/j.foar.2019.06.001
  • [125] Kuru, A., Oldfield, P., Bonser, S., and Fiorito, F., “A framework to achieve multifunctionality in biomimetic adaptive building skins”, Buildings, 10(7): 114, (2020).
  • [126] Yoon, J., and Bae, S., “Performance evaluation and design of thermo-responsive SMP shading prototypes”, Sustainability, 12(11): 4391, (2020). DOI: https://doi.org/10.3390/su12114391
  • [127] Nalcaci, G., “Modeling and Implementation of an Adaptive Facade Design for Energy Efficiently Buildings Based Biomimicry”, 8th International Conference on Smart Grid (icSmartGrid), Paris, 140-145, (2020). DOI: https://doi.org/10.1109/icSmartGrid49881.2020.9144954
  • [128] Abdel-Rahman, W. S. M., “Thermal performance optimization of parametric building envelope based on bio-mimetic inspiration”, Ain Shams Engineering Journal, 12(1): 1133-1142, (2021).
  • [129] Petriccione, L., Fulchir, F., and Chinellato, F., “Applied innovation: Technological experiments on biomimetic facade systems and solar panels”, Techne, 2: 82-86, (2021). DOI: https://doi.org/10.13128/techne-10687
  • [130] Bui, D. K., Nguyen, T. N., Ghazlan, A., and Ngo, T. D., “Biomimetic adaptive electrochromic windows for enhancing building energy efficiency”, Applied Energy, 300, 117341, (2021).
  • [131] Andrade, T. A. B. D., Beirão, J. N. D. C., Arruda, A. J. V. D., and Cruz, C., “The adaptive power of ammophila arenaria: biomimetic study, systematic observation, parametric design, and experimental tests with bimetal”, Polymers, 13(15), 2554, (2021). DOI: https://doi.org/10.3390/polym13152554
  • [132] Sankaewthong, S., Horanont, T., Miyata, K., Karnjana, J., Busayarat, C., and Xie, H., “Using a biomimicry approach in the design of a kinetic façade to regulate the amount of daylight entering a working space”, Buildings, 12(12), 2089, (2022). DOI: https://doi.org/10.3390/buildings12122089
  • [133] Hafizi, N., and Karimnezhad, M., “Biomimetic architecture towards bio inspired adaptive envelopes: in case of plant inspired concept generation”, International Journal of Built Environment and Sustainability, 9(1): 1-10, (2022). DOI: https://doi.org/10.11113/ijbes.v9.n1.820
  • [134] Teraa, S., and Bencherif, M., “From hygrothermal adaptation of endemic plants to meteorosensitive biomimetic architecture: case of Mediterranean biodiversity hotspot in Northeastern Algeria”, Environment, Development and Sustainability, 24(9), 10876-10901, (2022). DOI: https://doi.org/10.1007/s10668-021-01887-y
  • [135] Anzaniyan, E., Alaghmandan, M., and Montaser Koohsari, A., “Design, fabrication and computational simulation of a bio-kinetic façade inspired by the mechanism of the Lupinus Succulentus plant for daylight and energy efficiency”, Science and Technology for the Built Environment, 28(10): 1456-1471, (2022). DOI: https://doi.org/10.1080/23744731.2022.2122675
  • [136] Sankaewthong, S., Miyata, K., Horanont, T., Xie, H., and Karnjana, J., “Mimosa Kinetic Façade: Bio-Inspired Ventilation Leveraging the Mimosa Pudica Mechanism for Enhanced Indoor Air Quality”, Biomimetics, 8(8), 603, (2023). DOI: https://doi.org/10.3390/biomimetics8080603
  • [137] Kim, M. J., Kim, B. G., Koh, J. S., and Yi, H., “Flexural biomimetic responsive building façade using a hybrid soft robot actuator and fabric membrane”, Automation in Construction, 145, 104660, (2023). DOI: https://doi.org/10.1016/j.autcon.2022.104660
  • [138] Öztürk, B., Mutlu-Avinç, G., and Arslan-Selçuk, S., “Enhancing energy efficiency in glass facades through biomimetic design strategies”, Hábitat Sustentable, 34-43, (2024).
  • [139] Avinç, G. M., Koç, S. N., and Selçuk, S. A., “Biomimetic Facade Design Proposal to Improving Thermal Comfort in Hot Climate Region”, International Journal of Built Environment and Sustainability, 11(2): 27-39, (2024). DOI: https://doi.org/10.11113/ijbes.v11.n2.1226
  • [140] Andrade, T., Beirão, J., Arruda, A., and Vinagre, N., “Kinetic module in bimetal: A biomimetic approach adapting the kinetic behavior of bimetal for adaptive Façades”, Materials & Design, 239, 112807, (2024). DOI: https://doi.org/10.1016/j.matdes.2024.112807
  • [141] Kahvecioğlu, B., Mutlu Avinç, G., and Arslan Selçuk, S., “Biomimetic Adaptive Building Façade Modeling for Sustainable Urban Freshwater Ecosystems: Integration of Nature’s Water-Harvesting Strategy into Sun-Breakers”, Biomimetics, 9(9), 569, (2024). DOI: https://doi.org/10.3390/biomimetics9090569

A Bibliometric Analysis on Bio-Inspired Responsive Facades

Year 2025, Volume: 38 Issue: 4, 1566 - 1595, 01.12.2025
https://doi.org/10.35378/gujs.1629541

Abstract

The implementation of responsive facades offers a promising strategy for reducing operational energy use while enhancing indoor comfort. These facades dynamically adjust their configurations, mirroring adaptive behaviors observed in living organisms. The bio-inspired responsive facade approach integrates principles from biomimicry and responsive architecture to develop systems that react intelligently to environmental stimuli. This study aims to analyze existing literature to identify key developments and trends in bio-inspired responsive facades. The research is conducted in three main phases. First, the study establishes its conceptual framework. Second, a comprehensive bibliometric analysis is conducted using the Web of Science database, employing science mapping techniques via VOSviewer and the Bibliometrix R package. This analysis uncovers major trends, turning points, influential authors, leading journals, and significant conferences, offering a clear overview of the research landscape. In the third phase, 33 facade designs are selected from 141 identified publications for comparative analysis. Each design is examined based on material, control systems, movement mechanisms, and functional objectives. The review explores their natural inspirations, responsive stimuli, and material strategies to derive insights for future innovation. Results reveal that 45% of designs focus on improving thermal comfort in hot climates, often utilizing active systems or smart materials. Folding and rotating mechanisms are the most common modes of movement. However, only five designs progress beyond the conceptual phase, highlighting the need for practical implementation. By mapping the evaluation of this interdisciplinary field, the study establishes a systematic foundation for advancing bio-inspired responsive facade research.

References

  • [1] International Energy Agency. “World Energy Outlook 2024” Report, (2024).
  • [2] Hubert, T., Dugué, A., Vogt Wu, T., Aujard, F., and Bruneau, D., “An adaptive building skin concept resulting from a new bioinspiration process: Design, prototyping, and characterization”, Energies, 15(3): 891, (2022). DOI: https://doi.org/10.3390/en15030891
  • [3] El Houda, A. N., and Mohamed, D., “Advanced building skins inspired from plants adaptation strategies to environmental stimuli: A review”, International Conference on Applied Smart Systems (ICASS), Médéa, 1-7, (2018). DOI: 10.1109/ICASS.2018.8651949
  • [4] Kızılörenli, E., and Maden, F., “Modular responsive facade proposals based on semi-regular and demi-regular tessellation: Daylighting and visual comfort”, Frontiers of Architectural Research, 12(4): 601-612, (2023). DOI: https://doi.org/10.1016/j.foar.2023.02.005
  • [5] Pawlyn, M., Biomimicry in Architecture 2nd ed., RIBA Publishing, Newcastle, (2019). DOI: https://doi.org/10.4324/9780429346774
  • [6] Park, J. J., and Dave, B., “Bio-inspired responsive façades”, 2nd Central European Symposium of Building Physics (CESBP), Vienna, (2013).
  • [7] Kuru, A., Oldfield, P., Bonser, S., and Fiorito, F., “Biomimetic adaptive building skins: Energy and environmental regulation in buildings”, Energy and Buildings, 205, (2019). DOI: https://doi.org/10.1016/j.enbuild.2019.109544
  • [8] Soliman, M. E., and Bo, S., “An innovative multifunctional biomimetic adaptive building envelope based on a novel integrated methodology of merging biological mechanisms”, Journal of Building Engineering, 76, (2023). DOI: https://doi.org/10.1016/j.jobe.2023.106995
  • [9] Meena, A. K., D’Costa, D., Bhavsar, S., Kshirsagar, M., and Kulkarni, S., “Applications of biomimicry in construction and architecture: A bibliometric analysis”, Library Philosophy and Practice, 1-17,(2021).
  • [10] Shashwat, S., Zingre, K. T., Thurairajah, N., Kumar, D. K., Panicker, K., Anand, P., and Wan, M. P., “A review on bioinspired strategies for an energy-efficient built environment.” Energy and Buildings, 296, (2023). DOI: https://doi.org/10.1016/j.enbuild.2023.113382
  • [11] Varshabi, N., Arslan Selçuk, S., and Mutlu Avinç, G., “Biomimicry for energy-efficient building design: A bibliometric analysis”, Biomimetics, 7(1): 21, (2022). DOI: https://doi.org/10.3390/biomimetics7010021
  • [12] Bem, G. D., and Krüger, E. L., “Responsive architecture: a bibliometric analysis of scientific production”, Ambiente Construído, 22, 31-45, (2022).
  • [13] Gonçalves, M., Figueiredo, A., Almeida, R. M. S. F., and Vicente, R., “Dynamic façades in buildings: A systematic review across thermal comfort, energy efficiency and daylight performance”, Renewable and Sustainable Energy Reviews, 199, (2024). DOI: https://doi.org/10.1016/j.rser.2024.114474
  • [14] Aria, M., and Cuccurullo, C., “Bibliometrix: An R-tool for comprehensive science mapping analysis”, Journal of Informetrics, 11(4): 959-975, (2017). DOI: https://doi.org/10.1016/j.joi.2017.08.007
  • [15] Dutt, F., and Das, S., “Computational design of a bio inspired responsive architectural Façade system”, International Journal of Architectural Computing, 10(4): 613-633, (2012). DOI: https://doi.org/10.1260/1478-0771.10.4.613
  • [16] Ladurner, G., Gabler, M., Menges, A., and Knippers, J., “Interactive form-finding for biomimetic fibre structures”, Education and Research in Computer Aided Architectural Design in Europe Computation and Performance (eCAADe), 509-520, (2012). DOI: https://doi.org/10.52842/conf.ecaade.2012.2.519
  • [17] Menges, A., and Knippers, J., “Fibrous tectonics”, Architectural Design, 85(5): 40-47, (2015). DOI: https://doi.org/10.1002/ad.1952
  • [18] Grun, T. B., Dehkordi, LKF., Schwinn, T., Sonntag, D., von Scheven, M., Bischoff, M., Knippers, J., and Nebelsick, J. H., The skeleton of the sand dollar as a biological role model for segmented shells in building construction: a research review. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 217-242, (2016). DOI: https://doi.org/10.1007/978-3-319-46374-2_11
  • [19] Weigele, J., Schloz, M., Schwinn, T., Reichert, S., LaMagna, R., Waimer, F., Knippers, J., and Menges, A., “Fibrous Morphologies”, Education and Research in Computer Aided Architectural Design in Europe Computation and Performance (eCAADe), 549-558, (2013).
  • [20] Knippers, J., La Magna, R., Menges, A., Reichert, S., Schwinn, T., and Waimer, F., “ICD/ITKE research pavilion 2012: coreless filament winding based on the morphological principles of an arthropod exoskeleton”, Architectural Design, 85(5): 48-53, (2015). DOI: https://doi.org/10.1002/ad.1953
  • [21] Dörstelmann, M., Knippers, J., Menges, A., Parascho, S., Prado, M., and Schwinn, T., “ICD/ITKE Research Pavilion 2013‐14: Modular Coreless Filament Winding Based on Beetle Elytra”, Architectural Design, 85(5): 54-59, (2015). DOI: https://doi.org/10.1002/ad.1954
  • [22] Dörstelmann, M., Knippers, J., Koslowski, V., Menges, A., Prado, M., Schieber, G., and Vasey, L., “ICD/ITKE research pavilion 2014–15: Fibre placement on a pneumatic body based on a water spider web”, Architectural Design, 85(5): 60-65, (2015). DOI: https://doi.org/10.1002/ad.1955
  • [23] Grun, T. B., von Scheven, M., Geiger, F., Schwinn, T., Sonntag, D., Bischoff, M., Knippers, J, and Nebelsick, J. H., Building principles and structural design of sea urchins: Examples of bio-inspired constructions. In Biomimetics for Architecture: Learning from Nature, Birkhäuser, Basel, 104-115, (2019). DOI: https://doi.org/10.1515/9783035617917-014
  • [24] Speck, T., Knippers, J., and Speck, O., “Self‐X materials and structures in nature and technology: Bio‐inspiration as a driving force for technical innovation”, Architectural Design, 85(5): 34-39, (2015). DOI: https://doi.org/10.1002/ad.1951
  • [25] Knippers, J., Schmid, U., and Speck, T., Biomimetics for architecture: learning from nature, Birkhäuser, Basel, (2019). DOI: https://doi.org/10.1515/9783035617917
  • [26] Poppinga, S., Körner, A., Sachse, R., Born, L., Westermeier, A., Hesse, L., Knippers, J., Bischoff, M., Gresser, GT., and Speck, T., Compliant mechanisms in plants and architecture. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 169-193, (2016). DOI: https://doi.org/10.1007/978-3-319-46374-2_9
  • [27] Born, L., Jonas, F. A., Bunk, K., Masselter, T., Speck, T., Knippers, J., and Gresser, G. T., Branched structures in plants and architecture. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 195-215, (2016). DOI: https://doi.org/10.1007/978-3-319-46374-2_10
  • [28] Westermeier, A. S., Poppinga, S., Körner, A., Born, L., Sachse, R., Saffarian, S., Knippers, J., Bischoff, M., Gresser, GT., and Speck, T., No joint ailments: How plants move and inspire technology. In Biomimetics for Architecture: Learning from Nature, Birkhäuser, Basel, 32-41, (2019). DOI: https://doi.org/10.1515/9783035617917-006
  • [29] Bunk, K., Jonas, F. A., Born, L., Hesse, L., Möhl, C., Gresser, GT., Knippers, J., Speck, T., and Masselter, T., From plant branchings to technical support structures. In Biomimetics for Architecture: Learning from Nature, Birkhäuser, Basel, 144-152, (2019).
  • [30] Waimer, F., La Magna, R., and Knippers, J., “Nature-inspired structural optimization of freeform shells”, International Conference Structures and Architecture (ICSA), (2013).
  • [31] Dahy, H., and Knippers, J., “Agricultural residues applications in contemporary building industry”, International Conference on Structures and Architecture (ICSA), Portogallo, (2013).
  • [32] Betz, O., Birkhold, A., Caliaro, M., Eggs, B., Mader, A., Knippers, J., and Speck, O., Adaptive stiffness and joint-free kinematics: actively actuated rod-shaped structures in plants and animals and their biomimetic potential in architecture and engineering. In Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, 135-167, (2016).
  • [33] Speck, O., Caliaro, M., Mader A., and Knippers, J., Plants In Action. In Biomimetics for Architecture, 14–21, (2019).
  • [34] Violano, A., and Melchiorre, L., Eco-friendly materials and technologies: the added value of urban transformation. In Best Practices in Heritage, Conservation and Management From the World to Pompeii, La Scuola di Pitagora, (2014).
  • [35] Violano, A., “Beyond Materials: the experimentation of bio-based grown materials from mycelia”, TECHNE-Journal of Technology for Architecture and Environment, 299-307, (2018).
  • [36] Violano, A., Cannaviello, M., and Della Cioppa, A., Building With Wood: the summer energy performance according the UNITS 11300: 2014-I. In Heritage and Technology, Mind Knowledge Experience, 1940-1947, (2015).
  • [37] Albrizio, S., Capobianco, L., Di Domenico, C., Fiore, A., Fiore, W., Franchino, R, and Violano, A., “The SEEM project: a Solar Eco-Efficient Envelope Model”, Heritage Architecture Landesign focus on Conservation Regeneration Innovation Le vie dei Mercanti XI Forum Internazionale di Studi 1364-1371, (2013).
  • [38] Abdallah, Y. K., and Estevez, A. T., “Bioactive devices as self-sufficient systems for energy production in architecture”, Journal of Green Building, 16(2): 3-22, (2021). DOI: 10.3992/jgb.16.2.3
  • [39] Giannopoulou, E., Baquero, P., Warang, A., Orciuoli, A., Estevez, A. T., and Brun-Usan, M. A., “Biological pattern based on reaction-diffusion mechanism employed as fabrication strategy for a shell structure”, IOP Conference Series: Materials Science and Engineering, 471(10), 102053, (2019). DOI: 10.1088/1757-899X/471/10/102053
  • [40] Almusaed, A., Green Areas in Biophilic Architecture. In Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture, 113-122, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7_8
  • [41] Almusaed, A., Biophilic and bioclimatic architecture: Analytical therapy for the next generation of passive sustainable architecture, Springer Science & Business Media, New York, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7
  • [42] Almusaed, A., Biophilic Architecture Hypothesis. In Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture, 39-46, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7_4
  • [43] Almusaed, A., Socio and Healthy Human Psychology upon Biophilic Architecture. In Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture, 173-186, (2011). DOI: https://doi.org/10.1007/978-1-84996-534-7_14
  • [44] Malaktou, E., and Philokyprou, M., “Summer thermal comfort conditions in shopping arcades and their adjoining streets in hot and dry climates. The case of the Nicosia’s historic centre”, IOP Conference Series: Earth and Environmental Science, 410(1), 012093, (2020). DOI: https://doi.org/10.1088/1755-1315/410/1/012093
  • [45] Philokyprou, M., Savvides, A., Michael, A., and Malaktou, E., “Examination and assessment of the environmental characteristics of vernacular rural settlements. Three case studies in Cyprus”, World Sustainable Building Conference SB14, Barcelona, 1-8 (2014).
  • [46] Philokyprou, M., Michael, A., Thravalou, S., and Ioannou, I., “Evaluation of sustainable design elements in the historic centre of Nicosia, Cyprus”, Vernacular Heritage and Earthen Architecture, 631-637, (2013).
  • [47] Philokyprou, M., Michael, A., and Thravalou, S., “Assessment of the bioclimatic elements of vernacular architecture. The historic centre of Nicosia, Cyprus”, Le Vie dei Mercanti XI Forum Internazionale di Studi, Aversa, Capri, 13-15, (2013).
  • [48] Philokyprou, M., “Teaching conservation and vernacular architecture”, Journal of Architectural Conservation, 17(2): 7-24, (2011). DOI: https://doi.org/10.1080/13556207.2011.10785086
  • [49] Favoino, F., Jin, Q., and Overend, M., “Towards an ideal adaptive glazed façade for office buildings”, Energy Procedia, 62: 289-298, (2014). DOI: https://doi.org/10.1016/j.egypro.2014.12.390
  • [50] Favoino, F., and Overend, M., “A simulation framework for the evaluation of next generation Responsive Building Envelope Technologies”, Energy Procedia, 78: 2602-2607 (2015). DOI: https://doi.org/10.1016/j.egypro.2015.11.302
  • [51] Favoino, F., Fiorito, F., Cannavale, A., Ranzi, G., and Overend, M., “Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates”, Applied Energy, 178: 943-961, (2016). DOI: https://doi.org/10.1016/j.apenergy.2016.06.107
  • [52] Favoino, F., Jin, Q., and Overend, M., “Design and control optimisation of adaptive insulation systems for office buildings. Part 1: Adaptive technologies and simulation framework”, Energy, 127: 301-309, (2017). DOI: https://doi.org/10.1016/j.energy.2017.03.083
  • [53] Loonen, R. C., Favoino, F., Hensen, J. L., and Overend, M., “Review of current status, requirements and opportunities for building performance simulation of adaptive facades”, Journal of Building Performance Simulation, 10(2): 205-223, (2017). DOI: https://doi.org/10.1080/19401493.2016.1152303
  • [54] Giovannini, L., Serra, V., Verso, V. R. L., Pellegrino, A., Zinzi, M., and Favoino, F., “A novel methodology to optimize visual comfort and energy performance for transparent adaptive façades”, International Conference on Environment and Electrical Engineering (IEEE) and Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, 1-6, (2018). DOI: https://doi.org/10.1109/EEEIC.2018.8494565
  • [55] Giovannini, L., Favoino, F., Pellegrino, A., Verso, V. R. M. L., Serra, V., and Zinzi, M., “Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation”, Applied Energy, 251, (2019). DOI: https://doi.org/10.1016/j.apenergy.2019.113335
  • [56] Giovannini, L., Favoino, F., Serra, V., and Zinzi, M., “Thermo-chromic glazing in buildings: A novel methodological framework for a multi-objective performance evaluation”, Energy Procedia, 158: 4115-4122, (2019). DOI: https://doi.org/10.1016/j.egypro.2019.01.822
  • [57] Favoino, F., Goia, F., Perino, M., and Serra, V., “Experimental analysis of the energy performance of an ACTive, RESponsive and Solar (ACTRESS) façade module", Solar Energy, 133: 226-248, (2016). DOI: https://doi.org/10.1016/j.solener.2016.03.044
  • [58] Tabadkani, A., Roetzel, A., Li, H. X., Tsangrassoulis, A., “A review of automatic control strategies based on simulations for adaptive facades”, Building and Environment, 175, 106801, (2020). DOI: https://doi.org/10.1016/j.buildenv.2020.106801
  • [59] Tabadkani, A., Tsangrassoulis, A., Roetzel, A., and Li, H. X., “Innovative control approaches to assess energy implications of adaptive facades based on simulation using EnergyPlus”, Solar Energy, 206: 256-268, (2020). DOI: https://doi.org/10.1016/j.solener.2020.05.087
  • [60] Tabadkani, A., Roetzel, A., Li, H. X., and Tsangrassoulis, A., “Design approaches and typologies of adaptive facades: A review”, Automation in Construction, 121, 103450, (2021). DOI: https://doi.org/10.1016/j.autcon.2020.103450
  • [61] Tabadkani, A., Roetzel, A., Li, H. X., and Tsangrassoulis, A., “A review of occupant-centric control strategies for adaptive facades”, Automation in Construction, 122, 103464, (2021). DOI: https://doi.org/10.1016/j.autcon.2020.103464
  • [62] Tabadkani, A., Roetzel, A., Li, H. X., and Tsangrassoulis, A., “Simulation-based personalized real-time control of adaptive facades in shared office spaces”, Automation in Construction, 138, 104246, (2022). DOI: https://doi.org/10.1016/j.autcon.2022.104246
  • [63] Tabadkani, A., Haddadi, M., Rizi, R. A., and Tabadkani, E., “A hierarchical multi-purpose roller shade controller to enhance indoor comfort and energy efficiency”, Building Simulation, 16(7): 1239-1256, (2023). DOI: https://doi.org/10.1007/s12273-023-1003-7
  • [64] Tabadkani, A., Dehnavi, A. N., Mostafavi, F., and Naeini, H. G., “Targeting modular adaptive façade personalization in a shared office space using fuzzy logic and genetic optimization”, Journal of Building Engineering, 69: 106118, (2023). DOI: https://doi.org/10.1016/j.jobe.2023.106118
  • [65] Tabadkani, A., Roetzel, A., Li, H. X., Tsangrassoulis, A., and Attia, S., “Analysis of the impact of automatic shading control scenarios on occupant’s comfort and energy load”, Applied Energy, 294, 116904, (2021). DOI: https://doi.org/10.1016/j.apenergy.2021.116904
  • [66] Attia, S., Bertrand, S., Cuchet, M., Yang, S., and Tabadkani, A., “Comparison of thermal energy saving potential and overheating risk of four adaptive façade technologies in office buildings”, Sustainability, 14(10), 6106, (2022). DOI: https://doi.org/10.3390/su14106106
  • [67] Norouziasas, A., Tabadkani, A., Rahif, R., Amer, M., van Dijk, D., Lamy, H., and Attia, S., “Implementation of ISO/DIS 52016-3 for adaptive façades: A case study of an office building”, Building and Environment, 235, 110195, (2023). DOI: https://doi.org/10.1016/j.buildenv.2023.110195
  • [68] Cui, H., and Overend, M., “A review of heat transfer characteristics of switchable insulation technologies for thermally adaptive building envelopes”, Energy and Buildings, 199: 427-444, (2019). DOI: https://doi.org/10.1016/j.enbuild.2019.07.004
  • [69] Magri, E., Buhagiar, V., and Overend, M., “The Potential of Smart Glazing for Occupant Well-Being and Reduced Energy Load in a Central-Mediterranean Climate”, KnE Social Sciences, 534-545, (2019). DOI: https://doi.org/10.18502/kss.v3i27.5555
  • [70] Serra, V., Zanghirella, F., and Perino, M., “Experimental evaluation of a climate facade: energy efficiency and thermal comfort performance”, Energy and Buildings, 42(1): 50-62, (2010). DOI: https://doi.org/10.1016/j.enbuild.2009.07.010
  • [71] Goia, F., Perino, M., Serra, V., and Zanghirella, F., “Towards an active, responsive, and solar building envelope”, Journal of Green Building, 5(4): 121-136, (2010). DOI: https://doi.org/10.3992/jgb.5.4.121
  • [72] Callegari, G., Spinelli, A., Bianco, L., Serra, V., and Fantucci, S., “NATURWALL©-A solar timber façade system for building refurbishment: optimization process through in field measurements”, Energy Procedia, 78: 291-296, (2015). DOI: https://doi.org/10.1016/j.egypro.2015.11.641
  • [73] Attia, S., Lioure, R., and Declaude, Q., “Future trends and main concepts of adaptive facade systems”, Energy Science & Engineering, 8(9): 3255-3272, (2020). DOI: https://doi.org/10.1002/ese3.725
  • [74] Valitabar, M., Ghaffarian Hoseini, A., and Attia, S., “Advanced control strategy to maximize view and control discomforting glare: a complex adaptive façade”, Architectural Engineering and Design Management, 18(6): 829-849, (2022). DOI: https://doi.org/10.1080/17452007.2022.2032576
  • [75] Hosseini, S. M., Heidari, S., Attia, S., Wang, J., and Triantafyllidis, G., “Biomimetic kinetic façade as a real-time daylight control: complex form versus simple form with proper kinetic behavior”, International Conference on Smart and Sustainable Built Environment (SASBE), Auckland, (2024). DOI: https://doi.org/10.1108/SASBE-03-2024-0090
  • [76] Hosseini, S. M., Mohammadi, M., Schröder, T., and Guerra-Santin, O., “Integrating interactive kinetic façade design with colored glass to improve daylight performance based on occupants’ position”, Journal of Building Engineering, 31, 101404, (2020). DOI: https://doi.org/10.1016/j.jobe.2020.101404
  • [77] Hosseini, S. M., Mohammadi, M., Schröder, T., and Guerra-Santin, O., “Bio-inspired interactive kinetic façade: Using dynamic transitory-sensitive area to improve multiple occupants’ visual comfort”, Frontiers of Architectural Research, 10(4): 821-837, (2021). DOI: https://doi.org/10.1016/j.foar.2021.07.004
  • [78] Hosseini, S. M., and Heidari, S., “General morphological analysis of Orosi windows and morpho butterfly wing's principles for improving occupant's daylight performance through interactive kinetic façade”, Journal of Building Engineering, 59, 105027, (2022). DOI: https://doi.org/10.1016/j.jobe.2022.105027
  • [79] Sommese, F., Hosseini, S. M., Badarnah, L., Capozzi, F., Giordano, S., Ambrogi, V., and Ausiello, G., “Light-responsive kinetic façade system inspired by the Gazania flower: A biomimetic approach in parametric design for daylighting”, Building and Environment, 247, 111052, (2024).
  • [80] Heidari Matin, N., and Eydgahi, A., “Factors affecting the design and development of responsive facades: a historical evolution”, Intelligent Buildings International, 12(4): 257-270, (2020).
  • [81] Heidari Matin, N., and Eydgahi, A., “Using Smart Colored Windows for Improving Users’ Comfort in Buildings”, 3rd International Conference on Architecture, Construction, Environment and Hydraulics (ICACEH), 29-33, (2021). DOI: https://doi.org/10.1109/icaceh54312.2021.9768848
  • [82] Heidari Matin, N., and Eydgahi, A., “Technologies used in responsive facade systems: a comparative study”, Intelligent Buildings International, 14(1): 54-73, (2022). DOI: https://doi.org/10.1080/17508975.2019.1577213
  • [83] Heidari Matin, N., and Eydgahi, A., “A data-driven optimized daylight pattern for responsive facades design”, Intelligent Buildings International, 14(3): 363-374, (2022). DOI: https://doi.org/10.1080/17508975.2021.1872478
  • [84] Heidari Matin, N., Eydgahi, A., and Matin, P., “The effect of smart colored windows on visual performance of buildings”, Buildings, 12(6): 861, (2022). DOI: https://doi.org/10.3390/buildings12060861
  • [85] Heidari Matin, N., Eydgahi, A., Gharipour, A., and Matin, P., “A Novel Framework for Optimizing Indoor Illuminance and Discovering Association of Involved Variables”, Buildings, 12(7): 878, (2022). DOI: https://doi.org/10.3390/buildings12070878
  • [86] Rashidzadeh, Z., and Heidari Matin, N., “A comparative study on smart windows focusing on climate-based energy performance and users’ comfort attributes”, Sustainability, 15(3): 2294, (2023). DOI: https://doi.org/10.3390/su15032294
  • [87] Badarnah, L., “A biophysical framework of heat regulation strategies for the design of biomimetic building envelopes”, Procedia Engineering, 118: 1225-1235, (2015). DOI: https://doi.org/10.1016/j.proeng.2015.08.474
  • [88] Badarnah, L., and Kadri, U., “A methodology for the generation of biomimetic design concepts”, Architectural Science Review, 58(2): 120-133, (2015). DOI: https://doi.org/10.1080/00038628.2014.922458
  • [89] Cruz, E., Hubert, T., Chancoco, G., Naim, O., Chayaamor-Heil, N., Cornette, R., and Aujard, F., “Design processes and multi-regulation of biomimetic building skins: A comparative analysis”, Energy and Buildings, 246, 111034, (2021). DOI: https://doi.org/10.1016/j.enbuild.2021.111034
  • [90] Badarnah, L., “Form follows environment: Biomimetic approaches to building envelope design for environmental adaptation”, Buildings, 7(2): 40, (2017). DOI: https://doi.org/10.3390/buildings7020040
  • [91] Peeks, M., and Badarnah, L., “Textured building façades: utilizing morphological adaptations found in nature for evaporative cooling”, Biomimetics, 6(2): 24, (2021).
  • [92] Sommese, F., Badarnah, L., and Ausiello, G., “A critical review of biomimetic building envelopes: towards a bio-adaptive model from nature to architecture”, Renewable and Sustainable Energy Reviews, 169, 112850, (2022). DOI: https://doi.org/10.1016/j.rser.2022.112850
  • [93] Sommese, F., Badarnah, L., and Ausiello, G., “Smart materials for biomimetic building envelopes: current trends and potential applications”, Renewable and Sustainable Energy Reviews, 188, 113847, (2023). DOI: https://doi.org/10.1016/j.rser.2023.113847
  • [94] Jalali, S., Nicoletti, E., and Badarnah, L., “From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies”, Sustainability, 16(3): 1145, (2024).
  • [95] Hays, N., Badarnah, L., and Jain, A., “Biomimetic design of building facades: an evolutionary-based computational approach inspired by elephant skin for cooling in hot and humid climates”, Frontiers in Built Environment, 10, 1309621, (2024). DOI: https://doi.org/10.3389/fbuil.2024.1309621
  • [96] Ameh, H., Badarnah, L., and Lamond, J., “Amphibious Architecture: A Biomimetic Design Approach to Flood Resilience”, Sustainability, 16(3): 1069, (2024). DOI: https://doi.org/10.3390/su16031069
  • [97] Schleicher, S., Lienhard, J., Poppinga, S., Speck, T., and Knippers, J., Abstraction of bio-inspired curved-line folding patterns for elastic foils and membranes in architecture. In Design and Nature V, WIT Press, 479-90, (2010). DOI: https://doi.org/10.2495/DN100431
  • [98] Schleicher, S., Lienhard, J., Poppinga, S., Speck, T., and Knippers, J., “A methodology for transferring principles of plant movements to elastic systems in architecture”, Computer-Aided Design, 60: 105-117, (2015). DOI: https://doi.org/10.1016/j.cad.2014.01.005
  • [99] Antony, F., Grießhammer, R., Speck, T., and Speck, O., “The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®”, Beilstein Journal of Nanotechnology, 7(1): 2100-2115, (2016). DOI: https://doi.org/10.3762/bjnano.7.200
  • [100] Poppinga, S., Zollfrank, C., Prucker, O., Rühe, J., Menges, A., Cheng, T., and Speck, T., “Toward a new generation of smart biomimetic actuators for architecture”, Advanced Materials, 30(19), 1703653, (2018). DOI: https://doi.org/10.1002/adma.201703653
  • [101] Körner, A., Born, L., Mader, A., Sachse, R., Saffarian, S., Westermeier, A. S., and Knippers, J., “ for—a biomimetic compliant shading device for complex free form facades”, Smart Materials and Structures, 27(1), 017001, (2017). DOI: https://doi.org/10.1088/1361-665X/aa9c2f
  • [102] Speck, T., Poppinga, S., Speck, O., and Tauber, F., “Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene”, The Anthropocene Review, 9(2): 237-256, (2022). DOI: https://doi.org/10.1177/20530196211039275
  • [103] Speck, O., and Speck, T., “Biomimetics in botanical gardens—Educational trails and guided tours”, Biomimetics, 8(3): 303, (2023). DOI: https://doi.org/10.3390/biomimetics8030303
  • [104] Cheng, T., Tahouni, Y., Sahin, E. S., Ulrich, K., Lajewski, S., Bonten, C., and Menges, A., “Weather-responsive adaptive shading through biobased and bioinspired hygromorphic 4D-printing”, Nature Communications, 15(1), 10366, (2024). DOI: https://doi.org/10.1038/s41467-024-54808-8
  • [105] Schieber, G., Born, L., Bergmann, P., Körner, A., Mader, A., Saffarian, S., and Knippers, J., “Hindwings of insects as concept generator for hingeless foldable shading systems”, Bioinspiration & Biomimetics, 13(1), 016012, (2017). DOI: https://doi.org/10.1088/1748-3190/aa979c
  • [106] Mader, A., Langer, M., Knippers, J., and Speck, O., “Learning from plant movements triggered by bulliform cells: the biomimetic cellular actuator”, Journal of the Royal Society Interface, 17(169), 20200358, (2020). DOI: https://doi.org/10.1098/rsif.2020.0358
  • [107] Vazquez, E., Correa, D., and Poppinga, S., “A review of and taxonomy for elastic kinetic building envelopes”, Journal of Building Engineering, 82, 108227, (2024). DOI: https://doi.org/10.1016/j.jobe.2023.108227
  • [108] Hosseini, S. M., Mohammadi, M., Rosemann, A., Schröder, T., and Lichtenberg, J., “A morphological approach for kinetic façade design process to improve visual and thermal comfort”, Building and Environment, 153: 186-204, (2019). DOI: https://doi.org/10.1016/j.buildenv.2019.02.040
  • [109] Menges, A., and Reichert, S., “Material capacity: embedded responsiveness”, Architectural Design, 82(2): 52-59, (2012). DOI: https://doi.org/10.1002/ad.1379
  • [110] Reichert, S., Menges, A., and Correa, D., “Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness”, Computer-Aided Design, 60: 50-69, (2015). DOI: https://doi.org/10.1016/j.cad.2014.02.010
  • [111] Tahouni, Y., Cheng, T., Lajewski, S., Benz, J., Bonten, C., Wood, D., and Menges, A., “Codesign of biobased cellulose-filled filaments and mesostructures for 4D printing humidity responsive smart structures”, 3D Printing and Additive Manufacturing, 10(1): 1-14, (2023). DOI: https://doi.org/10.1089/3dp.2022.0061
  • [112] Webb, M., Aye, L., and Green, R., “Investigating potential comfort benefits of biologically inspired building skins”, 13th Conference of International Building Performance Simulation Association, Chambéry, 2634-2641, (2013).
  • [113] Webb, M., Aye, L. and Green, R., “TRNSYS simulation and thermal performance of biomimetic façade designs”, Crawford, RH (Ed.) Stephan, A. (Ed.) Living And Learning: Research For A Better Built Environment, 434-443, (2015). DOI: https://doi.org/10.1016/j.apenergy.2017.08.115
  • [114] Webb, M., Aye, L., and Green, R., “Simulation of a biomimetic façade using TRNSYS”. Applied Energy, 213, 670-694, (2018). DOI: https://doi.org/10.1016/j.apenergy.2017.08.115
  • [115] Webb, M., “Biomimetic building facades demonstrate potential to reduce energy consumption for different building typologies in different climate zones”, Clean Technologies and Environmental Policy, 24(2): 493-518, (2022). DOI: https://doi.org/10.1007/s10098-021-02183-z
  • [116] Wang, J., and Li, J., “Bio-inspired kinetic envelopes for building energy efficiency based on parametric design of building information modeling”, Asia-Pacific Power and Energy Engineering Conference, Chengdu, pp. 1-4, (2010). DOI: https://doi.org/10.1109/APPEEC.2010.5449511
  • [117] El Ahmar, S., and Fioravanti, A., “Botanics and Parametric Design Fusions for Performative Building Skins”, Smart and Responsive Design, 2: 595-604, (2014).
  • [118] Han, Y., Taylor, J. E., and Pisello, A. L., “Toward mitigating urban heat island effects: Investigating the thermal-energy impact of bio-inspired retro-reflective building envelopes in dense urban settings”, Energy and Buildings, 102: 380-389, (2015).
  • [119] El Ahmar, S., and Fioravanti, A., “Biomimetic-computational design for double facades in hot climates”, Smart and Responsive Design, 2: 687-696, (2015). DOI: https://doi.org/10.52842/conf.ecaade.2015.2.687
  • [120] Bouabdallah, N., M’sellem, H., and Alkama, D., “Biomimicry as an approach for sustainable architecture case of arid regions with hot and dry climate”, Technologies and Materials for Renewable Energy, Environment and Sustainability (TMREES), Beirut, 1758(1), (2016).
  • [121] Fecheyr-Lippens, D., and Bhiwapurkar, P., “Applying biomimicry to design building envelopes that lower energy consumption in a hot-humid climate”, Architectural Science Review, 60(5): 360-370, (2017). DOI: https://doi.org/10.1080/00038628.2017.1359145
  • [122] Holstov, A., Farmer, G., and Bridgens, B., “Sustainable materialisation of responsive architecture”, Sustainability, 9(3): 435, (2017). DOI: https://doi.org/10.3390/su9030435
  • [123] Jahanara, A., and Fioravanti, A., “Kinetic Shading System as a means for Optimizing Energy Load. A Parametric Approach to Optimize Daylight Performance for an Office Building in Rome”, 35th International Conference on Education and Research in Computer Aided Architectural Design in Europe, Rome, 2: 231-240, (2017). DOI: https://doi.org/10.52842/conf.ecaade.2017.2.231
  • [124] Sheikh, W. T., and Asghar, Q., “Adaptive biomimetic facades: Enhancing energy efficiency of highly glazed buildings”, Frontiers of Architectural Research, 8(3): 319-331, (2019). DOI: https://doi.org/10.1016/j.foar.2019.06.001
  • [125] Kuru, A., Oldfield, P., Bonser, S., and Fiorito, F., “A framework to achieve multifunctionality in biomimetic adaptive building skins”, Buildings, 10(7): 114, (2020).
  • [126] Yoon, J., and Bae, S., “Performance evaluation and design of thermo-responsive SMP shading prototypes”, Sustainability, 12(11): 4391, (2020). DOI: https://doi.org/10.3390/su12114391
  • [127] Nalcaci, G., “Modeling and Implementation of an Adaptive Facade Design for Energy Efficiently Buildings Based Biomimicry”, 8th International Conference on Smart Grid (icSmartGrid), Paris, 140-145, (2020). DOI: https://doi.org/10.1109/icSmartGrid49881.2020.9144954
  • [128] Abdel-Rahman, W. S. M., “Thermal performance optimization of parametric building envelope based on bio-mimetic inspiration”, Ain Shams Engineering Journal, 12(1): 1133-1142, (2021).
  • [129] Petriccione, L., Fulchir, F., and Chinellato, F., “Applied innovation: Technological experiments on biomimetic facade systems and solar panels”, Techne, 2: 82-86, (2021). DOI: https://doi.org/10.13128/techne-10687
  • [130] Bui, D. K., Nguyen, T. N., Ghazlan, A., and Ngo, T. D., “Biomimetic adaptive electrochromic windows for enhancing building energy efficiency”, Applied Energy, 300, 117341, (2021).
  • [131] Andrade, T. A. B. D., Beirão, J. N. D. C., Arruda, A. J. V. D., and Cruz, C., “The adaptive power of ammophila arenaria: biomimetic study, systematic observation, parametric design, and experimental tests with bimetal”, Polymers, 13(15), 2554, (2021). DOI: https://doi.org/10.3390/polym13152554
  • [132] Sankaewthong, S., Horanont, T., Miyata, K., Karnjana, J., Busayarat, C., and Xie, H., “Using a biomimicry approach in the design of a kinetic façade to regulate the amount of daylight entering a working space”, Buildings, 12(12), 2089, (2022). DOI: https://doi.org/10.3390/buildings12122089
  • [133] Hafizi, N., and Karimnezhad, M., “Biomimetic architecture towards bio inspired adaptive envelopes: in case of plant inspired concept generation”, International Journal of Built Environment and Sustainability, 9(1): 1-10, (2022). DOI: https://doi.org/10.11113/ijbes.v9.n1.820
  • [134] Teraa, S., and Bencherif, M., “From hygrothermal adaptation of endemic plants to meteorosensitive biomimetic architecture: case of Mediterranean biodiversity hotspot in Northeastern Algeria”, Environment, Development and Sustainability, 24(9), 10876-10901, (2022). DOI: https://doi.org/10.1007/s10668-021-01887-y
  • [135] Anzaniyan, E., Alaghmandan, M., and Montaser Koohsari, A., “Design, fabrication and computational simulation of a bio-kinetic façade inspired by the mechanism of the Lupinus Succulentus plant for daylight and energy efficiency”, Science and Technology for the Built Environment, 28(10): 1456-1471, (2022). DOI: https://doi.org/10.1080/23744731.2022.2122675
  • [136] Sankaewthong, S., Miyata, K., Horanont, T., Xie, H., and Karnjana, J., “Mimosa Kinetic Façade: Bio-Inspired Ventilation Leveraging the Mimosa Pudica Mechanism for Enhanced Indoor Air Quality”, Biomimetics, 8(8), 603, (2023). DOI: https://doi.org/10.3390/biomimetics8080603
  • [137] Kim, M. J., Kim, B. G., Koh, J. S., and Yi, H., “Flexural biomimetic responsive building façade using a hybrid soft robot actuator and fabric membrane”, Automation in Construction, 145, 104660, (2023). DOI: https://doi.org/10.1016/j.autcon.2022.104660
  • [138] Öztürk, B., Mutlu-Avinç, G., and Arslan-Selçuk, S., “Enhancing energy efficiency in glass facades through biomimetic design strategies”, Hábitat Sustentable, 34-43, (2024).
  • [139] Avinç, G. M., Koç, S. N., and Selçuk, S. A., “Biomimetic Facade Design Proposal to Improving Thermal Comfort in Hot Climate Region”, International Journal of Built Environment and Sustainability, 11(2): 27-39, (2024). DOI: https://doi.org/10.11113/ijbes.v11.n2.1226
  • [140] Andrade, T., Beirão, J., Arruda, A., and Vinagre, N., “Kinetic module in bimetal: A biomimetic approach adapting the kinetic behavior of bimetal for adaptive Façades”, Materials & Design, 239, 112807, (2024). DOI: https://doi.org/10.1016/j.matdes.2024.112807
  • [141] Kahvecioğlu, B., Mutlu Avinç, G., and Arslan Selçuk, S., “Biomimetic Adaptive Building Façade Modeling for Sustainable Urban Freshwater Ecosystems: Integration of Nature’s Water-Harvesting Strategy into Sun-Breakers”, Biomimetics, 9(9), 569, (2024). DOI: https://doi.org/10.3390/biomimetics9090569
There are 141 citations in total.

Details

Primary Language English
Subjects Materials and Technology in Architecture, Sustainable Architecture
Journal Section Review
Authors

Büşra Bilmez 0009-0009-6866-0770

Feray Maden 0000-0003-2936-3879

Early Pub Date November 12, 2025
Publication Date December 1, 2025
Submission Date January 30, 2025
Acceptance Date September 22, 2025
Published in Issue Year 2025 Volume: 38 Issue: 4

Cite

APA Bilmez, B., & Maden, F. (2025). A Bibliometric Analysis on Bio-Inspired Responsive Facades. Gazi University Journal of Science, 38(4), 1566-1595. https://doi.org/10.35378/gujs.1629541
AMA Bilmez B, Maden F. A Bibliometric Analysis on Bio-Inspired Responsive Facades. Gazi University Journal of Science. December 2025;38(4):1566-1595. doi:10.35378/gujs.1629541
Chicago Bilmez, Büşra, and Feray Maden. “A Bibliometric Analysis on Bio-Inspired Responsive Facades”. Gazi University Journal of Science 38, no. 4 (December 2025): 1566-95. https://doi.org/10.35378/gujs.1629541.
EndNote Bilmez B, Maden F (December 1, 2025) A Bibliometric Analysis on Bio-Inspired Responsive Facades. Gazi University Journal of Science 38 4 1566–1595.
IEEE B. Bilmez and F. Maden, “A Bibliometric Analysis on Bio-Inspired Responsive Facades”, Gazi University Journal of Science, vol. 38, no. 4, pp. 1566–1595, 2025, doi: 10.35378/gujs.1629541.
ISNAD Bilmez, Büşra - Maden, Feray. “A Bibliometric Analysis on Bio-Inspired Responsive Facades”. Gazi University Journal of Science 38/4 (December2025), 1566-1595. https://doi.org/10.35378/gujs.1629541.
JAMA Bilmez B, Maden F. A Bibliometric Analysis on Bio-Inspired Responsive Facades. Gazi University Journal of Science. 2025;38:1566–1595.
MLA Bilmez, Büşra and Feray Maden. “A Bibliometric Analysis on Bio-Inspired Responsive Facades”. Gazi University Journal of Science, vol. 38, no. 4, 2025, pp. 1566-95, doi:10.35378/gujs.1629541.
Vancouver Bilmez B, Maden F. A Bibliometric Analysis on Bio-Inspired Responsive Facades. Gazi University Journal of Science. 2025;38(4):1566-95.